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Abstract. We present a complete solution of the collision problem for massless
Bosons in four space-time dimensions.

1. Introduction

We continue here our discussion of the collision problem for massless particles
in the setting of local, relativistic quantum theory. In two previous papers we
have developed a collision theory for massless Fermions [1] and for waves in two
space-time dimensions [2]. It is the aim of the present article to extend this
analysis to models including massless Bosons.

As soon as massless Bosons take part in collisions one is faced with all kinds
of infrared problems. The most spectacular one is the desintegration of charged
massive particles into infraparticles [3]. A famous example of this phenomenon
can be met in quantum electrodynamics where it is indicated by perturbation
theory that the electron does not have a precise mass due to the Coulomb field
which it carries along. The massless particles however manifest themselves as
real particles with a precise mass in most of the models of physical interest:
they appear either as a consequence of a gauge symmetry of the second kind or
they result from a spontaneously broken ordinary symmetry via the Goldstone
mechanism [4]. It is therefore no essential loss of generality if we restrict our
attention to models in which at least the massless particles can be sharply defined
as proper eigenstates of the mass operator.

Another difficulty in the presence of massless particles is connected with the
construction of charged states from the vacuum. It is well known that locality
of the charge carrying fields is in general not compatible with positivity of the
metric in the state space. In quantum electrodynamics for example, one has
either to abandon locality of the Fermi fields (as in the Coulomb-gauge) or one
looses positivity of the metric (as in the Gupta-Bleuler gauge) [5]. For this reason
gauge theories like quantum electrodynamics do not completely fit into the
framework of this paper. However we want to emphasize that our arguments
apply to the vacuum representation of the gauge invariant quantities in these
models.
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As in our previous investigations we shall use Huyghens’ principle and locality
in order to establish the existence of asymptotic fields corresponding to the
massless Bosons. However, in contrast to the models treated so far, the present
construction is burdened with many technicalities owing to the fact that the
asymptotic Bose fields are unbounded operators. It will be one of the main tasks
of our analysis to extract information from the basic postulates about the structure
of their domain of definition.

In order to solve these problems we need some estimates for vacuum expecta-
tion values of local operators at large spacelike distances. Uniform estimates for
arbitrary configurations of the operators (similar to the massive case) are too
weak and of no use here. However, we shall see that suitable spherical means
of the vacuum expectation values have clustering properties which are sufficient
for our purposes. These estimates, which are given in the Appendix, will enable
us to construct collision states of massless Bosons with the familiar Fock structure.
We shall then see that the (real) asymptotic fields are essentially selfadjoint on
their natural domain of definition which is given by Huyghens’ principle and
locality. This somewhat technical result will simplify our proof that the asymptotic
field operators have all the properties of a free, massless field. It will furthermore
enable us to construct the asymptotic field algebras and to establish their local,
covariant net structure.

An analysis of the physically relevant representations of the asymptotic field
algebras would be the natural next step in the discussion of the collision problem
for massless particles. If infinitely many massless particles can be produced in
collisions one expects that besides the Fock representation (induced by the
vacuum) other representations appear in which a particle number operator
cannot be defined. It would be desirable to gain some knowledge about the
structure of these infrared representations within the general framework of local
field theory. Unfortunately, our investigations of these questions are not yet
complete. An interesting partial result is that the representations of the asymptotic
field algebras, which are induced by vectors in the physical state space, have the
local Fock property. This means that the restrictions of any physical state to the
asymptotic field algebras attached to finite spacetime regions (and even to certain
unbounded regions) can be interpreted as incoming and outgoing configurations
of massless particles.

As in Ref. [1] we express the basic field theoretical structures in terms of a
field algebra & of bounded operators acting irreducibly on a separable Hilbert
space # of physical states. § is generated by a net O—F(O) of local algebras
attached to the open, bounded regions ¢ CIR*. We assume that all local operators
commute at spacelike distances:

80N CHO,) for 0,C0;. (1)

(Models containing Fermi operators as well need nothing more than an additional
notational complication.) Furthermore we assume that there exists a continuous
unitary representation L— U(L) of the Poincaré group £ in s which induces
automorphisms of the local net:

0 (FON=UL)FOUWL) '=FLO), Le2. @
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The spectrum of the generators of the translations (x,, x)=x— U(x) is contained
in the closed forward lightcone. There exists a unit vector €, the vacuum, unique
up to a phase, which is invariant under the action of U(L), Le . Finally, there
is a subspace #, C #, the space of massless one-particle states, on which the
U(L), Le 2 act like a representation of the Poincaré group £ with mass m=0.

2. The Asymptotic Fields

This section is devoted to the construction of asymptotic field operators cor-
responding to the massless particles and to a preliminary analysis of their domain
of definition. As in Ref. [1] we define the asymptotic fields as adiabatic limits of
operators Ae . Actually we shall not use arbitrary Ae & but only local operators
for which the operator valued functions x— A(x)=U(x)AU(x)" ! are infinitely
often differentiable in the uniform topology. These operators constitute a *-algebra
&0, which is invariant under Poincaré transformations and weakly dense in .
So &, contains all essential informations about §.

Now let 4 be any operator from §&,. We define for each te R a spherical mean
of A4,

A= —=2t-{dw 0,A(t, te) . (3)

Here dw=dw(e) is the normalized, invariant measure on the unit sphere S? in
IR?, e a unit vector which runs over the sphere and 8, denotes differentiation with
respect to the time component of the translations; the integral is defined as a
Bochner integral. If one applies 4, to the vacuum one gets

AtQ=|P|_1 '(eit(H_'PI)"‘eit(H-HPl))HAQ, (4)

where H is the Hamiltonian and P the momentum operator. The right hand
side of this equation is well defined because the operator in the bracket maps
the vectors in & into the domain of |P|~'. However, in the course of our analysis
it will be necessary to interchange the order of the bracket and |P|~! and the
question arises whether the vector HAQ is still in the domain of |P|~*. One could
always achieve this by smearing 4 with a suitable testfunction. Yet such a smearing
is not even necessary. Using arguments similar to those of Araki, Hepp and
Ruelle in Ref. [6] one can show that for arbitrary local operators Ae &,

(HAQ, Ux)HAQ)| Sc-(1+]x|)~3,

and from this estimate it follows after Fourier transformation that HAQ is an
element of D(|P| ™ 1).
In the next step we integrate t— A4, with a function h; which is defined by

he(@=(n|T) ™ -h(@n|T)™"-(t=T)), |T|>1. )
Here h is an arbitrary real, smooth function with compact support which is nor-

malized according to [dt h(t)=1. Thus h; has support in an interval around T
of a length proportional to In|T|. (It is of no relevance that we have used the
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logarithm to define k. Any other slowly increasing function would do the same
job.) We set

Ap=[dthy(04,, |T|>1 6)

where the integral is defined as a Bochner integral. It follows then from relation
(4) that

A Q= dt hy(t)(e" @~ I1PD — ' H*IPD).|P| " 1 HAQ . (7

So the mean ergodic theorem [7] or the explicit calculations in Ref. [1] can be
used to establish the existence of the strong limits

slim 4;Q=P,-|P|"'HAQ= P, 4Q, ®)

where P, is the projection onto the space #; of massless one-particle states.
Now if 4 is localized in some bounded region 0, Ae F(0), it follows from relations
(3) and (6) that A is localized in a region which is for sufficiently large T'spacelike
separated from any given bounded region ¢, in the future tangent ¢, of ¢ *. So
owing to locality one gets for all Fe F0.)= |J) &)

O1C O+
S;Iim ATFQ=ST-lim FAQ=FP,AQ )
— 0 - 00
and this relation defines a linear operator A°* on the dense set of vectors
{FQ:Fe (0.)}. In our first lemma we list some properties of this operator.

Lemma 1. Let Ac &, be localized in some bounded region O CIR*, Ae F(0).
a) Then the operator A°“, which is defined on the dense set of vectors
{FQ:Fe$(0.)} by

A°“'FQ=ST-lim AFQ=FP AQ

is closable. We also denote the least closed extension of this operator by A®™ and its
domain by D(A").

b) (A*°™)*D A™; if in particular A*= A then A°" is hermitian.

c) For arbitrary Fe&(0,) one has F-D(A™)CD(A™) and [A™,F]®=0
for any ®e D(A°™"). An analogous statement holds for A°*'*.

Proof. a) We have already seen that A°* is densely defined on the vectors
FQ, Fe ¥(0.,.). The fact that it is closable follows immediately from the relation

(F'Q, AMFQ)= Tlim (FQ, ArFQ)= Tlim (F'A%Q, FQ)=(F'P,A*Q, FQ)

which holds for arbitrary F, F'e 0, ).
b) This statement is a consequence of the above relation if one replaces A by A*.

! Asin Ref. [1] we call the positive cone @, of all points which have a positive timelike separation

from O the future tangent of ¢
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¢) Forany @e D(A°") there exists a sequence F,e (O, ) such that s-lim F,Q=&
and s-lim A°"'F,Q= A°*'®. Hence if Fe §(O.) then

s-lim A°"FF,Q=s-lim FF,- P, AQ=s-lim FA°"'F,Q=FA°*'®

and since 4°* is closed and s-lim FF,Q = F® the statement follows. [

Remark. Since the operator A°™ is only defined on the closure of {FQ:Fe &0, )}
with respect to the graph topology it might seem to be necessary to label 4°*
by the localisation region @ of A (which was not unambiguously defined by the
requirement that A4 is an element of the algebra F(0)). However, we shall see later
that 4°"* does not depend on the precise shape of 0.

So far the construction of the asymptotic fields 4°** does not differ very much
from that of Ref. [1]. However, in order to verify that the unbounded operators
A may be used to construct the collision states we have to go now into a detailed
analysis of their domains D(A4°"). The subsequent lemma will be an important
tool in these investigations. In the formulation of this proposition we have to pay
attention to the momentum space behaviour of the operators in &,. For this
purpose we distinguish a family of subsets §y, Ne N in &,. The elements of Fy
are all finite sums of operators of the form

[dt p(t)e" ™ Ae™ P | Ae F, (10)

where (Pn)= Hn,—(Pn) is the component of the 4-momentum operator P in the
positive timelike direction n and ¢@(f) is a testfunction with compact support
which has a Fourier transform ¢{w) with an N-fold zero at w=0. As N increases
the operators in &y behave more and more smoothly at the origin in momentum
space. Each &y is a linear space of operators which is stable under taking adjoints
and which is invariant under Poincaré transformations. Moreover, it maps the
vacuum into a dense set of vectors in #OQ. After these preliminary remarks
we are prepared to formulate the proposition. The proof is given in the Appendix.

Lemma 2. Let A,,... A, be elements of &y, N sufficiently large (depending on the
total number n of operators). Then

a) |Air... ARl Zc  uniformlyin T.
b) Tlirp (Q,Ayr... Ay Q)= ) (Q, A4, PA4,Q)...(Q, 4; P4, Q)

In—1

if n is even. The sum extends over all partitions of (1,...n) into ordered pairs. For
odd n the limit vanishes.

The fact that the sequences A,r... 4,72 are uniformly bounded in T will
enable us to establish their convergence in the limit of large T. There is no reason
to doubt that the limit vectors ¥°*'(4,, ... 4,) are just the collision states of massless
Bosons we are interested in. However, in order to verify this we need some more
informations. It will be important for our argument that there exists an alternative
way of constructing the vectors ¥°"'(4,,... 4,) with the aid of the asymptotic
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fields: Yo" (A4,,... A,)=A"... A3"'Q. We give the precise statements in the fol-
lowing lemma.

Lemma 3. Let A, A,,... A, be elements of §y, N sufficiently large.
a) Then the weak limit

W'Tlim AIT"‘AHTQ= TOU!(AI’“.AH)
exists. It is multilinear in A,,...A, and depends only on the one-particle states
P,A,Q,...P{A,Q.

b) ¥Y°"(A,,... A,) is in the domain of A*™* and

ACNEPO (4 A ) =P (AR A, A,

c) If in addition A is localized in O and A,,... A, are localized in the future
tangent O, of O, then W°**'(A,,... A,) is also in the domain of A°** and

AP (A, A) =P (A4, A,.. . A,).

Proof. a) We give a proof by induction: for n=1 the statement follows from
relation (8). So let us assume that it holds for (n—1). Now if 4, is localized in O
we get for any Fe §(0,,)

Tlim (FQ,Air...A,79)

= TIi};Iolo (FATTQ, AZT e AnTQ) = Tli-.{glo (FPIATQ’ AZT e AnTQ)
= (FP,A%Q, ¥*"(4,,... A,))

where we made use of the fact that A%;Q converges strongly and A, ... A,
weakly (by assumption). Thus the sequence A, ... 4,72 converges on the dense
set of vectors FQ, Fe §(0,) and since it is uniformly bounded (Lemma 2) it
converges weakly.

The statement concerning the linear properties of Y°'(4,,... 4,) needs no
extra explanation. In order to verify that the vectors depend only on the one-
particle states P, 4,Q,... P;4,Q we observe that the relation P;4Q=0 implies
A°'=0 and therefore also (A4*°"Y)* =0, because (4*°")* is an extension of the
closed operator 4°" (Lemma 1). Therefore, anticipating part b) of the lemma we get

POU(A A= (AFON)E L (AFONEQ =0

if any one of the operators 4; maps the vacuum Q into the orthogonal complement
of #,: P, A4,Q=0.

b) This statement follows from

(A FQ, P (A,,... A,))
=Tlim (ArFQ, AIT...A,,TQ)=T1im (FQ, A%A r... A,rQ)
=(FQ, P°"(4*, A,,... A4,)),

bearing in mind that the set {FQ:Fe &0, )} is a core for the operator A®™ by its
very definition.
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c) If @ is any vector in the domain of A°** we get

(A0, P (A, )= im (@, A Ay 4,0 2)

because the vectors A;r... 4,72 are (for large T) in the domain of A°™ owing
to the localisation properties of Ay,...A4,. So we have only to verify that the
weak limit w-lim A°A4,;... A4,rQ exists. Now

T— o0

LA A g A QU2 = (A Ay Ay D, A A g A Q)
= (A AR AT Ay A Q, APQ)
= (A% Afp Ay ... AyrQ, AU 4°MQ)
SN Ay AfrArr.. A AT * AR <c

uniformly in T. (Here we used part c) of Lemma 1, Lemma 2 and part b) of the
present proposition.) Therefore it suffices again to establish the convergence
of the sequence A°*'4,;... A, on the dense set of vectors FQ, Fe F..). But

lim (FQ A Ay .. A,g Q)= (A FFQ, ¥ (4. 4,)
=(A*UFQ, PO (A4,,... A,))
=(FQ, (A* ") Pout(4, . A,))
—(FQ, ¥ (A4, A,,... A,))

and this completes the proof of the lemma. §

Of course the whole construction can be carried out equally well at large
negative times T Since the results are completely analogous it is not necessary
to list them here.

3. The Collision States

We take a break now in our discussion of the asymptotic fields to analyse the
vectors P°"(A4,,... A,). As was indicated above it will turn out that these vectors
are just the collision states of massless Bosons. To begin with we show that they
have the correct scalar products.

Lemmad. Let Af,... A%, A, ,1,... A, be elements of Fy, N sufficiently large. If the
first m operators A%, ... A% are localized in regions 0., ... 0,, with a positive timelike
separation, O, C(0;, ), fori=1,...m—1, then

(PO (AS, .. AT, P (Apr 1y A)) =D (2 A, P1AQ) .. .(Q, A, P4, Q)

n-1

if n is even. The sum extends over all partitions of (1,...n) into ordered pairs. For
odd n the scalar product vanishes.
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Proof. Owing to the localisation properties of A%, ... A¥ we can apply part b) and c)
of Lemma 3 and write
(P (A, AT, P (A 1o AD) = (AR ATONQ, PO (A5 A))
= (Qs (AT Out)*. . (Ar’l:lom)* qlom(Am+ JERRE] An)) = (Q’ lP‘mt(*"ll PR An)) .

On the other hand we have ¥**'(4,,... A,,)=w-T1im Ajr... A,rQ2. We get therefore
from part b) of Lemma 2

(Q, ¥ (Ay,... A,)=Y (2, A, P1AQ)...(Q, A;_ P A; Q)

if n is even and zero if n is odd. This completes the proof. [}

In order to extend this result to arbitrary configurations of operators 4,,... 4,
it is convenient to distinguish suitable linear combinations of the vectors
Yo (4,,... A,). For any given set of operators A4,,... A,€ &y, N sufficiently large,
we define recursively

(pi = (Afk out)*Q = P1 AiQ

DX B,=(AF "D, —(Q, A,P,A,Q)-Q (11)
: n i
o, X0, X .. Ko, =(4ry* .0, K. Ko, — Y (@ 4,P14,0-0,.%.\.. X,
k=2

where the symbol \/ denotes omission of @;. Of course this reshuffling is nothing
else but normal ordering; proceeding from ¥ U(4,,.. A)to @, X .. X P, amounts
to subtracting from ¥Y°"(4,,... 4,) all contributions with a particle number less
than n. The labeling of the normal ordered vectors @, %.. X, by the one-
particle states @;= P, A,Q is justified by the fact that the vectors ¥°"(4,,...4,)
depend in a linear way on P, A;Q according to Lemma 3. It follows now immedia-
tely from Lemma 4 that for any collection of operators 4,,... 4,,€ &y which are
localized in regions 0,,...0,, with a positive timelike separation, O;C(0;_,)+,
i=2,...m and any other collection A41,...A,e Fy with no requirements on the
localisation regions, (in an obvious notation)

out

(Qlout o)‘zt¢ma ¢’10>lét... X @;)=5m"; (¢1’ ¢;3(1)) (Qn’ ;7(")) (12)

if N is sufficiently large. The sum extends over all permutations P=(p(1),... p(n))
of (1,...n). In particular one gets for the restricted class of vectors

|8, %.. XD, P <m ! |, ]... |8, (13)
and this shows that these vectors depend continuously on the one-particle states @;.

Now for any set of vectors @",,... %", e#,; one can specify sequences of op-
erators A{,... A%e &y with localisation properties given above, such that simul-
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taneously for all i=1,...m the strong limits s-lim Py A{"Q=9"; exist’. So the

continuity of the vectors @1 X (1') with respect to the one-particle constituents
@, makes an extension possxble to arbitrary configurations @°,,... 9", #;. We
use the symbol ¢, % OQ'@ also for these extensions. This is a cons1stent nota-
tion because the restricted class of vectors is dense in the set of vectors which
were defined by relation (11) for arbitrary operators 4,,... 4,,€ &y (and not only
for the particular configurations considered above). For a proof of this statement

we recall that the weak convergence of a sequence ¥, implies “ w-lir

and this fact together with part a) of Lemma 3 and part b) of Lemma 2 allows one
to show

|@&h%®w§;@b@@m@w@w (14)

for arbitrary operators A4,,... 4,,€ &y. If we take now (as above) sequences of
operators A, ... ADe Fy such that the vectors " =P, A"Q converge to
®,=P,A,Q, then the sequence ¢PX'...X & converges to some vector ¥. Hence
using relatlon (12) and (14) we get the estlmate

(¥, 0, %K) = T (@1, Oy (B By = ¥ 2 1Y 12,5 K, ). (15)
This is however incompatible with Cauchy’s inequality unless ¥ = = t@l")’ét °>'?<I>
It also follows that for arbitrary @4,... ®,,€ #, the vectors @, X %K @, —— and
thus a fortiori the vectors defined in relation (11) — — have the scalar products
given by relation (12).

out

Remark. Knowing the scalar products of @101" x &, and therefore also those
of ' (4,,... A,) it is obvious that the sequences A, ... 4,72 defined in Lemma 3
converge strongly: they converge weakly and in addition

”w-lim AIT...A,,,TQ”= lim |Aig7... 4,72l .

T-owo T—w
Our next task consists in checking the transformation properties of <1>1°>121.. .°>L<"(Pm
under Poincaré transformations U(L), Le 2. As expected we get for any set of
vectors (151,...(15 ejfl

L) @,%.. %, =U L)@ )% ... X(U(L),) (16)

where L—U,(L) denotes the representation of the Poincaré group 2 in 4.
In order to verify equation (16) it suffices to prove

UL)P Ay, Ay) =P (o (Ay), ... o (A4,) (17)

for arbitrary operators A,... A,,€ §y. We shall do this by induction. For n=1
the statement holds trivially. So assuming that it holds for (n—1) we get the

2 It follows from a Reeh-Schlieder type argument given in Ref. [1], that the operators Fe &y which
are localized in the future tangent of some bounded region ¢ generate from the vacuum a dense set of
vectors in [ FyQ]=#0Q. Hence, given n, one can find a bounded region (" and an operator A{c Fy
which is localized in @{ such that &', — P;A{"Q||<n~'. Then there exists another bounded region
0% in the future tangent of ¢{" and an operator A$’ which is localized in @} such
that |, — P, APQ| <n~! and so on
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string of equations (using Lemma 3)
(FQ,UL)P™(Ay,... A4,))
=(oty-1{(F)Q, Y (4,,... A4,))
=(0t;-1(F)Q, (AF°")*PU(A,,... 4,)) = (0 - «(F) P, AFQ, P°*(4,,... A,))
=(FP,a(41)Q, UL)P°*"(4,,...4,)) (18)
= (AT FQ, ¥ (0(A,), ... 21 (A4,))
=(FQ, V" (a(Ay), ... a1 (A)

as long as F is localized in the future tangent of the localisation region of o (A4¥).
This establishes relation (17).

Finally we mention that the vectors ®,%"...°X @,, are symmetric under per-
mutations of the one-particle constituents @;: if (p(1),... p(m)) is any permutation
of the numbers (1,...m) then it follows from the symmetry -properties of the
scalar products given in relation (12) that

out out t t
D)X .. XDy =0, % .. XD, (19)

So the massless particles in our model really obey Bose-statistics. Summing up
we realize that the vectors @,%'...%¢'®, have the features expected of an asymtoti-
cally freely moving configuration of massless particles @,,... ®,. We list the most
relevant properties of these vectors in the following theorem.

Theorem 5. Let ®,,... &, #, be any collection of massless one-particle states.

out out

Then the vectors @, X ...’ X @, defined above have the following properties:

out

a) @, ...°>1?d§p(,,)=€D1°§’<t...°>%tcb,, for any permutation P=(p(1),... p(n)) of the
numbers (1,...n).

b) UL)-&,%X..%0,=(U,(L)®)X ... X (U (L)®,) where L—-U,(L) is the
representation of P in H;.

Q) (@, K. K, &% K, =6, (B, B1))..(D,, ) and the sum ex-
P
tends over all permutations P of (1,...n).

So the Hilbert space #°* which is generated by Q and the vectors ®,% ... %' ®,,
ne N is the familiar Fock-space over the one-particle space #;. It is obvious
from our construction that the vectors in this space may be interpreted (in terms
of measurements at large positive times) as outgoing configurations of massless
particles. Therefore the usual definition and interpretation of a scattering matrix
for the massless particles is possible and makes physical sense.

4. The Asymptotic Field Algebras

So far the asymptotic fields 4°** have served as an aid in constructing the collision
states. However, from the point of view of physics their significance should go
much beyond that: in quantum electrodynamics for example, one expects that
the operators A°"* correspond to field strength measurements performed at large
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positive times; similar interpretations in terms of observables should be possible
in other models. Now it is one of the basic principles in quantum mechanics that
an operator has to admit a spectral decomposition in order to be accepted as an
observable. It is therefore gratifying that one can specify within our general
framework a large set of selfadjoint asymptotic field operators A°"*. The proof
of this assertion is based on the subsequent lemma in which it is shown that the

operators A°* act on the collision states @,% ... ®, like a free field.

Lemma 6. Let A be an element of §y,, N, sufficiently large. Then the collision
states @\ % .. X @, are in the domain of A for arbitrary configurations
b,,... 0, #, and every ne N. Furthermore,

out

k
Aout_¢ out out@ (poxu&@lout out¢ + Z (¢ ¢k) 4510]" \/ X@

where @ =P, AQ and & = P, A*Q.

Proof. Let the operators Ay, ... 4,€ &y be localized in the future tangent @, of the
localisation region @ of Ae . Then it is evident from relation (11), part b) of
Lemma 1 and part ¢) of Lemma 3 that the statement holds for the configuration
& =P AQ,.. J,=P A0, provided N is big enough (depending on n). We shall
extend this result to the operators A°", Ae §y,, where N, is some fixed, sufficiently
large number which does not depend on n. For this purpose we recapitulate the
proof of part ¢) of Lemma 3: if e D(A4°* *), then

(A0, P Ay, A = lim (@, A A g A, D)
= lirTn sup @ -[[4°" A g ... ALl

Now owing to the localisation properties of A,,... 4, we get
1A Ay g A QIP SN Afp o A Ay A Q- A FA™Q

This expression is uniformly bounded if A4,... 4, &y, N sufficiently large, and
A€ Fy, where N, is suchtthat A% * 4% || < oo 3. Hence the vectors (4, ... 4,),
and therefore also @, X ... X @,, are elements of D(A°"). Next we calculate how
A" acts on these vectors. For this purpose we take a sequence 4"™e &y such that
s-lim P,A™Q=P AQ and s-lim P, A™*Q=P A*Q; we require furthermore
that the operators A™ are localized in the timelike cylinder () {¢+(z,0)}.

A simple example exhibiting these properties is =
A™ = {dt @, (1) Ae™ !

where
@ (o)=L +(e "~ 1)[iom)Np(w/m), meN.

Here ¢(t) is a testfunction which vanishes for t>0 and [dt ¢(t)=1. Bearing in
mind that the statement of the lemma has already been proven for the special

3 Since we want to apply the estimates given in the Appendix we have to choose N,=15 here.

However we conjecture that all propositions in this chapter remain true if No =0
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configurations of operators A4, A;,... 4,€ &y mentioned above we get for any
Fe&(0.):

(FQ, AP, X .. X' D,)=(FP,A*Q, ,% .. %' ®,)
1
=lim (FP,A™*Q, o, %X X,
=lim (FQ, Almovtg R P )

=lim {(FQ PMRP X, KD,

m

n k
+ Y (@™, D) (FQ, qs&‘...\/..."i’éq),,)}
k=1
= (FQ, {q>°>‘<“<1>1°§'<'. Ko,

n k
+ Y (@, cbk)-¢1°>‘2‘...\/...°>“<‘¢,,}).
k=1

This proves the lemma for the special configurations; the extension to arbitrary
conﬁgurations Dy,... P, H#, can be performed owing to the continuity of the
vectors &,% ... %' ®, with respect to the one-particle consituents and the fact that

A°is closed. |

The operators A°* act on the collision states like a free field and this will
enable us to specify a dense set of analytic vectors in their domain. It follows then
from a well known theorem of Nelson [8; Theorem X.397] that 4°" is selfadjoint
provided it is hermitian.

Theorem 7. Let A= A* be an element of FO)NFy,, No as in Lemma 6.

a) Then A°* is selfadjoint.

b) If O, is a region with a non-empty future-tangent (0,), and if O, >0, then the
dense set of vectors {FQ:Fe §(0,)+)} is a core for A™.

c) A is uniquely determined by the one-particle state P,AQe #, if A varies
within the above restrictions.

Proof. a) Using part c) of Lemma 1, Lemma 6 and relation (12) it is straightforward
to verify that

™y FQIP < |FI2- (A Q)>= |F|*-2n) ! 27" (n) ™" | PLAQ|*"

for arbitrary Fe§(0,). This estimate shows that the dense set of vectors
{FQ:Fe (0, )} is a set of analytic vectors (in the terminology of Ref. [8]) for the
operator A°. Since 4°* is hermitian (Lemma 1) the theorem of Nelson quoted
above guarantees that A°" is selfadjoint.

b) Since O C O, and (0,), is not empty we can restrict 4A°" to the dense set of
vectors {FQ:Fe §((0,))}. This restriction defines a closable operator and we
denote its least closed extension by 4°™. Now the whole e argument eﬁtgbllshlng
the selfadjointness of A°* can be applied likewise to A Hence A° is also
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selfadjoint. But a selfadjoint operator is maximal, and since 4°" is a selfadjoint
extension of A% we get A% = 4",

c) Let A, A,eFy, be two selfadjoint operators satisfying P;A4,Q=P,;A,Q.
Then there exists a bounded region ¢, containing the localisation regions ¢; and
0, of A, and A,, such that the operators 43" and A3" coincide on the dense set
{FQ:Fe §(0.)}. However these vectors are a core for both operators, according
to part b) of the theorem, and therefore 47" = A3". §

With this theorem at our disposal it is now fairly simple to prove that the
operators A°* have all essential features of a free, massless field. But there is one
little problem: it is rather difficult to specify a dense set of vectors in the domain
of A°" on which the operators 4°*(x)= U(x)4°"'U(x) ! are defined for all xeIR**
Let us therefore confine our attention to open regions 2 CIR* with a non-empty
future tangent #,. Then the intersection of the domains U(x)D(A4°"), xe #
contains the dense set of vectors Dgy(4°")={FQ:Fe () (O, +x)} and the

xXeR
functions x— A4 (x)®, xe # are defined for all e D,4(A°"). The next theorem
shows that these functions are covariant solutions of the wave-equation.

Theorem 8. Let A satisfy the assumptions of Theorem 7. Then
a) 0,4 (x)=0 on Dy(A™) for xe R.
b) o (A = (0t (A))™ for Le 2.

Proof. a) This follows immediately from the relation
A (x)FQ=U(x)A™0_ (F)@=F -U(x)P,AQ

for Fe ﬂ &0, +x) and the fact that A is continuously differentiable with respect
xeR
to the translations.

b) The intersection of the domains U(L)D(A°") and D(o;(A4)°™) contains the
dense set of vectors {FQ:Fe &(L0O),)} on which the operators coincide. This set
is a core for both operators and therefore the statement follows. [}

Finally we have to analyse the commutation properties of the operators 4°.
As expected it turns out that
[AY", 43" ]=(Q, [AT", 45"]Q) 1 (20)

and the commutator vanishes in particular for operators A,, A, with spacelike
or timelike separated localisation regions. In order to exclude all possible patho-
logies connected with the unboundedness of the operators 49", A3 we reformulate
relation (20) in terms of the resolvent R(A°*)=(i+A4°Y) 1.

Theorem 9. Let A,, A, satisfy the assumptions of Theorem 7. Then
a) [R(AT™), R(A3")]=(Q, [AT", 45"]Q)- R(AT")R(A5")* R(AS™).
b) If A, A, are localized in spacelike or timelike separated double cones then
[R(AT"), R(43")]=0.
c) If Ay is localized in some region 0O, then for all Fe (O, ) [R(AS*), F]1=0.

4 J. Frohlich has kindly pointed out to us that such a set exists
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Proof. a) It follows from the definition of the approximations A given in Chapter 2
that A, is selfadjoint and R(A;)=(i+ A7) * is uniformly bounded in Tif A= A*.
Therefore we get for all Fe §(0,)

s-lim i+ A7)~ i+ A" FQ=slim (i+A47) " (i+Ar)FR=FQ

proving that (i+A;)~! converges strongly on the range of (i+A4°"). However
this is the whole Hilbert space # if 4°" is selfadjoint. Hence we can write, after
a little algebra

[R(AP), R(43Y]=s-lim [R(A17), R(4,)]
=S‘T1i_{1;IO {R(A1T)R(A2T)2[A2T> (417, A2r]1R(A,7)R(A7)
+R(A;7)R(A57)*R(A; )[4y 7, [A17, A2 ]1R(A, 1)
+R(A;7)R(A57)*R(A; 1) [Ayr, Ayrl}

Now the first two terms in the curly bracket do not give a contribution, because
in the limit of large T'the double commutators

[Air, [Air, A27]] and  [A,7,[A;7, A57]]

vanish in the uniform topology. (See the Appendix.) So if A; and A4, are localized
in some region @, we get for all Fe (0, ) (using part a) of Lemma 3, relation (11)
and Theorem 5)

[R(43"), R(A3")]FQ= s-lim R(A;7)R(A;7)’R(A11)-F[A1r, A27]Q
=w-lim R(AT)R(A5")*R(A™) F[ A1, A57]Q
=(Q, [45", 43"7Q)- R(AT)R(A5") R(A")- FQ

and this completes the proof of the first third of the lemma.
b) Owing to the preceding result it suffices to consider the vacuum expectation
value

(2, [AT, A3"1Q)=(Q, A, P1A,Q) —(Q, A, P14,Q)
=(Q, A, P(m=0)4,Q)— (2, A,P(m=0)4,9Q)

where P(m=0) is the projection onto the states with zero mass, viz. the vacuum
Q and the one-particle states J#,. An application of the techniques of the Jost-
Lehmann-Dyson representation to the commutator function x—(Q, [A4,(x), 4,]1Q)
as in Ref. [9] or [10] shows that the above expression vanishes if 4, and 4, are
localized in spacelike separated double cones. For timelike separation of the
operators we can exploit the support properties of solutions of the wave-equation
or, more directly, part ¢) of Lemma 1:

(Q, A, P, A,Q)=(Q, A, AS"Q) =(Q, A3"A4,Q)=(Q, A,P,A4,0).

¢) This statement follows from part ¢) of Lemma 1 and the selfadjointness of
Az
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We conclude this chapter with the construction of the asymptotic field algebra
& and a brief discussion of its properties. Similarly as in Ref. [1] we define first
of all local algebras F°"(0,) attached to double cones ¢, of arbitrary size and
location

FHO)={A" A= A*eFO)NTn,}" s @y

or in words: F°'(¢,) is the von Neumann algebra which is generated by all
selfadjoint asymptotic field operators 4°** constructed from local operators
Ae F(0,). In this definition we have restricted out attention to double cones,
because it is only for such regions that we know that the algebras §°*(¢,) and
F(0,) commute: FOUO)CF(O,) if @0, and O, are spacelike separated.
(Compare part b) of Theorem 9.) However, there is a canonical way to extend the
definition of F°*{(0) to arbitrary bounded regions ¢ without loss of the commuta-
tion properties at spacelike distances: for a general region ¢ we define F**Y(0)
as the von Neumann algebra which is generated by all F°*(0,) with 0, CO; the
asymptotic field algebra F°" is then the global C*-algebra of all local algebras
F°U(0). 1t is obvious from the results in the present chapter that with our definition
the net 0—F°"(O) enjoys all the properties usually required in quantum field
theory; it is in particular local and covariant.

As in the Fermi case [1] there are some geometrical relations between the net
of the underlying field algebra § and the net of the asymptotic algebra F*': if @
is any region, bounded or unbounded, with a non-trivial future tangent @, , then
the asymptotic fields localized in @ commute with the basic fields localized in ¢,

FO)CHO,) (22)

(If @ is an unbounded region we define () as the smallest von Neumann
algebra containing all algebras F(¢);) with ¢, C0.) This relation follows easily
from part ¢) of Theorem 9. It is characteristic for massless particles and may be
interpreted as the field-theoretic version of Huyghens’ principle.

5. Concluding Remarks

It is a remarkable fact that the asymptotic field algebras do exist in all charge
sectors which can be obtained from the vacuum with the aid of local fields or
(more generally) localized morphisms [10]. The details of the model, in par-
ticular the superselection structure and the massive part of the particle spectrum
are irrelevant for the construction. It seems therefore to be reasonable to base an
analysis of the infra-particle problem (mentioned in the introduction) on these
algebras. Although we do not hope for a complete solution within our general
setting, we are optimistic that an analysis of the asymptotic algebras will yield
at least a survey of the mathematical structures which are relevant to the descrip-
tion of collision processes of infra-particles.

In models with no infrared difficulties, e.g. if the massive particles have a
precise mass and the collision states can be constructed a la Haag-Ruelle [11],
all representations of §°* induced by vectors ¥e # are equivalent to the vacuum
representation. This means that one can specify for each vector Ye # a density
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matrix ge Z(#°"Y) such that the restrictions of the corresponding states to the
algebra & coincide:

(P,CP)=TroC, CegF™. (23)
Hence the results of asymptotic field-strength measurements can always be
interpreted in terms of asymptotic configurations of massless particles. It is
another simple consequence of relation (23) that the weak closure of §°* is
isomorphic to the algebra of all bounded operators on #°%, FUV ~B(H ).
Thus " isa factor of type I (in terms of the classification scheme of von Neumann
algebras [12]) and this feature seems to be typical for a situation with no infrared
problems.

If infinitely many massless particles are produced in collisions, relation (23)
does no longer hold and there appear other representations of " besides the
Fock-representation. This will manifest itself in a somewhat different structure
of °*”. It is a reasonable speculation that F*'” is still type I in such a situation,
however it should be no longer a factor. So we expect that F°” is in general
isomorphic to Z(#°")®3 where 3 is the center of F'”. The inequivalent
representations of " could then be distinguished by the elements of 3 and the
inevitable next question is: what is the physical significance of the elements of 3?
In order to give an idea of a possible answer we quote a remark of Frohlich.
He gives in a very interesting article [ 13] an argument that in models like quantum
electrodynamics 3 should be the algebra of the momenta of the charged particles.
This result is in accord with the folk-lore that different momentum distributions
of charged particles give rise to inequivalent representations of the asymptotic
photon algebras. One might hope that 3 admits such a simple physical inter-
pretation also in general.

Besides an analysis of 3, which could be useful for a classification of the
representations of F* and an understanding of their global structure, it would
be desirable to extract from the basic postulates some informations about the
intrinsic properties of these representations. We believe that relation (22) (the
field theoretical version of Huyghens’ principle) could be an important tool in
such investigations. For example, it follows quite easily from this relation that the
vectors Pe# induce representations of the local algebras §°*'(0) (O being any
region with a non-trivial future tangent @, ) which are equivalent to the vacuum
representation. So relation (23) holds also in general if one restricts the operators
C to the algebras (). The density matrix ¢ however will depend on the size
of @ and there exists in general no global g. For the proof of this assertion we use
a fundamental result in the theory of von Neumann algebras [12, Theorem 2.7.97:
ifa von Neumann algebra I, containing 1, on a Hilbert space 5# has a separating
vector £, then every normal state p of M can be represented by a vector # in the
strong closure of the subspace {M¢&:MeM}. In our example M is the algebra
F(0) and ¢ is the vacuum €, which is cyclic for (@) and therefore (by rela-
tion (22)) separating for F"(0)). Now every vector ¥e # gives rise to a normal
state of F°*(¢) and, according to the proposition quoted above, there exists a
vector ne {FQ:Fe FY(0)} )= #°" such that (¥, C¥)=(#, Cn) for all Ce F**(0).
This proves the statement.

It is remarkable that the frequently discussed coherent 1nfrared representations
(see e.g. [14]) are in general equivalent to the vacuum representation only for
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bounded regions ¢ [15]. In contrast to our result, this equivalence gets usually
lost if @ is an infinitely extended region, like the backward lightcone. So our
result may be used to single out the physically interesting representations which
are compatible with an underlying field theoretical structure. In this context we
want to point out that the special representations to which one is led by a study
of morels with external convection currents (as in [16]) or by a perturbative
approach to field theory (as in [17]) are consistent with our results.

Another type of questions, worth while to look at within the context of the
present studies, is related to the problem of spontaneous symmetry breaking.
No systematic analysis of the observable consequences of a spontaneously broken
symmetry has been carried out so far in the general framework of quantum field
theory. There exist only some isolated results like the Goldstone theorem [4],
which assures the existence of massless particles, or Adler’s theorem on zeros
of the S-matrix, which holds in certain models [18]. (For a review of the present
status of the discussion see the recent article of Joos and Weimar [19].)

The alternatives in the field theoretical description of models with a spontane-
ously broken symmetry group ¢ are well known: either one insists on the irre-
ducibility of the basic field algebra &, then ¢ cannot be unitarily implemented
in # and acts only via automorphisms on §. Or one uses a formulation in which
% is unitarily implemented; then & is reducible and the vacuum Q is not unique.
Joos and Weimar advertise in their paper the second approach because it allows
the application of group theoretical methods generally used in physics. We want
to stress here that the apparent drawback of the second approach, the presence
of many vacua, causes no difficulties as far as the formulation of a collision theory
for the massless particles is concerned. Going through our whole construction
once more it is evident that the uniqueness of the vacuum is not crucial. In models
with a degenerate vacuum the main modifications are in Lemma 2. Whereas the
first part of this proposition remains unchanged the second half has to be replaced
by

im QA A=Y JdHO Qe AP ALY (U A, P1A,L) (24
where du(&) is a positive measure on the spectrum space of the center of § and
£—Q; is the corresponding decomposition of the vacuum space #,. (Of course
the scalar products of the collision states have to be modified in a similar manner.)
So even in models with a degenerate vacuum a collision theory for the massless
particles exists and seems to be an appropriate starting point for a systematic
analysis of the observable consequences of spontaneously broken symmetries.

Appendix

In this appendix we are concerned with the proof of Lemma 2. This proposition
is, in the massless case, a substitute for the well known bounds on vacuum expecta-
tion values of local operators at spacelike distances in theories with mass gap [6].
Fortunately, many of the basic ideas of Araki et al. expounded in Ref. [6] can be
carried over also to the present case. So, properly speaking, our argument is
nothing more but a rather tedious yet straightforward application of methods
already developed.
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To begin with we give a summary of the main steps in our proof. For this
purpose let us have a look at the vacuum expectation values of the operators
A,=t:{dw B(t, te), B= —20,A defined in relation (3):

(Q Ay, .. Ay, Q=t;...t, [do, ... [dw,(Q, B(t,, t1€,)... B,(t,, t,e,)Q) .

Bearing in mind that the operators A defined in relation (6) are averages of the
operators A, at time T over an interval of size In|T|, it is evident that our main
task consists in verifying that the above expression is uniformly bounded in
ty,...t, if all time differences |t;—t,| are small compared to t;, t;. We shall do this
by first converting the vacuum expectation value (Q, B, ... B,Q) (where we have
suppressed the coordinates for a moment) into a sum of vacuum expectation
values of commutators. This is possible because of the spectrum condition which
enables us to replace each operator B; acting on the vacuum by a creation operator
B/ such that

BfQ=BQ and (Bf)*Q=0.

So if we replace in (2, B, ... B,Q) the operator B, by B, and commute it to the
left, we get a sum of expressions each of which contains a commutator [B;, B, ].
The remaining term with B, on the extreme left vanishes owing to (B, )*Q=0.
Now in some of the terms of this sum the commutators [B;, B, ] are placed on the
right of operators B,, B,. In these expressions we commute the commutators
[B, B ] to the left until they are placed next to the vacuum. Again we get contribu-
tions in which now double commutators [B;, [B;, B, 1] are placed on the right
of operators B,, B, and again we commute these double commutators to the left.
We continue this procedure until all commutators are placed on the left, next to
the vacuum, and all single operators B,, B; are placed on the right of the com-
mutators. Then we repeat the whole procedure: we replace the operator B,,
say, which is now next to the vacuum by B, and commute it to the left. Then
we commute all commutators originating from this procedure to the left until
again all single operators B,, B, are placed on the right of all commutators.
Continuing this it is clear that we will finally arrive at a sum of vacuum expecta-
tion values containing only commutators. We give the first few expressions:

n=2: (@, B;B,Q)=(2, [B,, B; 1Q)
n=3: (Q, B{B,B;Q)
=(Q, [By, [B,, By 11Q)+ (2, [[B,, By ], B{ 12)+(2, [[By, By 1, B; 19)
n=4: (Q, B,B,B;B,Q)
=(Q,[By, B 1-[B,, B} 19)+(2, [B,, B 1-[B,, B; 19)
+(Q,[B;, B;1-[B,, B; 1Q)
+(Q, [By, [B,, [Bs, By 111Q)+(, [[B,, [Bs, B{ 11, B 19Q)
+(Q, [[By, [Bs, By 11, B; 12)+ (€, [[[Bs, B 1, B; 1, B{ 19)
+(Q, [[B,, [B,, B{11, B; 1) +(Q, [[[B,, By 1, B3 1, B{ 1)
+(@,[[[B;, B41. B3 1, B; 19).



Collision Theory for Massless Bosons 165

Our reason for replacing simple quantities by a whole bunch of complicated
looking expressions is of course that the consequences of locality are more trans-
parent in the latter form. However, the whole procedure would be completely
useless if we would have no control on the localisation properties of the operators
B*. We shall see that if B is an element of one of the linear spaces &y, B* can be
chosen in such a way that it is quasi-local (in a sense which will be made precise
later). Using locality we are then able to derive a uniform estimate for the spherical
averages of multiple commutators with m=3,

tl tm‘ydwl jdwm[Bf(tl’ tlel)’ [B;*(tZa t2e2)a [ ’ Brﬁ(tm’ tmem)] ] >

here B¥ stands for B or B*. It turns out that the norms of these expressions
decrease in the limit of large t; xt,~...~1,, like an inverse power of ¢,, provided
all operators By,... B,, are elements of &y for some sufficiently large N. For the
commutator, m=2, we get an upper bound of the norm which is increasing in ¢,.
However, this increase is small compared to the decrease of the multiple com-
mutators and this fact will allow us to neglect in the above vacuum expectation
values all contributions which contain at least one multiple commutator. If n
is even we are then left only with a sum of vacuum expectation values of products
of simple commutators. (Compare the above expressions for n=2,3 and 4.
For the treatment of these expressions we have to analyse vectors like

(1- Po)‘titjjdwijdwj[Bi(th tie;), B}L (t;,t;e)]Q2,

where P, is the projection onto the vacuum. Using locality and a bound on the
2-point function given in Ref. [6] we shall verify that the norms of these vectors
decrease for large t;~t; fast enough to suppress all contributions coming from the
remaining commutators. We may therefore insert in

ty...tyfdo; .. fdo,
(Q,[By(t;, tye,), By (t5,1585)] ... [B,_ (ty— 1, t,—1€,—1), By (1, 1,€,)]1Q)

the projection P, between all commutators, the difference being negligible in
the limit of large t;~t,~...~t,. It is then simple to infer from the resulting
expression (which is a product of vacuum expectation values containing only one
commutator) the assertion of the lemma.

After these qualitative remarks we come now to the quantitative statements.
For the sake of clarity we split the text into four parts.

a) The Creation Operators B*

Since the vacuum Q is separating for all local operators it is obvious that the
creation operators B defined above cannot be strictly local. In order to have a
measure which indicates how much they deviate from local operators we use the
notion of quasi-localisation introduced by Araki and Haag [20]. We recall their
definition briefly: let @ be the double cone in configuration space which is the
intersection of the forward cone with tip in (— R, 0) and the backward cone with
tip in (R, 0). Then an operator Fe & is said to be quasi local of order N if there
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exists for each (sufficiently large) R >0 an approximating local operator Fze &(€g)
such that

IF—Fg|<c-R™"

for some constant ¢. We shall demonstrate now that to each operator Be gy
there exists a quasi-local operator B* of order N such that B*Q=BQ and
(B*)*Q=0. The elements of y, Ne N are finite sums of local operators B of
the form

B= j‘ dt(p(t)eit(Pn)Ae— it(Pn)

where Ae &, and @(¢) is a testfunction with compact support which has a Fourier
transform @) with an N-fold zero at w=0. If we apply such a B to the vacuum
we get, owing to the invariance of Q under translations,

BQ=/dt ¢(1)e"*” 4Q = [ ¢ () E(dw) AQ

where E(dw) is the spectral measure corresponding to the operator (Pn). Now
(Pn) is a positive operator because of the spectrum condition and the fact that
n is a positive timelike vector. Therefore only positive values of w contribute to
the above w-integral and we may therefore replace in the t-integral the function
(1) by @™ (1), where

0" (0)=Cn)! ] doglage .

Taking into account the N-fold zero of ¢{w) at w=0 it is easy to verify that
@ (?) is continuous and |@* ()| <c-|tf| ¥~ 1. Consequently the integral

B+ =5dt (p+(t)eit(Pn)Ae—it(Pn)

exists as a Bochner integral. It also follows from the decrease properties of ¢ *(t)
and the strict locality of A that B* is quasi local of order N; we take as local
approximations of B* the operators Bi, R=R,

a(R)

Bi= [ dto*()e"™Ae " with a(R)=2""?n|" (R—R,)

—a(R)
where R, is the radius of the localisation region %, of A and |n| is the Euclidean
length of n. It will be important for our argument that the operators By are
elements of §, and that ||Bg | <c, [|0,Bx || < ¢’ uniformly in R.

The support properties of @* in momentum space imply B*Q=BQ and
(B*)*Q=0. So B is an operator with the desired properties. Since the elements
of y are linear combinations of operators similar to B the above construction
can be performed just so for any operator from Fy.

b) Bounds on Multiple Commutators
We shall estimate now multiple commutators of the operators

AF=t-[doB*(t, te)

and their time averages. The proofs are based only on locality.
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Lemma. a) Let By,... B, be operators which are localized in double cones 6x,,... Gy, -
Ifall t; i=1,... n are positive (or negative) then

fdw,...Jdw,|I[Bi(t;, tye,), [By(ts, tre), L., B,(t,, tye)] .. 1l

n—1 n
§I|31“~~-”Bnl|'k ( > (2tktz)_I(Ri:+2szltk—tzl))

=1 \l=k+1

Where Rkl :Rk+ Rl'
b) If By,... B, are quasi local of order N then for any R>0

fdwl -~-Id60n LB (ty, tyey), [Bylts, tae5), L., Bty tye,)]... 1

k—1 n
§c-{R‘”+ ﬂ( Y (2tkt,)—1(R2+2R-|tk—tll))}
k=1 \=k+1

and the number ¢ does not depend on R and t,...t,.

Proof. a) We prove the first half of the lemma by induction. For n=2 we have to
consider

fdah fdwz I[By(ty, tieq), By(ty, the5)]ll

Owing to locality the integrand of this expression vanishes for all e;, e, for which
the two inequalities |t, —t,+R,,|* <[t e; —t,e,)* hold. Consequently we have
to integrate only over the region G,, CS? x S?:

Gio={e;,e,:0=1—(e;e))<(2111,) (R}, +2R 5|t —1,))} -
Thus, if y;, denotes the characteristic function of G,,, we can estimate

jdwl fdw, (B, (t1, trey), Byt tre,)]l|
S2-By |l Byl fdevy fdwvy (e, )
SIBy | 1B, -(2t122) " (RT3 +2R 5|t —1,])

and this proves the lemma for n=2. Let us assume now that the lemma holds
for n—1. Then we get, using locality once more,

jda)l ...jdconH[Bl(tl, tie)), [By(ty, the5), [..., Byt t,e)].. . 1l
sfdo,...[do, Z fdo,ziie;, )
Bt 160 Bt 2620 oo Bty )] 11
<18, 01{ 3, o) R 2R, =)
~fda)2 ...jda),,”[Bz(tz, t,e,), ..., Bt tee)]... 1l
<181 180 TT [ % e @+ 2Ry 1)

=1 \l=k+1

where x4, is the characteristic function of the region G,; which is defined in analogy
to Gy,.
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b) Since the operators B;,... B, are quasi local of order N we can find ap-
proximating sequences Bjg,... B,z which are localized in the double cone €3
such that

IBi—Bigl|S¢;:R7N, i=1,...n.

Then we split every operator B; in the above expression into two parts,
B;=B;g+(B;— B;g), obtaining a sum of 2" terms. In one of these terms there
appear only operators B;z and we can apply to it part a) of the lemma. Each
term in the remaining sum contains at least one operator (B;— B;z) and can
therefore be estimated by ¢-R™" with a suitable constant c. [}

We apply now the above lemma for an estimate of multiple commutators
of the time averages

A# = j dt hT(t)At#
where hy is the function defined in relation (5).

Proposition 1. Let B,,... B, be operators from §y. Then
ILATr [AS7, ooy Ap] QN S| TN 20 20t DVIVE 2020
for large | T|. The constant ¢ does not depend on T.

Remark. If n=2, the bound given above increases with |T| like | T|*™V* 2}, However
for =3 and N sufficiently large, the bound decreases almost like | T~ =21,

Proof. Since the operators B,,... B, are elements of &y, the corresponding
creation operators By ,... B, are quasilocal of order N. On the other hand every
local operator is also quasilocal (of any order) and we can apply part b) of the
preceding lemma to the operators By, ... B}

LAY, (437, [ A1 00
<fdey .. fdtJhp(ey) ... h(t) |ty .. 1)
~jdco1...fdco,,l][Bf‘(tl,tlel),[...,Bf(t,,,t,,e,,)]...]]l
<fdey .. fdthe(ty) .. hylt,) |ty - 1
n—1 n
~c{R‘N+ ( Y (2tkt,)"(R2+2R-|tk—t,|))}.
k

=1 \I=k+1

Taking into account the support properties of i we get after integration

, I (R*+2R-In|T}\""*
ICAfr (437 o A1 Dl e -IT|"'{F - (_W—“) }

for sufficiently large |T| with a constant ¢’ which does not depend on R and |T].
This inequality holds for arbitrary R>0 and if we put R=|T >~ DAN+20=1]
the statement follows. [
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¢) The Vacuum Expectation Value of Two Commutators

Since our bound on the norm of the commutator [A477, A37] is too weak for later
applications we have still to refine our analysis. We shall estimate in the following
the vacuum expectation value of two such commutators. In these investigations
we shall benefit from a result of Araki, Hepp and Ruelle [6] on the two-point
function:

Lemma. Let C; and C, be two local operators from §, which are localized in @,
and y,. Then for all |x|Z2(R; +R)

I, C1(x)-(1 = Po)Co Q| Sc[x|"*(R; +R,)®
{ICTQY - 10,C, 211 + 1 C32] - 100C, 21}

where P is the projection onto the vacuum and c is a constant which depends neither
onx noron C;,C, and R{,R,.

In the following we take for the operators C, and C, the commutators
[Bj(t;, t;e)), By(ty, tye)]. Owing to locality these operators are (for arbitrary t;
and t,) localized in regions with a finite volume, provided the time differences
t;—1,| are kept small. We shall make use of this in the proof of the next statement.

Corollary. Let B,,... B, be operators from &, which are localized in double cones
%R,>-.-Cr,. Then for arbitrary positive (or negative) t,,...t4:

(@, [A1,, Az, 1-(1 = Po)[As,,, Asr, 19)| <ct*R°

4
(1410 GRPL-R 3 1B 1008 ) 18,1 . 15

4

where t=%(t, +t,+1ty+t,) and

4
R=5(1+t]-(t42,) ™ 2+t -(1525) 1) Z (Ri+t—t).

i=1

The constant ¢ depends neither on't,,... t, nor on By,... B, and R,,... R,.
Proof. We consider
K=(Q, [By(ty, t1ey), By(ts, tre5)]-(1 — Po) [ Bs(ts, tze3), Balts, t4€4)1€).

Because of the invariance of the vacuum under translations we can rewrite this
expression according to

K=(Q,[B,(t; —t,¥1,), By(t,—t,¥5,)]U(x) " (1 — Py)
[ Bs(ty—1t,r34), By(ty—t,143)1Q)

where ;= 3(t;e;—t,e,) and x=5(t e, +1t,e, —te5—t4e,). Now the commutator
[B;i(t;—t, ryp), Byty—t, r)] is localized in the double cone €, with

r={ryl + R+ Ry +t;—t|+t,— 1] .
On the other hand it is zero (owing to locality) if

2ryl = R+ Ry +t; —t| + |t —t] .
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Since the zero operator is localized in all regions we get for r the bound

r< 3R+ R+t —t) +t—t)) .
4
We can then apply the preceding lemma and get for |x|=3- Y (R;+|t;—t|)
i=1

4 3
Kiseisl > T R+ li=c)

ANB (1, t1e1), By(ty, t,€5)1* Q| - [[[00B;(t3, t3e3), Balty, t4e4)]2 (%)
+[Bs(t3, tze3), 0oBy(ts, t4e4)1Q| + (13, 2¢54)} .

Now the commutators in this expression vanish if

(Ri+R,)*+2(R; +R,)-|t; —t,]

2
e, —e, =
le—e,y|* 2 tits

and analogously for |e; —e,|%. We may therefore estimate |x| in the expression (%) by

x| =%t €5 +1re;—tze3— 1,8,
4

2t]-(Jey—es| —3le; — ey —3les —ey) =% Z [t;—t
i=1

4
_%Z [t;—1]

g|t|-|e2—e3|—%|t|-(
i=1

2|t|-|le, —e3| —R

Ry+Ry+|t;—t5]  Ry+Ry+|t3—14
(AN (t3ty)'"?

where R is the quantity defined in the formulation of the proposition. It is then
straightforward to verify that for |¢|-|e, —e5| = 4R

Kisc-R(t*le;—esl* +RH) ™1 {...}.

The curly bracket coincides with that given in relation (x). For |t|-|e, —e;| <4R
we estimate

(K|S |[By(ty, tie1), By(ts, t2€5)1*Q| - [I[Bs(ts, taes), Bults, t,e,)1Q]
+(13,24).

If we perform now the spherical integrations and use the bounds on the norms of
the commutators given in the preceding section we get

2 3 4 8 (R/1)?
fdwl ...fda)4|K|§ (Cl'gdfm'igl ]|Bi|]_1||5oBi”+c2- g dé)

(Ry+R,+|t; — t)? - (R3 + Ry +t3 —tyl)

Byll... [ Ball
R® 4
= ittt '7'(ln[1+(t/R)2]'R > ||Bi[|_lllaoBiH+1)
1t2¢3%4 .
|IByll... | B4l
and this completes the proof. |

i=

Integrating the operators A, with the functions h; we arrive at the
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Proposition I1. Let B, ... B, be operators from &y. Then for large |T|
(@, [Afr, A37]-(1= Po)[A3r, Afr]Q) S c-In|T|.|T|~ 2N~ 1H/N+D
where ¢ is a constant which does not depend on T.

Proof. If the operators By,... B,e &, are localized in @y,,... €x, it follows from
the support properties of h; and the preceding corollary that for sufficiently
large | T| (depending on the function 4 used in the definition of h;)

(@ [Aur, Azr]-(1= Po) [ a7, Aur 1)
4 6
R|

<c-T72In|T|:|Ry-In|T|+ Y,
4 a

‘[1+ (Ro-lan|+ » Rj)- S 1Byl [96Bil
i=1 k=1

Byl 1Byl -

i=1
J

Here the constants ¢ and R, depend only on h. Now if B,,... B, are elements
of §y the operators BY,... Bf are quasilocal of order N. We may therefore split
the operators B in

L=(Q, [AitT’ A;':T] '(1 - Po) [A§T9 AfT]Q)

into the parts B =Bj+(Bf —B/%) where B are the approximations of B}
constructed in part a) of this appendix. To the term which contains exclusively
operators B/ we apply the above inequality, bearing in mind that B;% is localized
in €y and |B%|<Zc;, 10,B&| <c}; uniformly in R. For the remainder we make
use of |Bff —B&|I<ci-R™Y getting altogether (for sufficiently large |T)):

ILi<c, - T*R™V+¢, - T~2In|T|-(Ry In|T|+R),

and c¢;, ¢, do not depend on R and T. If we set now R=|T|*"*7 the statement
follows. [

d) Proof of Lemma 2

We are now furnished with the information needed to complete the argument.
First we consider the operator

A,=t-[dwB(t, te) where B=—20,A.

It follows easily from the definition of the spaces §, that with Ae &y also
—20y,A€ &y and we may therefore disregard the special form of B for a moment.
Then we convert the vacuum expectation values of the time averages
Ar, (Q,Ayp...A,7Q), into a sum of terms containing only commutators
(AT, (A3, [, AF2]...]. As was explained above there are two types of contribu-
tions. In the first one there is at least one multiple commutator with m=3. To
such a term we apply Proposition I and get
e, r,r.1.-3......]... 191 =Zc- ﬁ | T}~ WNGm2=2) = Zmy(my = DYIN+ 2(mi = 1)]

=1

mi My
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in an obvious notation. Since i m,=n, and since there exists by assumption
at least one m; =3 we can estima{tze1
k N(m;—2)—2my(m,—1)
=1 N+2m—1)

=1—6n(n—1)/N.

This shows that these contributions converge to zero in the limit of large |T|
provided all operators By, ... B, are elements of &y with N >6n(n—1). If n is even
the remaining contributions are of the form

M,(T)=(@, [Air, A37]... [An-11, A17]Q) .

We shall prove by induction that if N=2n+ 15 then M (T) converges in the limit
of large | T to a product of one-particle scalar products. For n=2 the statement
follows from Lemma 1, remembering that B;= —20,4;:

lim My(T)= lim (@ (4,7, A719)= lim (4112, A5 D)= (@ 4, P14;9).

Let us assume now that the statement holds for (n—2). If we replace in the above
expression for M, (T) the unit operator 1 at the commutator on the left by the sum
1=Py+(1—P,) we get:

Mn(T)=(Q> (41, A2+T] Q)(Q, [AaTs AIT] [An— 1T> A:T]Q)

+(Q, [A17, A3r]-(1 = Po)[As1, Adr].- [Au- 17, 4471 Q).

The first expression converges by assumption to

(Q> AlPlAZQ)“‘ (Q> An—— 1P1AnQ) .
The second term can be estimated, using Proposition I and II, by

€, [A 17, A37] (L= Po) [4ar, Air] ... [Au- 11, Ar] Q)

S =Po)[Ayr, A3r1* Q- ITAsr, Adrdl o 1[4 11s Air]l

§C°(1D|T|)1/2'|T|'(N— 14)/(N+7) ‘ITlZ(n—Z)/(N+2) .

It is obvious that this expression approaches zero in the limit of large |T| if
N =2n+15 and therefore

Tlil;l M(T)=(Q, A, P,4,Q)...(Q, A,_P,4,92).
Summing up, we get for even n after some combinatorics

Thl}:l (Q, AlT e AnTQ)= Z (Q, AilplAizg) ces (Q, Ain_ 1P1AinQ)
provided A,,... 4, &y, N sufficiently large. The sum extends over all ordered
pairs i, <i,,...i,_; <i, taken from (1,...n). For odd n the limit vanishes, because
in this case there do not appear terms of the type M,(T). This proves the second
part of Lemma 2. The first part is then an elementary consequence.
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