© by Springer-Verlag 1977

On the ζ -Function of a One-dimensional Classical System of Hard-Rods

D. H. Mayer

Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

K. S. Viswanathan

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract. The ζ -function of a one-dimensional classical hard-rod system with exponential pair interaction is defined as the generating function for the partition function of the system with periodic boundary conditions. It is shown, here, that the ζ -function for this system is simply related to the traces of the restrictions of the Ruelle's transfer matrix, and related operators to a suitable function space. This ζ -function does not, in general, extend to a meromorphic function.

Introduction

The new interest in classical one dimensional models of statistical mechanics has its origin in the work of Sinai [1] who found an interesting connection of these models with certain measure theoretic problems in the theory of dynamical systems. By constructing symbolic dynamics [2] for Anosov diffeomorphisms and flows on a compact manifold with the help of Markov partitions [3] he was able to apply the methods developed in the study of one dimensional models and to get interesting new results. A special role in the study of dynamical systems is played by the ζ -function of such a system introduced by Artin and Mazur [4]

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} z^n N_n/n\right)$$

where N_n is the number of fixed points of the mapping f^n , where $f: M \to M$ is a diffeomorphism on some compact manifold M. They could show that the function $\zeta(z)$ has a non-vanishing radius of convergence for almost all diffeomorphisms f. To study the possible relevance of this ζ -function for statistical mechanics, Ruelle [5] introduced generalized ζ -functions in the following way:

Let M be some topological space and $f:M\to M$ a mapping. Let $A:M\to \mathbb{C}$ be a complex valued function on M. Then consider the formal expression

$$\zeta(z, e^A) = \exp\left[\sum_{n=1}^{\infty} \frac{z^n}{n} \left\{ \sum_{x \in Fix f^n} \left(\exp\sum_{k=0}^{n-1} A(f^k x) \right) \right\} \right]. \tag{1}$$

Properties of this function were studied in [5] and [6] and it was shown that this function extends in certain cases to a meromorphic function in the whole z plane.

Looking at the expression $\sum_{x \in \text{Fix } f^n} \exp\left(\sum_{k=0}^{n-1} A(f^k x)\right)$ in the special case where f

is the shift operator τ on the configuration space K of a one dimensional classical lattice gas system, then this is nothing else but the partition function Z_n of this system with periodic boundary conditions and interaction function A [7]. In this case the function ζ in (1) can be written

$$\zeta(z, A) = \exp \sum_{n=1}^{\infty} z^n Z_n(A)/n, \qquad (2)$$

and ζ is just the generating function for Z_n .

By applying the transfer matrix method, one of us [8] studied the above function for a one dimensional classical lattice gas system with exponential-polynomial pair interactions and showed that in this case ζ is holomorphic in a neighbourhood of z=0, a fact which is closely related to the existence of the thermodynamic limit. Furthermore we showed that the function ζ extends to a meromorphic function in the whole z plane.

In this paper we study the ζ -function of a one dimensional classical hard core system with exponential pair interaction. We also apply the transfer matrix method here and show the following:

The partition function Z_n of a system of hard rods of length a with periodic boundary conditions and exponential pair interaction $\Phi(y, x) = c\lambda^{|y-x|}$, can be written as

$$Z_n = (1 - \lambda^{na}) \operatorname{tr} \mathcal{L}_0 (\mathcal{L}_0 + \mathcal{L}_1)^{n-1}$$

where $\mathscr{L} = \mathscr{L}_0 + \mathscr{L}_1$ is the transfer matrix of the system. The operator $\mathscr{L}_0 \mathscr{L}^n$ is a trace class operator for all $n \ge 0$ in the Banach space $B = C(I) \hat{\otimes}_{\pi} A_{\infty}(D_R)$ on which \mathscr{L} acts. In the next chapter we determine the trace of the operators $\mathscr{L}_0 \mathscr{L}^n$ and show the connection with the partition function Z_n . In a final chapter we discuss some properties of the ζ function of the hard core system.

I. The Transfer Matrix \mathscr{L}

We use the terminology which was introduced in the paper on classical hard core systems by Gallavotti and Miracle-Sole [9]. Let K be the set of all allowed configurations X of the system, where X can be described by a sequence $X = (x_1, x_2, ...)$, where $x_i \in \mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}$ describes for instance the left corner of a rod of length a and $|x_i - x_j| \ge a$ for $i \ne j$. We restrict ourselves to the case where the rods interact via an exponentially decreasing pair potential

$$\Phi_k(X) = \begin{cases} 0 & \text{if } k \neq 2 \\ c\lambda^{(x_2 - x_1)} & \text{if } k = 2 \end{cases}$$
 (3)

for $X = (x_1, ..., x_k) \in K$, $0 < \lambda < 1$ and c some constant. The transfer matrix $\mathcal{L}[9, 10]$ is defined as a linear operator on the Banach space C(K) of all continuous functions on the compact space K as follows:

$$(\mathscr{L}f)(X) := \int_{Y \subset [0, a)} e^{-U(Y|\tau X)} f(Y \cup \tau X) dY$$
(4)

where $f \in C(K)$ and τ is the shift operator acting on K by $\tau X = X + a$. The interaction energy U(Y|W) for $Y, W \in K$ is defined as

$$U(Y|W) = \sum_{\substack{\Phi \pm S \subset Y \\ T \subset W}} \Phi_2(S \cup T).$$

Using (3) we get the expression

$$(\mathcal{L}f)(x_1, x_2, \ldots) = f(x_1 + a, x_2 + a, \ldots) + \int_0^{x_1 \vee a} f(y, x_1 + a, x_2 + a, \ldots) \exp\left(-c\sum_i \lambda^{(x_i + a - y)}\right) dy$$
 (5)

with $X = (x_1, x_2, ...)$ and $x_1 \lor a = \min(x_1, a)$.

It is known that \mathcal{L} is continuous but not compact on C(K). The problem is to find an operator \mathcal{L} on a space B in which it has "good" properties such as for instance a trace. In particular we want the functions $f \equiv 1$ and the principal eigenvector h of \mathcal{L} belong to B. Now h can be written as

$$h(x_1, x_2, ...) = \int_{Y \in (-\infty, x_1 - a) \cap \mathbb{R}_-} d\mu(Y) \exp\left(-c \sum_{i,j} \lambda^{(-y_j + x_i)}\right)$$

where $Y=(y_1,y_2,\ldots)$ and where $d\mu(Y)$ denotes the Gibbs measure on the negative real axis, we see that h depends analytically on $\sum_i \lambda^{x_i}$ and is a continuous function of the coordinate x_1 , as long as $x_1 \leq a$, whereas for $x_1 > a$, it does not depend on x_1 except through $\sum_i \lambda^{x_i}$. One is therefore led to a space of functions which depend continuously on a variable $x=x_1$ and analytically on a variable $z=\sum_i \lambda^{x_i}$.

The action of \mathcal{L} on such functions can then be written as

$$(\mathscr{L}f)(x,z) = f(a,\lambda^a z) + \int_0^x f(y,\lambda^y + \lambda^a z) \exp(-c\lambda^{a-y}z) \, dy. \tag{6}$$

Here we have used the fact that the function f does not depend on x for x > a and we therefore can restrict ourselves to functions which are defined and are continuous in the interval I = [0, a].

Next we want to construct a Banach space B on which the mapping $\mathscr L$ as defined in (6) is a well defined operator. Let I=[0,a] and $D_R:=\{z\in\mathbb C:|z|< R\}$. We denote by C(I) the Banach space of all continuous functions on I with the sup norm. Let further $A_\infty(D_R)$ be the Banach space of all holomorphic functions on the open disc D_R , with the usual sup norm. Then we consider the projective topological tensor product [11] $C(I)\hat{\otimes}_\pi A_\infty(D_R)$ together with the π -norm introduced first by Schatten [12] (see also Appendix A). In [11] the following fundamental Theorem is proved:

Theorem 1. Let E, F, G be Banach spaces and $T: E \times F \to G$ a bilinear continuous mapping of the direct product $E \times F$ into G. Then there exists a unique linear, continuous mapping $T^-: E \hat{\otimes}_{\pi} F \to G$ such that $T^- u = T(e, f)$ if $u = e \otimes f$ and $||T^-|| = ||T||$.

From this we get immediately

Lemma 1. Let $R > \frac{1}{1-\lambda^a}$. Then the operator \mathcal{L} as defined in (6) is a linear, continuous operator in the Banach space $B = C(I) \hat{\otimes}_{\pi} A_{\infty}(D_R)$.

Proof. For $\varphi \in C(I)$, $\psi \in A_{\infty}(D_R)$ define the operators $T_i : C(I) \times A_{\infty}(D_R) \to B$ as follows:

$$\begin{split} & \left[T_1(\varphi, \psi) \right](x, z) := \varphi(a) \psi(\lambda^a z) \\ & \left[T_2(\varphi, \psi) \right](x, z) := \int\limits_0^x \varphi(y) dy \psi(z) \\ & \left[T_3(\varphi, \psi) \right](x, z) := \varphi(x) \psi(z) \exp\left(-c \lambda^{a-x} z \right) \\ & \left[T_4(\varphi, \psi) \right](x, z) := \varphi(x) \psi(\lambda^x + \lambda^a z) \,. \end{split}$$

Theorem 1 tells us that all T_i , i = 1, ..., 4 define unique mappings

$$T_i^-: C(I) \hat{\otimes}_{\pi} A_{\infty}(D_R) \rightarrow B$$
.

The operator \mathcal{L} is then easily seen to be given by

$$\mathcal{L} = T_1 + T_2 T_3 T_4$$
 which we will write as $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$

with

$$\mathcal{L}_0 = T_1^-$$
 and $\mathcal{L}_1 = T_2^- T_3^- T_4^-$,

where

$$\|\mathscr{L}_0\| \leq 1$$
 and $\|\mathscr{L}_1\| \leq a \exp|c|R$.

Let us next study the operators \mathscr{L}_0 and \mathscr{L}_1 more carefully.

Lemma 2. The operator $\mathcal{L}_0: B \to B$ is nuclear of order 0.

Proof. Let $u_1:C(I)\to C(I)$ be defined by $(u_1\varphi)(x)=\varphi(a)$ and $u_2:A_\infty(D_R)\to A_\infty(D_R)$ by $(u_2\psi)(z)=\psi(\lambda^a z)$. Then the operator \mathcal{L}_0 is given by $\mathcal{L}_0=u_1\otimes u_2$, the tensor product of the two mappings u_1 and u_2 . It follows from [6] that u_2 is nuclear of order 0. Because u_1 is a finite rank operator it is also nuclear of order 0. But then it follows [13] that the tensor product $u_1\otimes u_2$ is also a nuclear operator of order 0 on B and has therefore a unique trace.

Because the operator $\mathscr{L} = \mathscr{L}_0 + \mathscr{L}_1$ is bounded and the set of nuclear operators of order 0 is a two-sided ideal in the algebra of bounded operators on any Banach space we get from Lemma 2 as an immediate consequence that for every $n \ge 0$ the operator $\mathscr{L}_0 \mathscr{L}^n$ is nuclear of order 0. Therefore the operators $\mathscr{L}_0 \mathscr{L}^n$ all have a well defined trace which is given by the sum over the eigenvalues counted according to their algebraic multiplicity [6].

For the operator \mathcal{L}_1 we have

Lemma 3. The operator $\mathcal{L}_1: B \rightarrow B$ is quasi-nilpotent.

Proof. From Lemma 1 we know the action of \mathcal{L}_1 on any element $\varphi \otimes \psi \in B$:

$$(\mathcal{L}_1 \varphi \otimes \psi)(x, z) = \int_0^x \varphi(y) \psi(\lambda^y + \lambda^a z) \exp(-c\lambda^{a-y} z) dy$$

and therefore $|(\mathcal{L}_1 \varphi \otimes \psi)(x, z)| \leq x ||\varphi||_{C(I)} ||\psi||_{A_\infty} M$, where

$$M = \sup_{x \in I} \sup_{z \in D_{R}} |\exp(-c\lambda^{(a-x)}z)|.$$

By induction we then get

$$|(\mathcal{L}_1^k \varphi \otimes \psi)(x, z)| \leq \frac{x^k}{k!} M^k ||\varphi||_{C(I)} ||\psi||_{A_\infty}$$

and therefore $\|\mathscr{L}_1^k\| \le C^k/k!$ with C = aM. But then the spectrum of \mathscr{L}_1 can only contain the point $\varrho = 0$ and \mathscr{L}_1 is therefore quasi-nilpotent.

Next we are going to determine the trace of the operator $\mathcal{L}_0\mathcal{L}^n$. To do this we make use of the results we have obtained above. One need not know if the operator \mathcal{L}_1 itself has a trace on the Banach space B. By using the theory of p-summing operators one can indeed find a Hilbert space H on which \mathcal{L}_1 is 2-summing, which implies that for all $n \ge 2$ the operator \mathcal{L}_1^n has a well-defined trace. Because we do not need this for the subsequent discussion, we do not treat this further.

II. The Trace of the Operator $\mathcal{L}_0\mathcal{L}^n$

Using the decomposition

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 \tag{7}$$

we get for $n \ge 1$

$$\mathcal{L}_0 \mathcal{L}^n = \sum_{i_1=0}^1 \dots \sum_{i_n=0}^1 \mathcal{L}_0 \mathcal{L}_{i_1} \dots \mathcal{L}_{i_n}$$
(8)

For the term \mathcal{L}_0^{n+1} in the expansion (8) we get using the representation $\mathcal{L}_0 = u_1 \otimes u_2$ of Lemma 2: $\mathcal{L}_0^{n+1} = u_1^{n+1} \otimes u_2^{n+1}$ and therefore [15] $\operatorname{tr} \mathcal{L}_0^{n+1} = (\operatorname{tr} u_1^{n+1}) (\operatorname{tr} u_2^{n+1})$. Because $\operatorname{tr} u_1^{n+1} = \operatorname{tr} u_1 = 1$ and $\operatorname{tr} u_2^{n+1}$ is given according to a general formula in [6] and [10] by $\operatorname{tr} u_2^{n+1} = (1 - \lambda^{(n+1)a})^{-1}$ we have $\operatorname{tr} \mathcal{L}_0^{n+1} = (1 - \lambda^{(n+1)a})^{-1}$ (see also Appendix B). Now the general term in expansion (8) can be written as

$$T_{\boldsymbol{\alpha},\boldsymbol{\beta}} = \mathcal{L}_0^{\alpha_1} \mathcal{L}_1^{\beta_1} \dots \mathcal{L}_0^{\alpha_{\varrho}} \mathcal{L}_1^{\beta_{\varrho}} \tag{9}$$

where $\mathbf{\alpha} = (\alpha_1, \ldots, \alpha_\varrho)$, $\mathbf{\beta} = (\beta_1, \ldots, \beta_\varrho)$, α_i , $\beta_i \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}$ such that $|\mathbf{\alpha}| + |\mathbf{\beta}| = \sum_{i=1}^\varrho \alpha_i + \sum_{i=1}^\varrho \beta_i = n+1$. Let $|\mathbf{\alpha}| = j+1$ with $j \geq 0$ and define the numbers $i_k = n+1-\sum_{l=k}^\varrho \beta_l$ for $k=1,\ldots,\varrho$. Let $\mathbf{y} = (y_{j+1},\ldots,y_n) \in I^{n-j}$ and define a (n-j) component vector $\mathbf{\xi} := (\xi_{j+1},\ldots,\xi_n)$ as follows: $\xi_{i_k} = a \ \forall k=1,\ldots,\varrho$ and $\xi_l = y_{l-1}$ for all other $j+1 < l \leq n$. Because $i_1 = j+1$ we get $\xi_{j+1} = a$. With these definitions we can write the operator $T_{\mathbf{\alpha},\mathbf{\beta}}$ acting on an element $f = \varphi \otimes \psi \in B$ as follows:

$$(T_{\alpha,\beta}f)(x,z) = \int_{-\infty}^{\xi} d\mathbf{y} \varphi(\mathbf{y}_n) \psi(\chi(\mathbf{y}) + \lambda^{(n+1)a}z) \exp(-c\tau(\mathbf{y};z))$$
(10)

where

$$\int_{0}^{\xi} dy = \int_{0}^{\xi_{J+1}} dy_{j+1} \int_{0}^{\xi_{J+2}} dy_{j+2} \dots \int_{0}^{\xi_{n}} dy_{n}.$$

The functions χ and τ will be determined in the subsequent discussion, at the moment we only need the following properties which can be immediately verified from the definition of the operators \mathcal{L}_0 and $\mathcal{L}_1:\chi$ and τ are C^{∞} in y and for all $y \in I^{n-j}$ the mapping $z \to \chi(y) + \lambda^{(n+1)a}z$ is a holomorphic mapping of clos D_R into D_R . The function $\tau(y;z)$ furthermore is holomorphic in the whole z-plane. With these remarks we can prove:

Theorem 2. Let $T_{\alpha,\beta}: B \to B$ as defined in (9). Then

$$\operatorname{tr} T_{\alpha,\beta} = \left[1 - \lambda^{a(n+1)}\right]^{-1} \int_{0}^{\xi} dy \exp\left(-c\tau(y; (1 - \lambda^{a(n+1)})^{-1}\chi(y))\right).$$

Proof. Because the mapping $z \to \chi(y) + \lambda^{a(n+1)}z$ is holomorphic for all $y \in I^{n-j}$ and $\psi \in A_{\infty}(D_R)$ we can write the action of $T_{\alpha,\beta}$ on $\varphi \otimes \psi$ as

$$(T_{\boldsymbol{\alpha},\boldsymbol{\beta}}f)(x,z) = \sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty} \gamma^{k} z^{k+s} {m \choose k} {p \choose s} a_{m} (-c)^{p} (p!)^{-1} \int_{0}^{\xi} d\boldsymbol{y} \chi^{m-k}(\boldsymbol{y}) \cdot \tau_{2}^{s}(\boldsymbol{y}) \tau_{1}^{p-s}(\boldsymbol{y}) \varphi(\boldsymbol{y}_{n}),$$

$$(11)$$

where $\tau(\mathbf{y}, z) = \tau_1(\mathbf{y}) + z\tau_2(\mathbf{y})$ and $\psi(z) = \sum_{m=0}^{\infty} a_m z^m$, $\gamma = \lambda^{a(n+1)}$. If we define $\psi_{kmsp}(z) := z^{k+s} \in A_{\infty}(D_R)$

$$\varphi'_{kmsp}(\varphi) := \int_{-\infty}^{\infty} d\mathbf{y} \, \chi^{m-k}(\mathbf{y}) \, \tau_2^s(\mathbf{y}) \tau_1^{p-s}(\mathbf{y}) \varphi(y_n) \tag{12}$$

and $\psi'_{kmsp}(\psi) = a_m \equiv a_m(\psi)$ we can write the operator $T_{\alpha,\beta}$ acting on $\phi \otimes \psi$ as

$$(T_{\alpha,\beta}\varphi\otimes\psi)$$

$$=\sum_{k=0}^{\infty}\sum_{m=k}^{\infty}\sum_{s=0}^{\infty}\sum_{p=s}^{\infty}\binom{p}{s}\gamma^{k}\binom{m}{k}(-c)^{p}(p!)^{-1}\left(\varphi'_{kmsp}\otimes\psi'_{kmsp}\right)\otimes(1\otimes\psi_{kmsp})\left(\varphi\otimes\psi\right).$$
(13)

Because $\varphi'_{kmsp} \otimes \psi'_{kmsp} \in C(I)' \otimes A_{\infty}(D_R)'$ (where "'" denotes the dual) and $1 \otimes \psi_{kmsp} \in B$ we can deduce from Theorem 1 that there exists a unique element $f'_{kmsp} \in B'$ with $\|f'_{kmsp}\| = \|\varphi'_{kmsp} \otimes \psi'_{kmsp}\|$ such that

$$f'_{kmsp}(\varphi \otimes \psi) = \varphi'_{kmsp}(\varphi)\psi'_{kmsp}(\psi)$$
.

Therefore the operator $T_{\alpha,\beta}$ has the following representation

$$T_{\boldsymbol{\alpha},\boldsymbol{\beta}} = \sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty} {p \choose s} \gamma^{k} {m \choose k} (-c)^{p} (p!)^{-1} f'_{kmsp} \otimes f_{kmsp}$$

$$\tag{14}$$

where $f_{kmsp}(x, z) = 1 \otimes \psi_{kmsp}(z)$.

Because the trace of $T_{\alpha,\beta}$ is then given by

$$\operatorname{tr} T_{\boldsymbol{\alpha},\boldsymbol{\beta}} = \sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty} \binom{p}{s} \gamma^{k} \binom{m}{k} (-c)^{p} (p!)^{-1} f'_{kmsp} (f_{kmsp}),$$

we get

tr
$$T_{\alpha,\beta} = (1-\gamma)^{-1} \int_{0}^{\xi} dy \exp\left[-c\tau(y;(1-\gamma)^{-1}\chi(y))\right].$$

Let us next study the functions $\chi(y)$ and $\tau(y;z)$. Because these functions depend on the vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ we denote them more correctly by $\chi_{\boldsymbol{\alpha},\boldsymbol{\beta}}$ and $\tau_{\boldsymbol{\alpha},\boldsymbol{\beta}}$. Let $M_{\boldsymbol{\alpha}}=|\boldsymbol{\alpha}|$ and $M_{\boldsymbol{\beta}}=|\boldsymbol{\beta}|,~M_{\boldsymbol{\alpha},\boldsymbol{\beta}}=M_{\boldsymbol{\alpha}}+M_{\boldsymbol{\beta}}.$ Let $y_{\boldsymbol{\beta}}:=(y_1,...,y_{M_{\boldsymbol{\beta}}})$ and $\xi_{\boldsymbol{\beta}}=(\xi_1,...,\xi_{M_{\boldsymbol{\beta}}})$ be two vectors from $I^{M_{\boldsymbol{\beta}}}$. The components $\xi_i, i=1,...,M_{\boldsymbol{\beta}}$ are defined as follows:

$$\begin{aligned} & \xi_i = a \quad \text{iff} \quad \exists k_i \,, \, 1 \leq k_i \leq \varrho \,; i = \sum_{j=k_i}^{\varrho} \beta_j \quad \text{and} \quad \alpha_{k_i} \neq 0 \,, \\ & \xi_i = y_{i+1} \quad \text{for all other} \quad i \neq M_\beta \\ & \xi_{M_\theta} = x \in I \quad \text{if} \quad \alpha_1 = 0 \,. \end{aligned}$$

The operator $T_{\alpha,\beta}$ acting on $\varphi \otimes \psi$ is then given by

$$[T_{\alpha,\beta}\varphi\otimes\psi](x,z) = \int_{-\infty}^{\xi_{\beta}} dy_{\beta}\varphi(y_{1})\psi(\chi_{\alpha,\beta}(y_{\beta}) + \lambda^{aM_{\alpha,\beta}}z)\exp(-c\tau_{\alpha,\beta}(y_{\beta};z))$$
(15)

where

$$\int_{0}^{\xi_{\beta}} dy_{\beta} = \int_{0}^{\xi_{M_{\beta}}} dy_{M_{\beta}} \dots \int_{0}^{\xi_{1}} dy_{1}.$$

Consider the two transformations $R_1, R_2: \mathbb{Z}_+^{\varrho} \to \mathbb{Z}_+^{\varrho+1}$ defined by

$$R_1 \alpha = (1, \alpha), R_2 \alpha = (0, \alpha), \qquad \alpha \in \mathbb{Z}_+^{\varrho}.$$

$$(16)$$

We want to determine the action of these two transformations on the functions $\chi_{\alpha,\beta}$ and $\tau_{\alpha,\beta}$. A rather trivial calculation gives

$$\chi_{R_{1\alpha}, R_{2\beta}}(y_{R_{2\beta}}) = \chi_{\alpha, \beta}(y_{\beta})
\tau_{R_{1\alpha}, R_{2\beta}}(y_{R_{2\beta}}; z) = \tau_{\alpha, \beta}(y_{\beta}; \lambda^{a}z)$$
(17)

respectively

$$\chi_{R_{2}\alpha, R_{1}\beta}(y_{R_{1}\beta}) = \chi_{\alpha, \beta}(y_{\beta}) + \lambda^{(aM_{\alpha, \beta} + y_{M\beta + 1})}
\tau_{R_{2}\alpha, R_{1}\beta}(y_{R_{1}\beta}; z) = \tau_{\alpha, \beta}(y_{\beta}; \lambda^{y_{M\beta + 1}} + \lambda^{a}z) + \lambda^{(a - y_{M\beta + 1})}z$$
(18)

where $y_{R_1\beta} = (y_1, ..., y_{M_\beta}, y_{M_\beta+1}).$

For the special case $\alpha = (0)$, $\beta = (1)$ we get from the definition of the operator \mathcal{L}_1 :

$$\chi_{0,1}(y) = \lambda^y, \quad \tau_{0,1}(y;z) = \lambda^{a-y}z.$$
 (19)

Let $T_{\alpha,\beta}$ be as defined in (15). If $\alpha_k \neq 0$, $\beta_k \neq 0$ we define the operator

$$T_{k,\pmb{\alpha},\pmb{\beta}} \!=\! \mathcal{L}_0^{\alpha_1}\mathcal{L}_1^{\beta_1}...\mathcal{L}_0^{\alpha_k-1}\mathcal{L}_1\mathcal{L}_0\mathcal{L}_1^{\beta_k-1}\mathcal{L}_0^{\alpha_{k+1}}...\mathcal{L}_1^{\beta_\varrho}\,.$$

Let $\Pi_k = \sum_{i=k}^{\varrho} \beta_{i}$. If $\alpha_1 \ge 1$, we have from the trace formula of Theorem 2:

$$\operatorname{tr} T_{\boldsymbol{\alpha},\,\boldsymbol{\beta}} = \int_{0}^{\xi_{\boldsymbol{\beta}}} dy_{\boldsymbol{\beta}} \omega_{\boldsymbol{\alpha},\,\boldsymbol{\beta}}(y_{\boldsymbol{\beta}})$$

where

$$\omega_{\alpha,\beta}(y_{\beta}) = (1 - \lambda^{aM_{\alpha,\beta}})^{-1} \exp\left[-c\tau_{\alpha,\beta}(y_{\beta}; (1 - \lambda^{aM_{\alpha,\beta}})^{-1}\chi_{\alpha,\beta}(y_{\beta}))\right]. \tag{20}$$

Using the relations (17) and (18) we can easily show the following.

Lemma 4. Let $T_{\alpha,\beta}$, $T_{k,\alpha,\beta}$ and Π_k be as defined above. Let $y'_{\beta} = (y'_1, ..., y'_{M_{\beta}})$ with $y'_i = y_i \forall i \neq \Pi_k$, $y'_{\Pi_k} = y_{\Pi_k} + a$. Then

$$\operatorname{tr} T_{k,\alpha,\beta} = \int_{0}^{\zeta_{\beta}} dy_{\beta} \omega_{\alpha,\beta}(y_{\beta}'),$$

where ξ'_{B} is determined as follows:

for

$$\begin{split} &\alpha_{k}\!\ge\!2,\beta_{k}\!\ge\!2\!:\!\xi_{i}'\!=\!\xi_{i}\forall i\!+\!\Pi_{k}\!-\!1\;,\xi_{\varPi_{k}-1}'\!=\!a\;;\\ &\alpha_{k}\!=\!1,\beta_{k}\!\ge\!2\!:\!\xi_{i}'\!=\!\xi_{i}\forall i\!+\!(\varPi_{k},\varPi_{k}\!-\!1)\;,\xi_{\varPi_{k}}'\!=\!y_{\varPi_{k}+1}\;,\xi_{\varPi_{k}-1}'\!=\!a\;;\\ &\alpha_{k}\!=\!1,\beta_{k}\!=\!1\!:\!\xi_{i}'\!=\!\xi_{i}\forall i\!+\!\Pi_{k}\;,\xi_{\varPi_{k}}'\!=\!y_{\varPi_{k}+1}\;;\\ &\alpha_{k}\!\ge\!2,\beta_{k}\!=\!1\!:\!\xi_{i}'\!=\!\xi_{i}\forall i\;. \end{split}$$

Lemma 4 allows us to determine the trace of the operator $T_{\alpha,\beta}$ for fixed M_{α} and M_{β} . Consider the operator $T_{j+1,n-j} = \mathcal{L}_0^{j+1} \mathcal{L}_1^{n-j}$. From the recursion formulas (17) and (18) we get for $0 \le j \le n-2$, $n \ge 2$, if we introduce the vector $\mathbf{y} = (y_{j+1}, ..., y_n) \in I^{n-j}$.

$$\chi_{j+1,n-j}(y) = \sum_{k=0}^{n-j-1} \lambda^{(ka+y_{n-k})}$$
 (21)

$$\tau_{j+1,n-j}(\mathbf{y};z) = \sum_{\sigma=0}^{n-j-2} \sum_{k_{\sigma}=1}^{n-j-1-\sigma} \left[\lambda^{(k_{\sigma}a-y_{n-\sigma}+y_{n-\sigma-k_{\sigma}})} + z \sum_{k=0}^{n-j-1} \lambda^{(n+1-k)a-y_{n-k}} \right].$$
(22)

Using the trace formula we get

$$\operatorname{tr} T_{j+1, n-j} = (1 - \lambda^{a(n+1)})^{-1} \int_{0}^{\xi} dy \exp(-\operatorname{cf}_{j}(y))$$
 (23)

with $f_i(y)$ given by

$$f_{j}(\mathbf{y}) = [1 - \lambda^{a(n+1)}]^{-1} \cdot \left[(n-j)\lambda^{(n+1)a} + \sum_{i=j+1}^{n-1} \sum_{k=i+1}^{n} (\lambda^{((k-i)a-y_{k}+y_{i})} + \lambda^{((n+1+i-k)a+y_{k}-y_{i})}) \right]$$
(24)

and $\xi = (a, y_{j+1}, ..., y_{n-1}).$

From this we can then deduce the trace of the operator $\mathcal{L}_0\mathcal{L}^n$ for $n \ge 1$: Let $\alpha := (\alpha_1, ..., \alpha_\varrho), \ \beta' := (\beta'_1, ..., \beta'_\varrho) \in \mathbb{Z}^{*\varrho}$, where $\mathbb{Z}^* = \{1, 2, 3, ...\}$. Let furthermore be $\gamma, \delta \in \mathbb{Z}_+$. Then

$$\mathcal{L}_{0}\mathcal{L}^{n} = \mathcal{L}_{0}^{n+1} + \sum_{k=0}^{n-1} \mathcal{L}_{0}^{1+k} \mathcal{L}_{1} \mathcal{L}_{0}^{n-1-k} + \sum_{j=0}^{n-2} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\beta}', \boldsymbol{\gamma}, \boldsymbol{\delta}: |\boldsymbol{\alpha}| + \boldsymbol{\gamma} + \boldsymbol{\delta} = j+1 \\ |\boldsymbol{\beta}'| = n-j-1: \boldsymbol{\alpha}, \boldsymbol{\beta}' \in \mathbb{Z}^{\delta}_{2}; \boldsymbol{\gamma}, \boldsymbol{\delta} \in \mathbb{Z}_{+}}} T_{\boldsymbol{\alpha}, \boldsymbol{\beta}'} \mathcal{L}_{0}^{\boldsymbol{\gamma}} \mathcal{L}_{1} \mathcal{L}_{0}^{\boldsymbol{\delta}}$$

$$(25)$$

where the third term only appears for $n \ge 2$. So let us assume $n \ge 2$. If we define the vector $\boldsymbol{\beta} = (\beta_1, ..., \beta_{\varrho})$ such that $\beta_i = \beta_i'$ for $i \ne \varrho$ and $\beta_{\varrho} = \beta_{\varrho}' + 1$ we get $\beta_{\varrho} \ge 2$.

Let us recall that the numbers i_k have been defined by $i_k := n + 1 - \sum_{l=k}^{k} \beta_l$ for $k = 1, ..., \rho$. Because all $\beta_i \ge 1$ we get

$$i_1 = j + 1 < i_2 < \dots < i_o = n + 1 - \beta_o \le n - 1$$
 (26)

Denote by $M_{i,n}$ the following set of integers

$$M_{j,n} := \{j+1, j+2, ..., n-1\},$$
 (27)

and by $X := \{i_k, k=1, ..., \varrho\}$. Then we have $|X| = \operatorname{card} X = \varrho$. It is also straightforward to show that

$$\varrho \le \min(j+1, n-j-1). \tag{28}$$

Therefore $X \in M_{j,n}$ and |X| obeys the relation (28).

On the other hand given a subset $X \in M_{j,n}$ with $X = \{i_1 = j+1 < i_2 < ... < i_{|X|}\}$ and $|X| \leq \min(j+1, n-j-1)$ there exists a unique vector $\boldsymbol{\beta} = (\beta_1, ..., \beta_{|X|}) \in \mathbb{Z}^{*|X|}$ with $\beta_{|X|} \geq 2$ and $\sum_{i=1}^{|X|} \beta_i = n-j$ such that $i_{|X|} = n+1-\beta_{|X|}$ and $i_k = n+1-\sum_{l=k}^{|X|} \beta_l$. One only has to define $\beta_{|X|} := n+1-i_{|X|}$ and $\beta_k = i_{k+1}-i_k$ for $1 \leq k \leq |X|-1$. Therefore we can write the third term in (25) as follows

$$\sum_{j=0}^{n-2} \sum_{\substack{X \subset M_{j,n} \\ X = \{i_1 = j+1 < i_2 \dots < i_{|X|}\} |\mathbf{\alpha}| + \sigma + \gamma = j+1 \\ |X| \leq \min(j+1, n-j-1)}} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\sigma}, \boldsymbol{\gamma} \\ |X| \leq 2n}} \sum_{\substack{X \subset M_{j,n} \\ |X| \leq 2n}} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\sigma}, \boldsymbol{\gamma} \\ |X| \leq 2n}} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\sigma}, \boldsymbol{\sigma}, \boldsymbol{\gamma} \\ |X| \leq 2n}} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\sigma}, \boldsymbol{\sigma},$$

Let us next write the vector $\boldsymbol{\alpha} = (\alpha_1, ..., \alpha_{|X|})$ as

$$\alpha_1 = j + 2 - |X| - \sigma_1$$
, $\alpha_k = 1 + \sigma_{k-1} - \sigma_k$ for $k = 2, ..., |X|$. (30)

One can then show that $j+1-|X| \ge \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_{|X|} \ge 0$. From this it follows that the mapping

$$\boldsymbol{\alpha} = (\alpha_1, ..., \alpha_{|X|}) \rightarrow \boldsymbol{\sigma} = (\sigma_1, \sigma_2, ..., \sigma_{|X|})$$
(31)

is 1-1 and the inverse mapping of (30) is given by

$$\sigma_i = j + i + 1 - |X| - \sum_{k=1}^i \alpha_k$$
.

With this we can write the expression (29) as

$$\sum_{j=0}^{n-2} \sum_{X \subset M_{j,n}} \sum_{\sigma_1=0}^{j+1-|X|} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{|X|}-1} \sum_{\varrho=0}^{\sigma_{|X|}} \mathcal{L}_0^{(j+2-|X|-\sigma_1)} \mathcal{L}_1^{(i_2-i_1)} \mathcal{L}_0^{(1+\sigma_1-\sigma_2)} \cdots \\
\cdot \mathcal{L}_0^{(1+\sigma_{|X|}-1-\sigma_{|X|})} \mathcal{L}_1^{(n-i_{|X|})} \mathcal{L}_0^{\varrho} \mathcal{L}_1 \mathcal{L}_0^{(\sigma_{|X|}-\varrho)} .$$
(32)

It is clear that the operator $\mathscr{L} = \mathscr{L}_0^{\gamma} \mathscr{L}_1^{(i_2-i_1)} \mathscr{L}_0 \mathscr{L}_1^{(i_3-i_2)} \dots \mathscr{L}_0 \mathscr{L}_1^{(n-i_|x_1+1)}$ with $\gamma = j+1-(|X|-1)$ can be obtained from the operator $T_{j+1,n-j}$ simply by shifting |X|-k times the operator \mathscr{L}_0 through the operator $\mathscr{L}_1^{(i_{k+1}-i_k)}, \ k=1,\dots,|X|-1$. The operator $\mathscr{L}_0^{(j+2-|X|-\sigma_1)} \mathscr{L}_1^{(i_2-i_1)} \mathscr{L}_0^{(1+\sigma_1-\sigma_2)} \dots \mathscr{L}_1^{(n-i_|x_1)} \mathscr{L}_0^{\varrho} \mathscr{L}_1 \mathscr{L}_0^{(\sigma_1x_1-\varrho)}$ can then be obtained from the operator \mathscr{L} again by shifting operators \mathscr{L}_0 around. Using Lemma 4 we get then finally in the case $\varrho = 0$:

$$\begin{split} &\operatorname{tr} \mathcal{L}_{0}^{(j+2-|X|-\sigma_{1})} \mathcal{L}_{1}^{(i_{2}-i_{1})} \mathcal{L}_{0}^{(1+\sigma_{1}-\sigma_{2})} ... \mathcal{L}_{0}^{\varrho} \mathcal{L}_{1} \mathcal{L}_{0}^{(\sigma_{|X|}-\varrho)} \\ &= \int\limits_{-\infty}^{\mathbf{\xi}'} d\mathbf{y} \omega_{j+1,n-j} (y_{j+1} + (|X|-1+\sigma_{1})a, \, ..., \, y_{i_{k}} + (|X|-k+\sigma_{k})a, \, ..., y_{i_{|X|}} \\ &+ \sigma_{|X|}a, \, ..., \, y_{n-1} + \sigma_{|X|}a, \, y_{n} + \sigma_{|X|}a)) \end{split}$$

where $\xi' = (\xi'_{j+1}, ..., \xi'_n)$ and $\xi'_k = a \forall k \in X, \xi'_k = y_{k-1} \forall k \notin X$. In the case $\varrho \ge 1$ we get

$$\begin{split} \operatorname{tr}(...) &= \int d\mathbf{y} \omega_{j+1,\,n-j}(y_{j+1} + (|X| - 1 + \sigma_1 a), \, ..., \, y_{i_k} \\ &+ (|X| - k + \sigma_k)a, \, ..., \, y_{i_{|X|}} + \sigma_{|X|}a, \, ..., \, y_{n-1} + \sigma_{|X|}a, \, y_n + (\sigma_{|X|} - \varrho)a) \,, \end{split}$$

where $\xi_i'' = \xi_i$ for $i \neq n$ and $\xi_n'' = a$ and the function $\omega_{j+1, n-j}$ as in (20). After performing the summation over ϱ we arrive at

$$\operatorname{tr} \mathcal{L}_{0} \mathcal{L}^{n} = \operatorname{tr} \mathcal{L}_{0}^{n+1} + \sum_{k=0}^{n-1} \operatorname{tr} \mathcal{L}_{0}^{(1+k)} \mathcal{L}_{1} \mathcal{L}_{0}^{(n-1-k)}$$

$$+ \sum_{j=0}^{n-2} \sum_{X \subset M_{j,n}} \sum_{\sigma_{1}=0}^{j+1-|X|} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{|X|-1}} \int_{0}^{\xi} d\mathbf{y} \, \omega_{j+1,n-j}$$

$$\cdot (y_{j+1} + (|X| - 1 + \sigma_{1})a, \dots, y_{i_{k-1}} + (|X| - (k-1) + \sigma_{k-1})a, y_{i_{k}}$$

$$+ (|X| - k + \sigma_{k})a, \dots, y_{i_{1}X_{1}} + \sigma_{|X|}a, \dots, y_{n-1} + \sigma_{|X|}a, y_{n}),$$

$$(33)$$

where $\boldsymbol{\xi} = (\xi_{j+1}, ..., \xi_n)$ is given by $\xi_l = a \forall l \in X, \xi_l = y_{l-1}$

$$l \notin X$$
, $l \neq n$, $\xi_n = y_{n-1} + \sigma_{|X|}a$.

The traces of the first two terms in (33) can be easily determined and we get

$$\operatorname{tr} \mathcal{L}_{0} \mathcal{L}^{n} = \frac{1}{\left[1 - \lambda^{a(n+1)}\right]} \left[1 + na \exp\left(-\lambda^{(n+1)a}/(1 - \lambda)^{(n+1)a}\right) + \sum_{j=0}^{n-2} \sum_{X \subset M_{j, n}} \sum_{\sigma_{1} = 0}^{j+1 - |X|} \cdots \sum_{\sigma_{|X|} = 0}^{\sigma_{|X|-1}} \int_{\mathbf{z}} d\mathbf{y} \, \omega_{j+1, n-j}^{*}(\mathbf{y}, \boldsymbol{\sigma}) \right]$$
(34)

where $\omega_{j+1,n-j}^{\tilde{j}}(y,\sigma)$ can be derived from the integrand in (33) and the third term again only appears for $n \ge 2$.

Next we want to compare this trace with the partition function Z_{n+1} for a hard core system with periodic boundary conditions with exponential pair interaction $\lambda^{(y_i-y_{i-1})}$. It is convenient to introduce the coordinates y_i in the following way:

Consider the case where there are (n-j) rods distributed on the interval [0, (n+1)a] with periodic repetition outside this interval where $0 \le j \le n-2$. We denote the coordinate of the left corner of the *i*'th rod by $y_{n-(i-1)}+(i-1)a$. Then the interaction energy of this configuration is given by:

$$W_{j}(y) = \frac{c}{(1 - \lambda^{a(n+1)})} \left[\sum_{n-j \ge i > k \ge 1} \lambda^{(y_{n-(i-1)} + (i-1)a - (y_{n-(k-1)} + (k-1)a))} + \sum_{n-j \ge k \ge i \ge 1} \lambda^{(y_{n-(i-1)} + (i+n)a) - (y_{n-(k-1)} + (k-1)a)} \right].$$

Some algebraic calculation shows that $W_i(y)$ can also be written as

$$W_{j}(\mathbf{y}) = \frac{c}{1 - \lambda^{a(n+1)}} \left[(n-j)\lambda^{(n+1)a} + \sum_{i=j+1}^{n-1} \sum_{k=i+1}^{n} \cdot \lambda^{(y_{i}+(k-i)a-y_{k})} + \lambda^{(y_{k}-y_{i}+(i-k+n+1)a)} \right].$$

Comparing with (24) we see that

$$cf_j(\mathbf{y}) = W_j(\mathbf{y}). \tag{35}$$

If one includes the contributions coming from the configurations with 0 and 1 rod on the interval, the partition function Z_{n+1} is then given by

$$Z_{n+1} = 1 + \sum_{j=0}^{n-2} \int_{0}^{(j+1)a} dy_{j+1} \int_{0}^{y_{j+1}} dy_{j+2} ... \int_{0}^{y_{n-1}} dy_n \exp\left[-cW_j(\mathbf{y})\right] + na \exp\left[-\left[c\lambda^{(n+1)a}/(1-\lambda^{(n+1)a})\right]$$
(36)

By induction on n and j=0, 1...n-2, one can prove the following representation of the integral in (36).

Lemma 5. Let
$$M_{j,n} = \{j+1, ..., n-1\}$$
 and let $X \in M_{j,n}$ such that

$$X = \{i_1 = j + 1 < i_2 < \dots < i_{|X|}\}$$
 with $|X| \le \min(j + 1, n - j - 1)$.

Let $y = (y_{j+1}, ..., y_n)$ and $\xi' = (\xi'_{j+1}, ..., \xi'_n)$ with $\xi'_{j+1} = (j+1)a$, $\xi'_k = y_{k-1}$ for $k \neq j+1$. Then

$$\int_{0}^{\mathbf{g}'} d\mathbf{y} \omega(\mathbf{y}) = \sum_{X \subset M_{J,n}} \sum_{\sigma_1 = 0}^{j+1-|X|} \sum_{\sigma_2 = 0}^{\sigma_1} \dots \sum_{\sigma_{|X|} = 0}^{\sigma_{|X|} - 1} \int_{0}^{\mathbf{g}} d\mathbf{y} \omega(\mathbf{y}, \boldsymbol{\sigma})$$

for any $\omega \in C^{\infty}(\mathbb{R}^{n-j})$, where $\omega^{\sim}(\mathbf{y}, \boldsymbol{\sigma})$ is given in terms of the function ω analogous to the definition in the expression (34) and the vector $\boldsymbol{\xi}$ is given as in expression (33). This gives finally

Theorem 3. Let Z_n be the partition function for a classical hard core system with hard core length a and exponential pair interaction $c\lambda^{(y_i-y_{i-1})}$ with periodic boundary conditions. Then for $n \ge 1$

$$Z_n = (1 - \lambda^{na}) \operatorname{tr} \mathcal{L}_0 \mathcal{L}^{n-1}$$

where the operators \mathcal{L}_0 and \mathcal{L}_1 are defined in Lemma 1.

III. The ζ-Function for a Hard Core System

Let us now look at the formal series

$$\zeta(z) = \exp \sum_{n=1}^{\infty} z^n Z_n / n$$

where Z_n is the partition function of a hard core system with periodic boundary conditions. Inserting the expression of Theorem 3 we get

$$\zeta(z) = \left[\exp \left(\sum_{n=1}^{\infty} \frac{z^n}{n} (1 - \lambda^{na}) \operatorname{tr} \mathcal{L}_0 \mathcal{L}^{n-1} \right) \right].$$

Because $|\operatorname{tr} \mathscr{L}_0 \mathscr{L}^{n-1}| \leq \|\mathscr{L}\|^n \frac{\|\mathscr{L}_0\|_1}{\|\mathscr{L}\|}$, where $\|\mathscr{L}\|_1$ denotes the trace norm of

the trace class operator \mathcal{L}_0 we get that $\zeta(z)$ is a holomorphic function in a neighbourhood of z=0. Let us next discuss the question if $\zeta(z)$ extends to a meromorphic function in the whole z plane. Consider the following family of operators

$$T(\mu)$$
: = $\mathcal{L} + \mu \mathcal{L}_0$.

Because, as we remarked already, the operator \mathcal{L} can be shown to be a Hilbert Schmidt operator on the Hilbert space $H^1(I; A_2(D_R))$ of all H^1 mappings of the interval I into the Hilbert space $A_2(D_R)$ of all square integrable, holomorphic functions on D_R , where $H^1(I)$ is the well known Sobolev space $W_1^2(I)$ [17], the operator $T(\mu)^n$ is for every $n \ge 2$ a holomorphic family of trace class operators on this Hilbert space. For such families the following formula holds [18]:

$$\frac{d}{d\mu}\operatorname{tr} T(\mu)^n = n \operatorname{tr} (T(\mu)^{n-1} \mathcal{L}_0) \quad \text{for all} \quad \mu \in \mathbb{C}.$$

At $\mu = 0$ this gives

$$\frac{d}{d\mu}\operatorname{tr} T(\mu)^n\Big|_{\mu=0} = n \operatorname{tr} \mathcal{L}_0 \mathcal{L}^{n-1}. \tag{37}$$

The Theorem of Lidskij [14] tells us on the other hand that for $n \ge 2$ tr $T(\mu)^n = \sum_{\{k\}} \lambda_k(\mu)^n$, where $\{\lambda_k(\mu)\}$ is the set of eigenvalues of the operator $T(\mu)$.

For the rest of the discussion let us restrict ourselves to the case where the interaction constant c vanishes, that means we consider the operator $\mathcal{L}: B \to B$

$$\mathcal{L} f(x,z) = f(a,\lambda^a z) + \int_0^x f(y,\lambda^y + \lambda^a z) dy.$$

ζ-Function and Hard Cores 187

The operator $T(\mu)$ for this case then reads

$$T(\mu)f(x,z) = (1+\mu)f(a,\lambda^{a}z) + \int_{0}^{x} f(y,\lambda^{y} + \lambda^{a}z)dy.$$
 (38)

The spectrum of this operator can be determined as follows. First notice that if f(x,z) is an eigenfunction with eigenvalue ϱ then the function $\frac{d}{dz} f(x,z)$ is also an eigenfunction with eigenvalue ϱ/λ^a . There we made use of the fact that any eigenfunction is holomorphic in z in a whole neighbourhood of clos D_R which follows by analytic continuation from the eigenvalue equation. Because $T(\mu)$ is compact there must therefore exist an eigenfunction $f_0(x,z)$ such that $\frac{d}{dz} f_0(x,z) = 0$, that means $f_0(x,z) = f(x)$. For this function the eigenvalue problem reads as follows:

$$(1+\mu)f(a) + \int_{0}^{x} f(y)dy = \varrho(\mu)f(x).$$
 (39)

The solution to this equation in C(I) is easily found to be

$$f(x) = \exp(\alpha x), \tag{40}$$

where α is a solution of the equation

$$(1+\mu)\exp\alpha a = \alpha^{-1}, \tag{41}$$

with eigenvalue $\varrho(\mu) = \alpha(\mu)^{-1}$.

One can verify without difficulties the following properties of the numbers $\alpha(\mu)$ satisfying (41):

- a) There exists a real solution α_0 iff μ is real. For $-1 < \mu < \infty$ α_0 is positive.
- b) There exist two sequences of solutions α_n and α_n^* , n=1,2,... with $\text{Im }\alpha_n>0$ and $\text{Im }\alpha_n^*<0$ such that $|\alpha_n|\geq n\pi/2a, |\alpha_n^*|\geq n\pi/2a$ for all μ with $|\mu|\leq \delta$, where δ is some small enough number.

The spectrum of the operator $T(\mu)$ is therefore given by the set

$$\sigma(T(\mu)) = \{\lambda^{am} \varrho(\mu) : m = 0, 1, \dots; \varrho(\mu) = (1 + \mu) \exp(a/\varrho(\mu))\}. \tag{42}$$

From this consideration it follows that all the eigenvalues $\lambda(\mu)$ of the operator $T(\mu)$ are holomorphic in the disc $|\mu| < 1$ and that for all $n \ge 2$ the sum $\sum_{\{k\}} \lambda_k^n(\mu)$ converges uniformly in some small disc $|\mu| \le \delta$.

Therefore we get

$$\frac{d}{d\mu} \sum_{\{k\}} \lambda_k^n(\mu) = n \sum_{\{k\}} \lambda_k^{n-1}(\mu) \lambda_k'(\mu)$$

and at $\mu = 0$

$$\operatorname{tr} \mathscr{L}_0 \mathscr{L}^{n-1} = \sum_{\{k\}} \lambda_k^n \, \delta_k \,, \ \delta_k = \lambda_k^{-1} \lambda_k' \,. \tag{43}$$

Inserting (43) into the definition of $\zeta(z)$ we get

$$\zeta(z) = \exp\left[z\right] Q(\lambda^a z) / Q(z), \tag{44}$$

with

$$Q(z) = \prod_{\{k\}} (1 - z\lambda_k)^{\delta_k} \exp z(\delta_k \lambda_k).$$

Next we make use of the spectrum $\sigma(T(0))$ and get finally

$$\zeta(z) = \exp\left[z\left(1 - \sum_{(k)} \varrho_k'\right)\right] \prod_{(k)} (1 - z\varrho_k)^{-\frac{\varrho_k}{\varrho_k}},\tag{45}$$

where $\{\varrho_k\}$ are the zeros of the function $z \exp(-a/z) - 1$ and $\varrho'_k = \varrho_k^2/(a + \varrho_k)$. Because $\varrho'_k/\varrho_k = \varrho_k/(a + \varrho_k)$, it is clear that the function $\zeta(z)$ is not meromorphic in the z plane.

By using expression (36) for the partition functions Z_n one can also perform the summation in the ζ -function and gets after some trivial algebra the following expression:

$$\zeta(z) = \exp \int_{0}^{z} \exp(az')/(1 - z' \exp az')dz'.$$
 (46)

Comparing with (45) one gets therefore the following interesting representation

$$\exp \int_{0}^{z} \exp(az')/(1-z'\exp az')dz' = \exp \left[z\left(1-\sum_{\{k\}}\varrho'_{k}\right)\right] \prod_{\{k\}} (1-z\varrho_{k})^{-\frac{\varrho'_{k}}{\varrho_{k}}}.$$

Unfortunately we are not able to prove the representation (44) also for the interacting case $c \neq 0$ but it is our conjecture that it is true also in this case. It is interesting to note at this place that Kac et al. [19] treated this hard core system with the same interaction in an interesting paper in 1963. They indeed reduced the problem to the discussion of a certain integral equation of Hilbert-Schmidt type. It would be interesting to see the exact relation between this operator and our operator \mathcal{L} .

Acknowledgements. We are very much indebted to Prof. G. Gallavotti for many helpful discussions. One of us [D.M.] wants to thank the DFG for financial support. Both of us are indebted to Prof. N. Kuiper for the kind hospitality extended to us at the IHES.

Appendix A

For the readers convenience we repeat here the definition of the projective topological tensor product of two Banach spaces and of the π norm. Consider two Banach spaces E and F with their norms $\| \cdot \|_E$ and $\| \cdot \|_F$ respectively. Let be $E \otimes F$ the tensor product of the two spaces. Then one defines the following norm on $E \otimes F$:

$$||x||_{\pi} := \inf \sum_{i} ||e_{i}||_{E} ||f_{i}||_{F}$$

where the infimum is taken over all possible representations of $x \in E \otimes F$ as $x = \sum_{i \in F} e_i \otimes f_i$ with $e_i \in E$ and $f_i \in F$. The completion of the space $E \otimes F$ with respect

to the norm $\| \|_{\pi}$ is denoted by $E \hat{\otimes}_{\pi} F$ and called the projective topological tensor product of the two spaces E and F. The elements of this space are also called Fredholm kernels.

Appendix B. Ruelles Trace Formula [6]

Let be $D \subset \mathbb{C}^n$ a bounded connected open subset and ψ a holomorphic mapping from a neighbourhood of clos D to D. Further let be φ an element of $A_{\infty}(D)$. Define the following linear operator $\mathscr{L}: A_{\infty}(D) \to A_{\infty}(D)$

$$\mathscr{L} f(z) := \varphi(z) f(\psi(z)).$$

Then \mathcal{L} is a nuclear operator of order 0 and Trace $\mathcal{L} = \varphi(z^*) \det(1 - \psi'(z^*))^{-1}$, where z^* is the unique fixed point of the mapping ψ and $\psi'(z^*)$ is the derivative of ψ at z^* .

Note that this formula extends in a certain way the Lefschetz trace formula [20].

References

- 1. Sinai, Ya. G.: Gibbs Measures in Ergodic Theory. Russ. Math. Surv. 27, 21—69 (1972)
- 2. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429-460 (1973)
- 3. Bowen, R.: Markov partitions for Axiom A diffeomorphisms. Am. J. Math. 92, 725-747 (1970)
- 4. Artin, E., Mazur, B.: On Periodic points. Ann. Math. (2) 81, 82—99 (1965)
- 5. Ruelle, D.: Generalized ζ-functions for Axiom A basic sets. Bull. Am. Math. Soc. **82**, 153—156 (1976)
- 6. Ruelle, D.: ζ-functions for expanding maps and Anosov flows. Invent. Math. 34, 231—242 (1976)
- 7. Ruelle, D.: R.C.P. 25, Vol. 22, Strasbourg 1975
- 8. Viswanathan, K.S.: Statistical mechanics of a one-dimensional lattice gas with exponential-polynomial interactions. Commun. math. Phys. 47, 131—141 (1976)
- Gallovotti, G., Miracle-Sole, S.: Absence of phase transitions in hard-core one-dimensional systems with long range interaction. J. Math. Phys. 11, 147—154 (1969)
- 10. Ruelle, D.: Statistical mechanics of a one dimensional lattice gas. Commun. math. Phys. 9, 267—278 (1968)
- 11. Grothendieck, A.: La Theorie de Fredholm. Bull. Soc. Math. France, Ch. II. 84, 319—384 (1956)
- 12. Schatten, R.: A theory of cross-spaces. Princeton University Press 1950
- 13. Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires, Memo. of the Am. Math. Soc., 1955, Ch. II, § 2, no. 2, Lemme 6
- Gohberg, I. C., Krejn, M. G.: Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien, p. 103. Paris: Dunod 1971
- 15. Schechter, M.: On the spectra of operators on tensor products. J. Funct. Anal. 4, 95—100 (1969)
- 16. Mayer, D.H.: On a ζ-function related to the continued fraction transformation. Bull. Soc. Math. France 104, 195—203 (1976)
- 17. Wloka, Y.: Grundräume und verallgemeinerte Funktionen. Lecture Notes in Math., No. 82, p. 2. Berlin-Heidelberg-New York: Springer Verlag 1969
- 18. See 14, p. 168
- 19. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals Theory of the Vapor-Liquid Equilibrium. I. Discussion of a One-dim. Model. J. Math. Phys. 4, 216—228 (1963)
- 20. Atiyah, M., Bott, R.: Notes On The Lefschetz Fixed Point Theorem For Elliptic Complexes. Cambridge: Harvard University Press 1964

Communicated by G. Gallavotti

Received May 3, 1976; in revised form July 15, 1976