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Abstract. We consider Cauchy data (g, π) on 1R3 that are asymptotically
Euclidean and that satisfy the vacuum constraint equations of general relativity.
Only those (g, π) are treated that can be joined by a curve of "sufficiently
bounded" initial data to the trivial data (δ, 0). It is shown that in the Cauchy
developments of such data, the maximal slicing condition t r π ^ O can always
be satisfied. The proof uses the recently introduced "weighted Sobolev spaces"
of Nirenberg, Walker, and Cantor.

Consider the set %? of spacetimes which are the Cauchy developments of
initial data (g, π) on 1R3 which are asymptotically Euclidean and which satisfy
the constraint equations [see (3) and (4) below] in the dynamical formulation of
general relativity [1]. In 1968, Brill and Deser [2] conjectured that one can
maximally slice any such spacetime, i.e. one can find spacelike hypersurfaces
on which trπ = 0. In a Hamiltonian analysis of general relativity trπ assumes
the role of a gauge variable (see for example [12]) and so one would expect that
the trπ = 0 condition can be met in any such spacetime. Here we prove that the
Brill-Deser conjecture is true.

We consider only those (g, π) which can be joined by a curve of "sufficiently
bounded" initial data (to be explained later) to flat space (<5, 0). Thus we are
considering the component ^ 0 of (<5,0) in the set of asymptotically Euclidean
solutions of the constraint equations. ^ 0 is restricted to those 3-metrics which
are derived from Lorentz metrics on IR4 that are near the "background" Minowski
metric. The set Ήo is discussed in [7-11].
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In her note [6], Choquet-Bruhat proves a theorem for spacetimes with compact
spacelike hypersurfaces which is similar to our step 2 below. She also notes her
proof extends to yield the local result for spacetimes with noncompact spacelike
hypersurfaces. The authors became aware of [6] after the present work was
completed.

We shall prove:

Theorem. Let (g, π ) e ^ 0 . Then in the Cauchy development of (g, π) there is a slice
on which the trace of the second fundamental form is zero. (Recall that this entails
trπ = 0Λ

There is a similar theorem for the component of ^ containing any given
(g,π) with trπ = 0 or in the case of compact hypersurfaces, txπ/μg= constant
(see [6] and [12]). The constant depends on the hypersurface. This theorem is
proven similarly to the one in this paper.

The proof requires the use of the weighted Sobolev spaces MP

 δ introduced
in [3]. For compact hypersurfaces, the usual Sobolev spaces Ws'p will do, as
in [9].

Definition. Let σ(x) = (l + |x | 2) 1 / 2 . For l ^ p ^ o o , s a nonnegative integer, and
<5eIR, let Mp

mδ{W9 W) be the completion of CfOR", 1R«) with respect to the norm

\f\P.s.6= Σ ( K ^ / y + | a l i L p ) .

The elementary properties of these spaces are discussed in [3,4].
The important technical result for this paper is

Lemma 1. [5]. Let n>m and Λoo= £ aaD
a be an elliptic homogeneous operator

|α| = m

on ]Rn. Suppose we have an elliptic operator A— Σ cιa(x)Da on Rw satisfying
\a\£m

for s^m,aaeCs~m and

sup\Dy{aa(x))'σm~a+bι\<oo for \a\<m

and

lim sup \Dy(aa(x) -α>|yi| < ε for |α| - m
and \y\£s — m. Then if p>n/(n — m) and 0^δ< —m + n(p— l)/p, and ε is sufficiently
small, A is an isomorphism between Mp

s δ and Mp

s__m d+m.

Remark. The smoothness condition of the aa may be relaxed by taking completions
in the appropriate Banach space of linear operators. This fact is used implicitly
below.

We shall apply Lemma 1 where A is the Laplacian with respect to some
asymptotically flat metric on IR3. Thus n = 3 and m = 2. We assume p and δ are
as in the theorem and s>n/p + 2. The (g, π) we shall consider will be of the form
g = δ + h with heMp

 δ and πeMP_1 δ + 1 (see [8]). All norms are taken with respect
to the flat background metric. Note that for ge%>0 these norms are equivalent
to those induced by g. Note we may take t rπeMf_ 1 ^ + 2. The topology on the
space of initial data is given by the MP

 δ norms.
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The required slicing will be determined by a lapse function N(λ, x) = ( — goo)~1/2.
Letting the shift vector gOi = Xi(λ,x) = 0, the Einstein Equations read (here π
is a density):

dg/dλ = 2N(π - \ (tr π)g) (ί/μg) = - 2Nk (1)

dπ/dλ= -N(Ric(g)- $R(g)g)μg+ %N(π-π- i(trπ) 2)/μ,

-2N(π x π - I (trπ)π)/μg + (HessN-gV2N)μ g (2)

^(g, π) = (π π - I (tr n)2)/μg - R(g)μg = 0 (3)

δgπ = 0 (4)

and using p = \x%jμg = 2 trfc, we find from the above equations that

= 2(k k-V2)N. (5)

Step. 1. If p = 0 for some λ9 we may choose an N such that p is zero for all λ (for
which the dynamics is defined).

Proof. Writing N= 1+ IV (so that JV is close to 0 when N is close to 1), we find

Thus the equation dp/dλ = Q may be solved using Lemma 1 for N(λ)eMp

s+1 δ

for each λ. Thus for this choice of N= 1+ N in the dynamics the condition p = 0
will be maintained. Π

In what follows we show that whatever p equals at λ = 0, we may achieve
p = 0 at λ=l by choosing a suitable N. Throughout, we shall take dN/dλ = 0.

Step 2. (Local Argument). Let (g0, πo)e^o and suppose t r π o = 0 . Then there is a
neighborhood V of (g0, π0) such that if (g,π)eV then there is an NeJίp

s+lίδ

such that p = 0 at λ = 1. (By a suitable choice of scale, we may assume λ=l will be
reached by the dynamics.)

Proof. Let F = ̂ o x ^ f + 1 δ(IR3,lR)^Mf_1 δ + 2(lR3,lR) be defined (on a suitable
open set) by

F((0,π),iV)={the function p at λ = l determined by Equations (1), (2), (5)}.

Then using smoothness properties of the evolution equations (see [8]), F is
a smooth mapping. The derivative with respect to N at ((g0, π0), 0) in the direction
δNis

DNF((g0, π0), 0). δN = ( j (ko(λ) ko(λ) - V2)dλ^ δN (6)

where ko(λ) is the evolution of k0 for the given (g0, π0) and V2 is the Laplacian
for go(λ).

Since we are only considering functions that are independent of λ, it follows
easily from Lemma 1 that the operator (6) is an isomorphism (see also [9]).
Thus by the implicit function theorem we can uniquely solve F((g, π), N) = 0
for N(g, π) near 0 and (g, π) near (gQ, π0). This proves step 2. •
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Step 3 (Globalization). Let (gθ9 π0) be joined to (g, π) be a continuous curve (g(α), π(α))
in ^ 0 , αe [0,1]. Let J be the set of α for which the resulting space time has a maximal
slice. Then Oe J and step 2 shows that J is open. We can always work in a neigh-
borhood of the curve (#(α), π(α)) so that the evolution times used in step 2, can
be chosen to be uniform along the curve.

To show J is closed, let αme J and α m ^ α . Let Nm be the unique lapse functions
given by step 2. In order to demonstrate that V^ remains uniformly elliptic and
the slices "uniformly spacelike", we may take a sequence of coordinate trans-
formations fm on the slices Sm chosen so as to keep the eigenvalues of gm (relative
to the flat background metric) bounded away from zero. Since ko(m) remains
uniformly bounded and V% remains uniformly elliptic for αm, m->oo, the Nm will
converge to a function N. This N is the required zero of F.

Thus J= [0,1] and our proof is complete. •

Note Added in Proof. The hypotheses of Lemma 1 should include that a0 is non-positive. In our ap-
1

plication, ao= - J ko(λ) ko(λ)dλ^0.
o
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