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Abstract. The {-function of a one-dimensional classical hard-rod system with
exponential pair interaction is defined as the generating function for the
partition function of the system with periodic boundary conditions. It is
shown, here, that the {-function for this system is simply related to the traces
of the restrictions of the Ruelle’s transfer matrix, and related operators to a
suitable function space. This {-function does not, in general, extend to a
meromorphic function.

Introduction

The new interest in classical one dimensional models of statistical mechanics
has its origin in the work of Sinai [1] who found an interesting connection of
these models with certain measure theoretic problems in the theory of dynamical
systems. By constructing symbolic dynamics [2] for Anosov difftomorphisms
and flows on a compact manifold with the help of Markov partitions [3] he was
able to apply the methods developed in the study of one dimensional models and
to get interesting new results. A special role in the study of dynamical systems
is played by the {-function of such a system introduced by Artin and Mazur [4]

ter=exp Y. Ny
n=1
where N, is the number of fixed points of the mapping f”, where f:M—M is a
difftomorphism on some compact manifold M. They could show that the function
{(z) has a non-vanishing radius of convergence for almost all diffeomorphisms f.
To study the possible relevance of this {-function for statistical mechanics, Ruelle
[5] introduced generalized {-functions in the following way:

Let M be some topological space and f:M—M a mapping. Let A:M—-C
be a complex valued function on M. Then consider the formal expression
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Properties of this function were studied in [5] and [6] and it was shown that
this function extends in certain cases to a meromorphic function in the whole z
plane. -
Looking at the expression ) exp( Y
xeFix fn k=0
is the shift operator 7 on the configuration space K of a one dimensional classical
lattice gas system, then this is nothing else but the partition function Z, of this
system with periodic boundary conditions and interaction function A [7]. In
this case the function { in (1) can be written
0
{z, A)=exp ). 2"Z,(A)/n, @)
n=1
and ( is just the generating function for Z,,.

By applying the transfer matrix method, one of us [8] studied the above
function for a one dimensional classical lattice gas system with exponential-
polynomial pair interactions and showed that in this case { is holomorphic in
a neighbourhood of z=0, a fact which is closely related to the existence of the
thermodynamic limit. Furthermore we showed that the function { extends to a
meromorphic function in the whole z plane.

In this paper we study the {-function of a one dimensional classical hard
core system with exponential pair interaction. We also apply the transfer matrix
method here and show the following:

The partition function Z, of a system of hard rods of length a with periodic
boundary conditions and exponential pair interaction &(y, x)=cA” >, can be
written as

Z,=(1=A")tr oLy + L, )
where ¥ =%, + %, is the transfer matrix of the system. The operator £, #" is
a trace class operator for all n=0 in the Banach space B=C(I)® A (Dg) on
which & acts. In the next chapter we determine the trace of the operators #,.#"

and show the connection with the partition function Z,. In a final chapter we
discuss some properties of the { function of the hard core system.

1
A(f "x)) in the special case where [

I. The Transfer Matrix .

We use the terminology which was introduced in the paper on classical hard
core systems by Gallavotti and Miracle-Sole [9]. Let K be the set of all allowed
configurations X of the system, where X can be described by a sequence
X =(xy, X5, ...), where x;e IR, = {xeR:x =0} describes for instance the left corner
of arod of length a and |x; —x;| Za for i#j. We restrict ourselves to the case where
the rods interact via an exponentially decreasing pair potential

0 if k2
(D"(X):{c»xrm it k=2 )

for X =(x,, ..., x,)e K,0<A<1 and ¢ some constant. The transfer matrix & [9, 10]
is defined as a linear operator on the Banach space C(K) of all continuous functions
on the compact space K as follows:

(Z)(X):= | e VN f(YurX)dY @)

YC[0,a)
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where fe C(K) and 7 is the shift operator acting on K by tX =X +a. The inter-
action energy U(Y|W) for Y, We K is defined as

U(YIW)= Y ®,(SuT).
DF+SCY
TCW

Using (3) we get the expression

(L )(xg X0 .)=f(x; +a,x,+a,...)

+ [ f.x,+ax,+a,..)exp (—c Y /1""“"”) dy (3)
0 i
with X =(x, x,, ...) and x, va=min(x,, a).

It is known that & is continuous but not compact on C(K). The problem
is to find an operator " on a space B in which it has “good” properties such
as for instance a trace. In particular we want the functions f'=1 and the principal
eigenvector h of ¥ belong to B. Now h can be written as

h(xy, X5, ..)= | du(Y)exp (——cz/l(““”")
YC(—w,x1—a)nR- i,j
where Y =(y,, y,, ...) and where du(Y) denotes the Gibbs measure on the negative
real axis, we see that h depends analytically on )’ A* and is a continuous function

2
of the coordinate x,, as long as x, <a, whereas for x, >a, it does not depend
on x; except through ) A*. One is therefore led to a space of functions which

depend continuously on a variable x=x, and analytically on a variable z=Y" 4*.

1

The action of £ on such functions can then be written as
(Zf)x,2)= fla, 22)+ | f(y, ¥+ 22) exp(—cA*"z) dy . ©
0

Here we have used the fact that the function f does not depend on x for x>a
and we therefore can restrict ourselves to functions which are defined and are
continuous in the interval I =[0, a].

Next we want to construct a Banach space B on which the mapping & as
defined in (6) is a well defined operator. Let I=[0, a] and Dg: ={zeC:|z]<R}.
We denote by C(I) the Banach space of all continuous functions on I with the
sup norm. Let further 4, (Dg) be the Banach space of all holomorphic functions
on the open disc Dy, with the usual sup norm. Then we consider the projective
topological tensor product [11] C(I)®,A4,(Dg) together with the z-norm intro-
duced first by Schatten [12] (see also Appendix A). In [11] the following funda-
mental Theorem is proved:

Theorem 1. Let E, F, G be Banach spaces and T:Ex F—G a bilinear continuous
mapping of the direct product ExF into G. Then there exists a unique linear,
continuous mapping TTEQ_F—-G such that Tu=T(e, ) if u=e® f and
1T =1T].
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From this we get immediately

1
Lemma 1. Let R> 7 Then the operator £ as defined in (6) is a linear, continuous

operator in the Banach space B=C(I)®KAOO(DR).
Proof. For @eC(I), we A,(Dg) define the operators T;:C(I)x A, (Dg)—B as
follows:
[Ti(e, v)] (x, 2): = p(a)p(Az)
[Tx(e, )] (x,2): = | @(y)dyw(z)
0

[T5(e, p)] (x, 2): = p(x)yp(z) exp (—cA*"*z)
[Ta(@, Y)] (x, 2): = p(x)p(A* + A°z) .
Theorem 1 tells us that all T, i=1, ..., 4 define unique mappings
T™;: C()®,A.,(Dx)—B.
The operator % is then easily seen to be given by
FL=T,+T,T5T, which we will write as ¥ =Y%,+.%,
with
Fy=T", and L =T,T3T,,
where

[Zoll<1 and ||Z]|SaexplclR.
Let us next study the operators %, and %, more carefully.

Lemma 2. The operator £,:B— B is nuclear of order 0.

Proof. Let u,:C(I)-C(I) be defined by (u;¢) (x)=¢(a) and u,: A (Dg)— A, (Dg)
by (u,y) (z)=yw(A%z). Then the operator %, is given by £, =u, ®@u,, the tensor
product of the two mappings u, and u,. It follows from [6] that u, is nuclear
of order 0. Because u, is a finite rank operator it is also nuclear of order 0. But
then it follows [13] that the tensor product u; ®u, is also a nuclear operator of
order 0 on B and has therefore a unique trace.

Because the operator £ =%, +.%, is bounded and the set of nuclear operators
of order 0 is a two-sided ideal in the algebra of bounded operators on any Banach
space we get from Lemma 2 as an immediate consequence that for every n=0
the operator £,.£" is nuclear of order 0. Therefore the operators %, Z" all have
a well defined trace which is given by the sum over the eigenvalues counted
according to their algebraic multiplicity [6].

For the operator %, we have

Lemma 3.The operator £, : B— B is quasi-nilpotent.

Proof. From Lemma 1 we know the action of %, on any element ¢ ®we B:

(Z1o®y)(x,2)= f P(V)W(AY +21%2) exp (—cA® Vz)dy
0
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and therefore |(£, o ®w) (x, 2)| = x[| @]l ¢y 9l 4, M, Where
M = sup sup lexp(—cA“ Vz)|.

xel zeDr

By induction we then get

(LEe®w) (x, 2)| < ']:"Mk“(p”C(I)”wHAw
and therefore | #}|| < C*/k! with C=aM. But then the spectrum of £, can only
contain the point 9=0 and %, is therefore quasi-nilpotent.

Next we are going to determine the trace of the operator %, #". To do this
we make use of the results we have obtained above. One need not know if the
operator %, itself has a trace on the Banach space B. By using the theory of
p-summing operators one can indeed find a Hilbert space H on which %, is
2-summing, which implies that for all n=2 the operator £} has a well-defined
trace. Because we do not need this for the subsequent discussion, we do not
treat this further.

II. The Trace of the Operator &, %"

Using the decomposition

L =L+ 2, (7)

we get forn=1

AL Z Z Loy L, ®)

i1=0 in,=0

For the term £4*! in the expansion (8) we get using the representation %, =u; ®u,
of Lemma 2: 3”“ u" '@ui* ! and therefore [15] tr Zo+ = (truf™ ) (tru™).
Because tru"“—tru =1 and tru*' is given according to a general formula
in [6] and [10] by truft P =(1—-A""19)"! we have trLg l=(1—-A"V9~1

(see also Appendix B). Now the general term in expansion (8) can be written as

T, p=L5 L0 Lo Ll ©)
where a=(cy,...,00,), B=(B1, ..., Bo) % fi€Z, =1{0,1,2,...} such that |a|+|B|=
Q

Q
Y o+ Y. Bi=n+1. Let Jaj=j+1 with j=0 and define the numbers i,=n+1—

i=1 i=1

Q .

Y B, for k=1,...,0. Let y=(y;4+1,...,y,)eI""’ and define a(n—j) component
=k

1=

vector &:=({4q, ..., &,) as follows: &, =a Vk=1,...,¢ and =y, , for all other
j+1<I=n. Because i, =j+1 we get {;,,=a With these definitions we can
write the operator T, ; acting on an element f =@ ®wye B as follows:

g
T,.5/) (x, 2)= [ dye(y w(x(y)+ 1" Pz) exp(—c(y; 2)) (10)
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where

&+t Ey+2

g én
jdy: j dyjs1 j dyj+2"'§ dy, -
0 0 0

The functions y and t will be determined in the subsequent discussion, at
the moment we only need the following properties which can be immediately
verified from the definition of the operators %, and %, :x and t are C* in y and
for all yeI"™/ the mapping z—y(y)+4"* %z is a holomorphic mapping of clos
Dy into Dy. The function t(y; z) furthermore is holomorphic in the whole z-plane.
With these remarks we can prove:

Theorem 2. Let T, 5: B—B as defined in (9). Then

g
tr T, p=[1—-22""D]"" {dy exp(—ct(y; (1-2""" V)" x(y)).

Proof. Because the mapping z—y(y)+A°"* Yz is holomorphic for all yel"™/
and e A (Dg) we can write the action of T, ; on @@y as

©w © © © P &
Tanes= 3 5 3 320 (])(an-oren favr o)

k=0 m=ks=

"52(.‘})‘[1; s()’)<P(J’n) ’ (11)

where ©(p, z)=1,(y) +z7,(y) and y(z Z a,z",y=2"""1. If we define py,,(2): =
Zk+se Aoo(DR)

m=

&
Prmsp@): = [ dy x"H¥) W)L (1) (12)

and Y, (v)=a,=a,(p) we can write the operator T, ; actir_lg on Y as

(T s @)

o] Q0

s

i; (i) 4 (rZ) (=eV ()™ (Phonsp OV knsp) DU @ Wisp) (9 BY)
(13)

Because @, @ Wignsp€ CU) @ A (Dg) (Where “”” denotes the dual) and 1@ yy,,.,€ B
we can deduce from Theorem 1 that there exists a unique element fy, € B’ with

Il fimspll = [ @kmsp @ Wiomsp |l such that
ﬁ‘/msl?((p ®w) = (p;cmsp((p)w;cmsp(lp) .

k=0m=ks

Therefore the operator T, ;z has the following representation

5 5 55 (A i "

k=0m=ks=0 p=

Where ﬁcmsp(x7 Z) = 1®wkmsp(z)'
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Because the trace of T, ; is then given by
B © © w© ee) p . m - ,
tr T;z,ﬂ_ Z Z Z Z s Y k (_ C) (P ) fkmsp(fkmsp) >

we get

4
trT, g=(1—y) "' [dyexp[—ct(y; (1—)" 'x(¥)].

Let us next study the functions y(y) and (y; z). Because these functions depend
on the vectors @ and g we denote them more correctly by y, ;and 1, 45 Let M, =|al
and My=|Bl, M, =M, + M. Let yg:=(yy,...yn,) and &g=(¢;, ..., $y,) bE two
vectors from I The components &, i=1,...,M p are defined as follows:

Q
¢=a iff Fk 15k <:i= Y B; and o, =0,
J=ki

¢i=y;4, forallother i+M,
Cuy=xel if o;=0.

The operator T, ; acting on @ ®vy is then given by

°p
[T 50@w] (x,2)= | dypp(y)p(ra. p(vp) + A= "z) exp(—ct, 4(yp; 2)) (15)
where

Sp 377} &1
Vdyg= | dyp,...J dy,.

0 0
Consider the two transformations R,, R,:Z% —»Z%"* defined by
Rla:(1>a) 5 Q
Rya=(0, ), acZs . (16)

We want to determine the action of these two transformations on the functions
Xa.p and T, g A rather trivial calculation gives

AR o, Rzﬁ(yR zﬁ) =X, p(Yp)

(17)
Tr 141-,R2ﬂ(szﬁ; Z): Ta,B(y[S; laz)
respectively
N =Yy +}'(0Ma,ﬁ+}'Mﬂ+l)
AR ,R;B(leﬂ) X ,1;()’1;) (18)

TRoyw, RipUR 5 2) = To, pVps A8 + A%z) 4 AT Mg 0z

where yr p=01> s Yargo Y+ 1)-
For the special case a=(0), f=(1) we get from the definition of the operator .Z; :

Xoa W=, 1o (y;2)=2"""z. (19)
Let T, g be as defined in (15). If o, %0, B, 40 we define the operator
Thnp=2L3 LN Lo L\ L LI Ly Ll
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4
Let IT,= ) B, If oy =1, we have from the trace formula of Theorem 2:
i=k

<p
tr T, g= | dypowy s(vp)

where
0, p(yp)=(1— AMe5)~ 1 exp[— Ty, p(yps (1— AMe )~ lXa,ﬂ()’p))] . (20)

Using the relations (17) and (18) we can easily show the following.

Lemmad. Let T, g, Ty , p and 11, be as defined above. Let yp=(y\, ..., Vi,) With
yi=yNiFI,, yy, = yn, +a. Then

cp
tr 77(,@,[3: j dyﬂwa,l}(y;}) >

where £y is determined as follows :

for
Gu22, pp22:8=CVikll — 1,8y, 1 =a;
=1, B2 2: &= Vi (I, 1, 1), =Y+ 1> Sme—1 =4
o=1,p=1:5=EVi+]IT,, flnk=,Vnk+1 ;
22, f=1:{=¢(Vi.

Lemma 4 allows us to determine the trace of the operator T, g for fixed M, and M.
Consider the operator Tj., ,_;=%{"' %77/ From the recursion formulas (17)
and (18) we get for 0<j<n-—2, n=2, if we introduce the vector y=(y,+ , ..., ¥,)€
.

n—j—1
Xj+1,n-j¥)= Z At n=1) (1)
k=0
n—j—2n—j—1-o n—j—1
Tj‘f’l,n—j(y;z): Z Z [)’(kaa‘“Yn'*o"*'Yn—o'—kU)_,_Z Z A("“'l"k)a"yn*k] .
c=0 ke=1 k=0
(22)
Using the trace formula we get
g
tr T g0 j=(1=2"" D)7 [ dy exp(—cf(y)) (23)

with f(y) given by

SAn)=[1= g0y

. (n—j)i‘"“)“+ Z Z (l((k_i)a“YR+Yi)+l(("+1+i_k)a+Yk‘Yi)) (24)

i=j+1k=i+1

and §=(aan+1, coes Yne 1)



{-Function and Hard Cores 183

From this we can then deduce the trace of the operator £, %" for n=1: Let
a: =0, ..., 0%,), =, ..., B )eZ*® where Z*={1,2,3,...}. Let furthermore
be y,0€Z, . Then

n—1
gognzggﬁ-l_i_ Z gol+kglgg—1—k

+ 2 ) L L34, L3 (25)
j=0 a, By, 0 la|ty+to=j+1
|B'\=n—j—1;&,B'cZ*e;y,0eZ +
where the third term only appears for n=>2. So let us assume n=2. If we define
the vector p=(f,, ..., B,) such that B;=p; for i+¢ and f,=f,+1 we get f,=2.
Q

Let us recall that the numbers i, have been defined by i,:=n+1—) B, for
1=k
k=1, ...,0. Because all ;=1 we get

=j+1<i<..<i,=n+1-f,<n—1. (26)
Denote by M; , the following set of integers

M; . ={+1,j+2,..,n—1}, 27)
and by X:={i, k=1,...,0}. Then we have |X|=card X =g. It is also straight-
forward to show that

o<min(j+1,n—j—1). (28)

Therefore X CM; , and [X| obeys the relation (28).
On the other hand given a subset XCM; , with X ={i; =j+1<i,<...<ijy ;{}
and |X|§min(j+1,n—j—1) there exists a unique vector f=(f,,.. ﬁ]x,)el*'
1X]

with fx;=2 and Z Bi=n—j such that ijx;=n+1—p and i,=n+1-— Z B..

One only has to defme Bix:=n+1 —z,X, and B,=i.,,—1, for 1<k<[X|——1
Therefore we can write the third term in (25) as follows
n—2

2 ) )

j=0 XCcM; a,0,y
X={1= j+1<12 <ix} leltoty=j+1
|X|£ min(j+1,n~j—1)

PPl Fa gl | gaxi g gy L P (29)
Let us next write the vector a=(ay, ..., o x)) as
o, =j+2—-|X|-0,, o=140,_,—0, for k=2,...]X]|. (30)

One can then show that j+1—|X|=Z0,20,2=...20/x,20. From this it follows
that the mapping

a=(t, ..., 0 x)>6=(01, 05, ..., 0x) (31)

is 1 —1 and the inverse mapping of (30) is given by

Gi=j+i+t1—|X]— Y o.
k=1
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With this we can write the expression (29) as

n—2 j+1-1X| g)1X|-1 O|X

Z Z Z Z Z' $6j+2_lxl_al)${i2_il)$(()l+O‘l_t72).”

j=0XCcMj , 0;=0 aix1=0 ¢=0

361 toyx|- 1—U|X|)gin—i|x1)$ogglg(()0|x1—Q) . (32)

It is clear that the operator ¥ =L~ F Lis~0) | L L ixit D) with
y=j+1—(X[—1) can be obtained from the operator T}, , ,_; simply by shifting
|X|—k times the operator %, through the operator Z{+ =% k=1, .., |X|—1.
The operator Z§*271XI=o0 gliz=in gpll+ei=oa  pa-ix)gpep ploixi=0 can
then be obtained from the operator &~ again by shifting operators %, around.
Using Lemma 4 we get then finally in the case ¢=0: ~

trg(()j+2‘IXI—m)g;iz—il)g(()l +0'1“0'2)”'$(Q)$1$(()0'IX|—Q)

&
= j dywjiy o ;i1 +(X|=1401)a, ..., y, +(X|—k+0)a, o Vi
+0|X|a>“'oyn—l+O']X]a>yn+0|X|a))
where &'=(}, 1, ..., ¢) and & =aVke X, & =y,_,Vk¢ X. In the case o= 1 we get

&
tr(...)=| dywji 1, u-Vjr1 +(X|=1+041a), ..., y;,
+(1X|_k+o-k)a’ ~~.,yile+O'|X|Cl, s Vn—1 +a|X|a’ yn+(G|X|—Q)a) >

where {/=¢; for i%n and ¢, =a and the function w;, ,-; as in (20). After per-
forming the summation over ¢ we arrive at

n—1

Ut Ly L =tr Lo+ Y gy, g
k=0

jt1-1X] ox-1 &

D D S S T T

j=0XcM,,» 61=0  ¢x=0
‘()’j+1 +(X|~140))a, -“syik_1+(|X|—(k_1)+0k—1)a»yik
F(XI=k+01)a, -, Yipy FO1x1@ oo Va1 01x105 V) » (33)
where §=(;4 4, ...,¢,) is given by {=aVle X, {;=y,_,

I¢X7 l#:n9 én':yn-l-l_alxla'

The traces of the first two terms in (33) can be easily determined and we get

trﬁo.,?" 1+na exp(_i(""‘ 1)a/(1_l)(n+ l)a)

1
= ]

jt1-|X| gix|-1 &

n—2
+ Z Z Z Z fd.vafjﬂ,n—j(y’a) (34)

J=0XCM,n 0120  ax =0

where @’;4, ,-{(y,0) can be derived from the integrand in (33) and the third
term again only appears for n=2.
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Next we want to compare this trace with the partition function Z,,, for a
hard core system with periodic boundary conditions with exponential pair
interaction A% ¥~V It is convenient to introduce the coordinates y; in the following
way:

Consider the case where there are (n—j) rods distributed on the interval
[0,(n+1)a] with periodic repetition outside this interval where 0<j<n-—2.
We denote the coordinate of the left corner of the i'th rod by y,_ ;- +({i—1)a.
Then the interaction energy of this configuration is given by:

C

W(y): An-a-nF (= 1Da=On-ge- 1+ (k=1)a)
J an+1)
(1_;”( ) n—jzi>kz1
+ Y ;fynf(_1)+(i+n)u>‘—(yn,(k_n+(k~1)a)] .
n—jzkziz1

Some algebraic calculation shows that W{y) can also be written as

n—1 n
¢ 5 n a
W,-(y)= ———l_zamﬂ)[(n—j)ﬂﬂ) + Z

i=j+1k=i+1

,/1()‘:+(’t‘i)a—yk)+l(yk“yi+(i—k+lx+ l)a)] )

Comparing with (24) we see that
of(y)=Wiy). (35)

If one includes the contributions coming from the configurations with 0 and 1
rod on the interval, the partition function Z,, ; is then given by

n—2 (j+1)a Yi+1 Yn—-1
Zy1=1+ Z I d,Vj+1 f d.Vj+2~~- j‘ dynexp[_cw/j(y)]
j=0 0 0 0
+naexp —[cA"T D)1 — pt Day] (36)

By induction on n and j=0, 1...n—2, one can prove the following representation
of the integral in (36).

Lemma S. Let M; ,={j+1,...,n—1} and let XCM; , such that
X={ij=j+1<i<..<iy} with |[X|[Smin(j+1,n—j—1).

Let y=(pjs 1, ..y and & =(py, ..., &) with &y =+ Da, &=y, for k#j+1.
Then

Jt1-1X| oixi-1 &

Tavom=y 5 5 Y Tavee

XCM; n 61=0 63=0 o0x1=0

for any we C*(IR" ™), where w™(y, 6) is given in terms of the function w analogous
to the definition in the expression (34) and the vector & is given as in expression (33).
This gives finally
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Theorem 3. Let Z, be the partition function for a classical hard core system with
hard core length a and exponential pair interaction cA® ™=V with periodic boundary
conditions. Then for n=1

Z,=(1— ") tr L, 2"

where the operators £, and £, are defined in Lemma 1.

II1. The {-Function for a Hard Core System

Let us now look at the formal series
{z)=exp ) 2"Z,/n
n=1

where Z, is the partition function of a hard core system with periodic boundary
conditions. Inserting the expression of Theorem 3 we get

{z)= [exp(i %n(l — ") tra%,?"‘l)}.
1ol

121
the trace class operator %, we get that {(z) is a holomorphic function in a neigh-
bourhood of z=0. Let us next discuss the question if {(z) extends to a meromorphic
function in the whole z plane. Consider the following family of operators

T(u): =L +uL, .

Because |tr Z, " < | 2" , where ||.Z||; denotes the trace norm of

Because, as we remarked already, the operator % can be shown to be a Hilbert
Schmidt operator on the Hilbert space H*(I; A,(Dg)) of all H' mappings of the
interval I into the Hilbert space A,(Dg) of all square integrable, holomorphic
functions on Dy, where H'(I) is the well known Sobolev space W2(I) [17], the
operator T(u)" is for every n=2 a holomorphic family of trace class operators
on this Hilbert space. For such families the following formula holds [18]:

H% tr T(u)'=ntr(T(u" '¥,) forall ueC.

At u=0 this gives

it1r T =nuZ,P"'. (37)
du

u=0
The Theorem of Lidskij [14] tells us on the other hand that forn=2 tr T(u)"=

Y A(n)", where {4,(u)} is the set of eigenvalues of the operator T(u).
{k}

For the rest of the discussion let us restrict ourselves to the case where the
interaction constant ¢ vanishes, that means we consider the operator ¥:B—B

ZLf(x,z)= f(a, A“2)+ ]i fO, A +2%2)dy .
0
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The operator T'(u) for this case then reads

T(wf(x,z)=(1+p)f(a, A2) + ? S, A+ A%2)dy . (38)

The spectrum of this operator can be determined as follows. First notice that
if f(x,z) is an eigenfunction with eigenvalue ¢ then the function 7 f(x,z)is also

an eigenfunction with eigenvalue g¢/A%. There we made use of the fact that any
eigenfunction is holomorphic in z in a whole neighbourhood of clos Dy which
follows by analytic continuation from the eigenvalue equation. Because
T(u) is compact there must therefore exist an eigenfunction fy(x, z) such that

% Jolx, z)=0, that means fy(x, z)= f(x). For this function the eigenvalue problem

reads as follows:

(1+wfla)+ }C F)dy=e)f(x). (39)
0
The solution to this equation in C(I) is easily found to be
S(x)=exp(ox), (40)

where o is a solution of the equation
(1+pexpaa=at, (41)

with eigenvalue o(u) = a(u) ~*.

One can verify without difficulties the following properties of the numbers
o(u) satisfying (41):

a) There exists a real solution «, iff u is real. For —1<pu<oo o, is positive.

b) There exist two sequences of solutions a, and of, n=1,2, ... with Ima,>0
and Imo} <0 such that |o,| =nn/2a,|0f| = nn/2a for all u with |u| <0, where 0 is
some small enough number.

The spectrum of the operator T(u) is therefore given by the set

o(T(w) = {A""e(u):m=0,1, ...; o(u)=(1+ p) exp(a/o(w))} . “2)

From this consideration it follows that all the eigenvalues A(x) of the operator

T(u) are holomorphic in the disc |u|<1 and that for all n=2 the sum ) Aj(u)
9
converges uniformly in some small disc |u| < 0.

Therefore we get

d
a0 Y Ay =nY 2" (wAw)

i} {k}
and at u=0
tr Lo L =Y 116, =2 A 43)

{9
Inserting (43) into the definition of {(z) we get

{(z)=exp[z]Q(4"2)/Q(2) , (44)
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with

0(2)= H (1 —z4)% expz(dih) -

Next we make use of the spectrum o(T'(0)) and get finally

te)=exp [z (1= Yai) [0 —zo0 ", 43)

(K} i}

where {g,} are the zeros of the function zexp(—a/z)—1 and gj=0%/(a+ 0
Because g,/0,=01/(a+@)), it is clear that the function {(z) is not meromorphic
in the z plane.

By using expression (36) for the partition functions Z, one can also perform
the summation in the {-function and gets after some trivial algebra the following
expression:

{(z)=exp } exp(az')/(1—z2 expaz')dz . (46)
0

Comparing with (45) one gets therefore the following interesting representation

z _ 8k
exp | exp(az')(1—z'exp az')dz' =exp [z (1 -y Q;()]l_[ (1—zg,) .
0 w w

Unfortunately we are not able to prove the representation (44) also for the
interacting case ¢ =0 but it is our conjecture that it is true also in this case. It is
interesting to note at this place that Kac et al. [19] treated this hard core system
with. the same interaction in an interesting paper in 1963. They indeed reduced
the problem to the discussion of a certain integral equation of Hilbert-Schmidt
type. It would be interesting to see the exact relation between this operator and
our operator Z.
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Appendix A

For the readers convenience we repeat here the definition of the projective
topological tensor product of two Banach spaces and of the # norm. Consider
two Banach spaces E and F with their norms | ||z and || || respectively. Let
be EQF the tensor product of the two spaces. Then one defines the following
norm on EQF:

Ixllz: =inf Y lleillg 1| fill

i
where the infimum is taken over all possible representations of xe EQF as

x= Y ;@ f; with e;e E and f;e F. The completion of the space EQF with respect
{1}
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to the norm | |, is denoted by E®,F and called the projective topological
tensor product of the two spaces E and F. The elements of this space are also
called Fredholm kernels.

Appendix B. Ruelles Trace Formula [6]

Let be DCC" a bounded connected open subset and  a holomorphic mapping
from a neighbourhood of clos D to D. Further let be ¢ an element of A4, (D).
Define the following linear operator £: A4 (D)—> A (D)

Zf(2): =2)f((z).

Then % is a nuclear operator of order 0 and Trace £ = o(z*)det(l —y'(z*)) ™1,
where z* is the unique fixed point of the mapping v and y'(z*) is the derivative
of p at z*,

Note that this formula extends in a certain way the Lefschetz trace formula [20].
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