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Abstract. The (-function of a one-dimensional classical hard-rod system with
exponential pair interaction is defined as the generating function for the
partition function of the system with periodic boundary conditions. It is
shown, here, that the (-function for this system is simply related to the traces
of the restrictions of the Ruelle's transfer matrix, and related operators to a
suitable function space. This (-function does not, in general, extend to a
meromorphic function.

Introduction

The new interest in classical one dimensional models of statistical mechanics
has its origin in the work of Sinai [1] who found an interesting connection of
these models with certain measure theoretic problems in the theory of dynamical
systems. By constructing symbolic dynamics [2] for Anosov diffeomorphisms
and flows on a compact manifold with the help of Markov partitions [3] he was
able to apply the methods developed in the study of one dimensional models and
to get interesting new results. A special role in the study of dynamical systems
is played by the (-function of such a system introduced by Artin and Mazur [4]

where Nn is the number of fixed points of the mapping /", where f:M-*M is a
diffeomorphism on some compact manifold M. They could show that the function
ζ(z) has a non-vanishing radius of convergence for almost all diffeomorphisms /
To study the possible relevance of this (-function for statistical mechanics, Ruelle
[5] introduced generalized (-functions in the following way:

Let M be some topological space and f:M—>M a mapping. Let A:M-+(£
be a complex valued function on M. Then consider the formal expression

ζ(z,eΛ)= exp
7 I

Σ- Σ
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Properties of this function were studied in [5] and [6] and it was shown that
this function extends in certain cases to a meromorphic function in the whole z
plane. .n.x ,

Looking at the expression £ exp £ A(fkx)\ in the special case where /
xeFixfn U = 0 /

is the shift operator τ on the configuration space K of a one dimensional classical
lattice gas system, then this is nothing else but the partition function Zn of this
system with periodic boundary conditions and interaction function A [7]. In
this case the function ζ in (1) can be written

(2)
n= 1

and ζ is just the generating function for Zn.
By applying the transfer matrix method, one of us [8] studied the above

function for a one dimensional classical lattice gas system with exponential-
polynomial pair interactions and showed that in this case ζ is holomorphic in
a neighbourhood of z = 0, a fact which is closely related to the existence of the
thermodynamic limit. Furthermore we showed that the function ζ extends to a
meromorphic function in the whole z plane.

In this paper we study the ζ-function of a one dimensional classical hard
core system with exponential pair interaction. We also apply the transfer matrix
method here and show the following:

The partition function Zn of a system of hard rods of length a with periodic
boundary conditions and exponential pair interaction Φ(y9x) = cλ^y~x\ can be
written as

where i f = «£?0 + JSf1 is the transfer matrix of the system. The operator ££0££n is
a trace class operator for all rc^O in the Banach space B = C(I)®πAO0{DR) on
which i f acts. In the next chapter we determine the trace of the operators ^Q^n

and show the connection with the partition function Zn. In a final chapter we
discuss some properties of the ζ function of the hard core system.

I. The Transfer Matrix S£

We use the terminology which was introduced in the paper on classical hard
core systems by Gallavotti and Miracle-Sole [9]. Let K be the set of all allowed
configurations X of the system, where X can be described by a sequence
X = (xl9x29...), where xίeIR+ = {xe!R:x^0} describes for instance the left corner
of a rod of length a and |xf — Xj\ ^a for i Φ/ We restrict ourselves to the case where
the rods interact via an exponentially decreasing pair potential

for X = (x!,..., xk)e K, 0 < λ < 1 and c some constant. The transfer matrix i f [9,10]
is defined as a linear operator on the Banach space C(K) of all continuous functions
on the compact space K as follows:

:= J e'U{YWf{YuτX)dY (4)
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where feC(K) and τ is the shift operator acting on K by τX = X + a. The inter-
action energy (7(7|FF) for Y, WeK is defined as

U(Y\W)=

Using (3) we get the expression

ΦΦSCY
TCW

)y (5)

with X = (xί9 x2,...) and xλ v a = min(x1, a).
It is known that i f is continuous but not compact on C(K). The problem

is to find an operator i f on a space B in which it has "good" properties such
as for instance a trace. In particular we want the functions / = 1 and the principal
eigenvector h of 5£ belong to B. Now h can be written as

h(xl9x29...)= f dμ(7)exp l-c^X{~yj+

ΓC(-oo,xi -β)nR- \ i,j

where Y = (y1, j/2,...) and where dμ(7) denotes the Gibbs measure on the negative
real axis, we see that h depends analytically on ^ λXι and is a continuous function

i

of the coordinate xί9 as long as x ^ α , whereas for xx>a9 it does not depend
on xί except through ^] λXι. One is therefore led to a space of functions which

i

depend continuously on a variable x = x 1 and analytically on a variable z = £ AXi.
ί

The action of i f on such functions can then be written as

, z) = f(a9 λaz) + j f(y9 λy + λaz) exp ( - cλa ~ yz) dy . (6)

Here we have used the fact that the function / does not depend on x for x > a
and we therefore can restrict ourselves to functions which are defined and are
continuous in the interval / = [0, a].

Next we want to construct a Banach space B on which the mapping ^£ as
defined in (6) is a well defined operator. Let / = [0,a] and DR: = {ze<C:\z\<R}.
We denote by C(I) the Banach space of all continuous functions on / with the
sup norm. Let further A^DR) be the Banach space of all holomorphic functions
on the open disc DR, with the usual sup norm. Then we consider the projective
topological tensor product [11] C(/)®π^0 0(D i ?) together with the π-norm intro-
duced first by Schatten [12] (see also Appendix A). In [11] the following funda-
mental Theorem is proved:

Theorem l.LetE,F9 G be Banach spaces and T:ExF->G a bilinear continuous
mapping of the direct product ExF into G. Then there exists a unique linear,
continuous mapping T~\E®πF-+G such that T~u=T(e9f) if u = e®f and
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From this we get immediately

Lemma 1. Let R > -——. Then the operator i f as defined in (6) is a linear, continuous
1 — A

operator in the Banach space B = C(I)®πAao(DR).

Proof. For φeC(I), xpeA^Dp) define the operators 7>C(J)x A^D^-^B as
follows:

lT1(φ,ψK(x,z):=φ(a)ψ(λ''Z)
X

[T2{φ,ip)](x,z):= J φ(y)dyψ(z)
o

>)] (x,z):=φ(x)ψ(z)exp(-cλa-χz)

lT4(φ, ψ)] (x, z): = φ(x)ψ(λx + λaz).

Theorem 1 tells us that all Ti9 i= 1,..., 4 define unique mappings

The operator i f is then easily seen to be given by

JS? = Γ Ί + T"2 T~3 T~4 which we will write as & =

with

ifo^T"! and <£γ = T\T\T\,

where

| | i f o | | ^ l and \\sex\\ Saexp\c\R.

Let us next study the operators if0 and i£γ more carefully.

Lemma 2. T/zβ operator ££§\B-*B is nuclear of order 0.
Proo/ Let u1\C{I)-+C(l) be defined by (M!φ)(x) = ̂ (α) and u2\AJD]ύ-*AaQ{DR)
by (w2φ)(z) = t/;(/lαz). Then the operator if0 is given by J£0 = uι®u2, the tensor
product of the two mappings uγ and u2. It follows from [6] that u2 is nuclear
of order 0. Because uί is a finite rank operator it is also nuclear of order 0. But
then it follows [13] that the tensor product uι®u2 is also a nuclear operator of
order 0 on B and has therefore a unique trace.

Because the operator i f = if0 + JSfx is bounded and the set of nuclear operators
of order 0 is a two-sided ideal in the algebra of bounded operators on any Banach
space we get from Lemma 2 as an immediate consequence that for every π^O
the operator Jg^" is nuclear of order 0. Therefore the operators <£§££n all have
a well defined trace which is given by the sum over the eigenvalues counted
according to their algebraic multiplicity [6].

For the operator ifx we have

Lemma 3,The operator J ^ :B-*B is quasi-nilpotent.

Proof From Lemma 1 we know the action of jSfx on any element φ®ψeB:
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and therefore \(&ίφ®ψ)(x9z)\^x\\φ\\C{I)\\ψ\\AσoM9 where

M = sup sup|exρ( — cλ{a~x)z)\.
xel ZEDR

By induction we then get

1 = £ | C(I) Aco

and therefore \\^l\\^Ck/k\ with C = aM. But then the spectrum of jSf\ can only
contain the point ρ = 0 and jSfx is therefore quasi-nilpotent.

Next we are going to determine the trace of the operator jSfojSf". To do this
we make use of the results we have obtained above. One need not know if the
operator JS?X itself has a trace on the Banach space B. By using the theory of
p-summing operators one can indeed find a Hubert space H on which S£^ is
2-summing, which implies that for all n^2 the operator 5£\ has a well-defined
trace. Because we do not need this for the subsequent discussion, we do not
treat this further.

II. The Trace of the Operator

Using the decomposition

00

we get for n ̂  1

?0J?n = Σ •- Σ ^o^i

For the term J££+1 i n ώ e expansion (8) we get using the representation J£?o = u1 ® u2

of Lemma 2: ^ + ι =u\+ι®un

2

+1 and therefore [15] tr«2£+ 1=(trtt?+ 1)(trtt$+ 1).
Because trM"+ 1=trM 1 = l and tvun

2

+1 is given according to a general formula
in [6] and [10] by tπf2

+1={l-λin+1)*)-1 we have trJδ?5+ x =(1 — A(fl+ 1 ) β ) " x

(see also Appendix B). Now the general term in expansion (8) can be written as

Tatβ = &V&β

1K..&ξ°&p

1° (9)

where α = ( α 1 ? . . . , <xQ\ β = (βl9...9βQ)9 α i , j8 i 6Z + = {O,l,2,...} such that \a\ + \β\ =
Q Q

Σ a f + Σ βi = n+l- Let |<x| =jH-1 with j ^ O and define the numbers ifc = n + l —
ί = l i = l

Σ j8z for fc=l, ...,ρ. Let j = (y j + l 5 ...,.yn)G/""J' and define a(n—/) component

vector { :=(^. + 1, . . .,^J as follows: ξ ik = α Vfc=l, ...,ρ and ξ ^ y ^ i for all other
j + l < / ^ n . Because ^ = ^ + 1 we get ξj+1=a. With these definitions we can
write the operator TΛ p acting on an element f = φ®ψeB as follows:

, z)= j d y φ ( y > ( z ω + Λ("+ 1)fl^) exp(-cτ(y; z)) (10)
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where

ξ ξj+l ξ] + 2 ξn

$dy = J dyJ+1 J dyJ+2...\ dyn.
0 0 0

The functions χ and τ will be determined in the subsequent discussion, at
the moment we only need the following properties which can be immediately
verified from the definition of the operators JSf0 and JSfj :χ and τ are C°° in y and
for all yeΓ~j the mapping z-±χ(y) + λ{n+1)az is a holomorphic mapping of clos
DR into DΛ. The function τ(y; z) furthermore is holomorphic in the whole z-plane.
With these remarks we can prove:

Theorem 2. Let TΛ β:B-+B as defined in (9). Then

Proof. Because the mapping z-+χ(y) + λa{n+1)z is holomorphic for all yeΓ~j

and ψeAniDjt) we can write the action of Tx β on φ®\p as

OO 00 00 00

(W)(χ,z)= Σ Σ Σ Σ /**'
k = 0 m = k s = 0p = s

•τ\{y)τV\y)φ{yn), (11)

OO

where τ(y, z) = τ1(y) + zτ2{y) and ψ(z) = ^ αwzm, 7 = λa{n+ υ . If we define ψkmsp(z): =

: = ί dy χm~\y) τs

2(y)τΓs(y)φ(yn) (12)

and Ψkmsp(ψ) = am = am(ψ) w e c a n write the operator TΛ β acting on φ®ψ as

00 00 00 00 / \ / \

= Σ Σ Σ Σ /L)(-cnpir1(φ'k msP®ψ'k m s p)®(ί®ψk m s P)(φ®ψ)-
k=0 m = ks = 0 p = s\SJ \κ/

(13)

Because φ'kmsp®ψ'kmspe C(/)/®^00(D1?)
/ (where ""' denotes the dual) and l®ψkmspe B

we can deduce from Theorem 1 that there exists a unique element fimspeBr with

li/fcmspll = \\ψkmsp®Ψkmsp\\ SUCh t h a t

Therefore the operator Tx β has the following representation

GO OO 00 OO ,Όχ , m

τ«,β= Σ Σ Σ ΣlPVkl

where fkmsp(x,z) =
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Because the trace of TΛ β is then given by

00 00 CO 00 / \

trr..,= Σ Σ Σ Σ H /
k = 0 m = k s=0 p = s W

we get

Let us next study the functions χ(y) and τ(y; z). Because these functions depend
on the vectors α and β we denote them more correctly by χΛ β and τα β. Let Mα= |α|
and Mβ = \β\, Matβ = Ma + Mβ. Let yβ:=(yί9 ...yMβ) and ^ = K i , . . . , ^ ) be two
vectors from IMβ. The components ξbi=l, ...,Mβ are defined as follows:

ξ( = a iff 3 / c ^ l ^ / c ^ ρ : ^ £ ft and α f c ί φθ,

ξf = 3; ί+1 for all other i

The operator Tα p acting on φ®ψ is then given by

lT^βφ®xp~\ (x,z)= J d^φO^φίχ ./iϋ'/iί + ̂  ^ e x p ί - c τ . ^ ^ z)) (15)

where

0 0

Consider the two transformations R1, R2'.TL\ ->Έρ

+

+ ί defined by

We want to determine the action of these two transformations on the functions
χΆ β and τα β. A rather trivial calculation gives

respectively

Z

where yRιβ = {yl9 ^^yMβ^yMβ + \)'
For the special case α = (0), ̂  = (1) we get from the definition of the operator 5£γ:

Xo.i(y) = λy, τO f l(y;z) = λ β - y z. (19)

Let TΛtβ be as defined in (15). If α fcφ0, ySfcφ0 we define the operator
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Q

Let Πk= ]Γ βt. If aί ̂  1, we have from the trace formula of Theorem 2:
i = k

KTΛtβ= f dyβωΛίβ(yβ)

where

ω . ^ M l - λ ^ ' Γ 1 expC-cT^^jίl-A^-O"1^^))] (20)

\Using the relations (17) and (18) we can easily show the following.

Lemma 4. Let TΛtβ9 Tk Λ β and Πk be as defined above. Let y'p = {y[, ---^Mp
y'nk = ynk + a. Then

where ξ'β is determined as follows:

far

Lemma 4 allows us to determine the trace of the operator Ta β for fixed Mx and Mβ.
Consider the operator 7}+ 1 κ_J=«Sf^+1^f"~-'. From the recursion formulas (17)
and (18) we get for 0^j^n—2,n^.2, if we introduce the vector y = (yj+1, •• ,j;

π)e
jn-j.

χj+i,n-j(y)=" Σ A ( k α +^-k ) (2i)

τj+ltn_j(y;z)=" Σ " Έ " lλ«"->»-+»—-v> + / Σ \l<"+1-^-»--] .
σ = 0 k σ = l k = 0

(22)

Using the trace formula we get

J / (23)
with fj(y) given by
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From this we can then deduce the trace of the operator <£^n for n^ 1: Let
α : = ( α l 9 ...,αρ), βf:=(β'u ...,β'ρ)eΈ*ρ, where Z* = {1,2,3,...}. Let furthermore
be y,δeZ+. Then

H - l
CO cpn CΎ?n+ 1 _ι Y~̂  (Ύ?l+k(Ύ? c/?n—l—k

n-2

-4- "V ^ T ^^SF ^^ OS}
j=0 x,β',γ,

where the third term only appears for n ^ 2 . So let us assume n^2. If we define
the vector β = (βl9 ...,j8ρ) such that j8f = j8;. for iΦρ and βρ = β'ρ + l we get jSρ^2.

Let us recall that the numbers ik have been defined by ik:=n+l— £ /?, for

fe=l5 ...,ρ. Because all j 5 ^ 1 we get

i 1 = j + l < i 2 < . . . < i β = n + l - j 8 β ^ n - l . (26)

Denote by M^ >n the following set of integers

..9n-l}, (27)

and by X: ={ik9 fe=l, ...,ρ}. Then we have |X| = cardX = ρ. It is also straight-
forward to show that

ρ^min(/+ l9n-j-l). (28)

Therefore XcMhn and |ΛΓ| obeys the relation (28).
On the other hand given a subset XcMj n with X={i1=j+\<i2<...<i\xλ

and |X |^min(/+l,w— j — 1) there exists a unique vector β = (βl9..., jSiX|)eZ*' '

with ^ | X | ^ 2 and ]Γ βί = n—j such that i|x| = w + l—j8|X) and ίfc = π + l— ^ ^ .
i = l ί = fc

One only has to define j8|Xj: = n + l —i | X | and βk=ik+\ — ik for l<^fc?g|X| — 1.
Therefore we can write the third term in (25) as follows

n-2

Σ Σ Σ
j=0 XcMj,n Λ,σ,γ

X = {iι=j+l<ΐ2 ..<i\x\} | « | + σ + y = j + l
| |

fijSf(2i)jjf2j^(i3-i2) m> . .Sfgwifj-^ijSfy^jSfj. (29)

Let us next write the vector α = (α l 3 . . . , α(X|) as

α 1 - 7 + 2 - | X | - σ 1 , α ^ l + σ , ^ - σ f c for k=2, . . . , |X | . (30)

One can then show that j + 1 — | X | ^ σ x ^ σ 2 ^ . . . ^ σ ) X | ^ 0 . From this it follows
that the mapping

α = (α l 9 . . . , α|X|)->σ = (σ l 9 σ2,..., σ,x|) (31)

is 1 — 1 and the inverse mapping of (30) is given by

- I A Ί - Σ ^
k=l
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With this we can write the expression (29) as

n-2 j+l- |X| <ηx|-i <ηx|

Σ Σ Σ ••• Σ Σ ̂
j=0 XcMj,n σi = O σ|X| = Oρ = O

It is clear that the operator £Γ=^i^[i2~il)£ίf

0£ίf[i3~i2)...^03
f[n~i^ + 1) with

y=j+l—(\X\ — 1) can be obtained from the operator 7}+ l jW_^ simply by shifting
\X\-k times the operator JS?0 through the operator i f} / k + 1 "H k=l9..., \X\-l.
The operator j^+2H*l-σi)j^<i2-ω^u+*i-σ2) _ ^-W^Q^^W-Q) can

then be obtained from the operator 3Γ again by shifting operators i^0 around.
Using Lemma 4 we get then finally in the case ρ = 0:

= ^ dyωj+ί^j{yj+1+{\X\-l+σ1)a, ...,yi

where ξ' = (ξ'j+li ...,ξ'n) and ξ'k = cNkeX,ξ'k = yk_]yk$X. In the case ρ ^ l we get

ξ"

tr(...)=

where ξ" = ξi for iφn and ^ ' = α and the function ω J + 1 n_j as in (20). After per-
forming the summation over ρ we arrive at

n-2 j + l - m σ|X|-

+ Σ Σ Σ ••• Σ
j=0 XcMj,n σi = 0 ff|X|=

, . . . ,y i | X | +σ, x ,α, ...,yΛ_i+σ, x,α,j;Λ), (33)

where ξ = {ξj+ί9..., ξn) is given by ξ^άileX, ξ^y^x

The traces of the first two terms in (33) can be easily determined and we get

n-2 j+l-\X\ σ | X | - i ί ]

+ Σ Σ Σ - Σ Sdyω~J+ltH-{y9σ)\ (34)
j=0 XcMj,n σi = 0 σ|χ|=0 J

where αf/ + 1 > w_< ; ()?,σ) can be derived from the integrand in (33) and the third
term again only appears for n^2.
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Next we want to compare this trace with the partition function Zn+ί for a
hard core system with periodic boundary conditions with exponential pair
interaction λ{yι~yι~l). It is convenient to introduce the coordinates yt in the following
way:

Consider the case where there are (n—j) rods distributed on the interval
[0, (n + l)α] with periodic repetition outside this interval where Orgjgrc — 2.
We denote the coordinate of the left corner of the Γth rod by yn_{i_1)-\-(i — l)α.
Then the interaction energy of this configuration is given by:

Wj(y) = χ{yn - ( I - i) + (ί - 1 )α - (3>n - (k - l) + (fc- 1 )α))

+ _ Σ ^ - ( . " D + <» + «)«) ί^n-ίk-D + ίfc

Some algebraic calculation shows that W3{y) can also be written as

n — 1 n

i = j + l k = ί + l

Comparing with (24) we see that

(35)

If one includes the contributions coming from the configurations with 0 and 1
rod on the interval, the partition function Zn+1 is then given by

n-2 (j+ l)a yJ+ i yn-i

Zn+ι = ί+ Σ ί dV}+χ ί dy}+2... J dynexp[-cWj(yft
7=0 0 0 0

) (36)

By induction on n and7 = 0, l...n — 2, one can prove the following representation
of the integral in (36).

Lemma 5. Let M J . J M = { / 4 - 1 , ...,n—1} αrcd let XcMjifί such that

X={i1 =j+ 1 < i 2 < ... <f,x,} with \X\gmin(/+ l9n—j— 1).

α, ξί = Λ - i for

Σ •'• Σ

for any ωe C00(R"~J), where ω~(y, σ) is given in terms of the function ω analogous
to the definition in the expression (34) and the vector ξ is given as in expression (33).
This gives finally
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Theorem 3. Let Zn be the partition function for a classical hard core system with
hard core length a and exponential pair interaction cλ{yι~yi'ι) with periodic boundary
conditions. Then for n^.1

where the operators J£o and ££γ are defined in Lemma 1.

III. The ζ-Function for a Hard Core System

Let us now look at the formal series

C(z) = exp £ znZJn

where Zn is the partition function of a hard core system with periodic boundary
conditions. Inserting the expression of Theorem 3 we get

f̂ YIΛI \ (\ 2nί<

C A UI / II Λ

\\(£ It

Because [trifoif"" 1 !^ ||jg||w ° \ where \\^\\x denotes the trace norm of

the trace class operator if0 we get that ζ(z) is a holomorphic function in a neigh-
bourhood of z = 0. Let us next discuss the question if ζ(z) extends to a meromorphic
function in the whole z plane. Consider the following family of operators

Because, as we remarked already, the operator J>f can be shown to be a Hubert
Schmidt operator on the Hubert space H1(I;A2(DR)) of all H1 mappings of the
interval / into the Hubert space Λ2(DR) of all square integrable, holomorphic
functions on DR, where H1^) is the well known Sobolev space W?(I) [17], the
operator T(μ)n is for every n ^ 2 a holomorphic family of trace class operators
on this Hubert space. For such families the following formula holds [18]:

— txT{μ)n = n\x{T(μ)n-γgQ) for all μ e C .
dμ

At μ = 0 this gives

d n n_ί

dμ μ=0 °

The Theorem of Lidskij [14] tells us on the other hand that for n ̂ 2 trT(μ)π =
]ζ λk(μ)n, where {λk(μj} is the set of eigenvalues of the operator T(μ).

For the rest of the discussion let us restrict ourselves to the case where the
interaction constant c vanishes, that means we consider the operator ££\B-*B

c,z)=f(a,λaz)+]f(y,λy + λaz)dy.
o
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The operator T(μ) for this case then reads

T(μ)f(x, z) = (1 + μ)f(a, λaz) + ] f{y, λ> + λ"z)dy . (38)
0

The spectrum of this operator can be determined as follows. First notice that

if/(x, z) is an eigenfunction with eigenvalue ρ then the function — f(x, z) is also
dz

an eigenfunction with eigenvalue ρ/λa. There we made use of the fact that any
eigenfunction is holomorphic in z in a whole neighbourhood of clos DR which
follows by analytic continuation from the eigenvalue equation. Because
T(μ) is compact there must therefore exist an eigenfunction /0(x,z) such that

— /0(x, z) = 0, that means /0(x, z) = f(x). For this function the eigenvalue problem

reads as follows:

(1 +μ)f(a)+ ] f(y]dy = ρ(μ)f(x). (39)
0

The solution to this equation in C(I) is easily found to be

) = exp(αx), (40)

where a is a solution of the equation

o Γ 1 , (41)

with eigenvalue ρ(μ) = a(μ) ~*.
One can verify without difficulties the following properties of the numbers

α(μ) satisfying (41):
a) There exists a real solution α0 iff μ is real. For — l < μ < o o α0 is positive.
b) There exist two sequences of solutions otn and α*, n= 1,2,... with Imα w >0

and Imα*<0 such that |αj^nπ/2α,|α*|^mc/2α for all μ with |μ|^<5, where δ is
some small enough number.

The spectrum of the operator T(μ) is therefore given by the set

σ(T(μ)) = {λamρ(μ): m = 0,1,. . . ρ(μ) = (1 + μ) exp (a/ρ(μ))} . (42)

From this consideration it follows that all the eigenvalues λ(μ) of the operator
T(μ) are holomorphic in the disc | μ | < l and that for all n^2 the sum

converges uniformly in some small disc |μ| ^δ.
Therefore we get

and at μ = 0

trSeo£T-' = Σλ>ίδk, h=KXK. (43)

Inserting (43) into the definition of ζ(z) we get

,. (44)
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with

Next we make use of the spectrum σ(T(0)) and get finally

C(z) = exp fWl - Σ Qk)} Π (1 -*<?*)""* > (45)
L \ {*} /J {*}

where {ρj are the zeros of the function z exp (— a/z) — 1 and ρ̂  = ρl/(a + ρk).
Because QklQk=Qd(a + Qk\ it i s c l e a r that the function ζ(z) is not meromorphic
in the z plane.

By using expression (36) for the partition functions Zn one can also perform
the summation in the ζ-function and gets after some trivial algebra the following
expression:

z

ζ(z) = exp J exp (az')/(l - z' expaz')dz'. (46)
o

Comparing with (45) one gets therefore the following interesting representation

exp j
0

Qk

Unfortunately we are not able to prove the representation (44) also for the
interacting case c + 0 but it is our conjecture that it is true also in this case. It is
interesting to note at this place that Kac et al. [19] treated this hard core system
with the same interaction in an interesting paper in 1963. They indeed reduced
the problem to the discussion of a certain integral equation of Hilbert-Schmidt
type. It would be interesting to see the exact relation between this operator and
our operator if.
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Appendix A

For the readers convenience we repeat here the definition of the projective
topological tensor product of two Banach spaces and of the π norm. Consider
two Banach spaces E and F with their norms || | |£ and || | |F respectively. Let
be E®F the tensor product of the two spaces. Then one defines the following
norm on E(g)F:

i

where the infimum is taken over all possible representations of xeE®F as
x = Σ ei®fi w i t h eieE a n d fi^F- The completion of the space E®F with respect
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to the norm || ||π is denoted by E®KF and called the projective topological
tensor product of the two spaces E and F. The elements of this space are also
called Fredholm kernels.

Appendix B. Ruelles Trace Formula [6]

Let be DCC" a bounded connected open subset and ψ a holomorphic mapping
from a neighbourhood of clos D to D. Further let be φ'an element of Λ^D).
Define the following linear operator J£ \ A^(D)-+ A^φ)

&f(z):=φ(z)f(ψ(z)).

Then i f is a nuclear operator of order 0 and Trace jS? = φ(z*)det(l—φXz*))"1,
where z* is the unique fixed point of the mapping ψ and ψ'(z*) is the derivative
of ψ at z*.

Note that this formula extends in a certain way the Lefschetz trace formula [20].
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