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Abstract. We show that arbitrary finite boson mass renormalizations are possible in the Euclidean
Yukawa2 theory. We work in the Matthews-Salam representation with the fermions "integrated out".

I. Introduction and Results

We study the Yukawa2 quantum field theory in a finite volume as a Eucli-
dean boson field theory with the fermions "integrated out". The possibility of
integrating out the fermions in the Yukawa theory was first demonstrated, in the
external boson field case, by Matthews and Salam [1] and in the two-dimensional
finite volume interacting theory, by Seiler [2] who showed that the resulting
Fredholm determinants are Lp functions of the boson field. He thus obtained
estimates on Sch winger functions of the form :

,/π;0ι, , 0 m ; f c ι , ,Λm)l
= KΠ7- 1 Φ(fύ ΠΓ= i v«"(aj)Tft= i v(2\hk)e-vy\

with Ci , c2 independent of ultraviolet cutoffs. The norms are those for the boson and
fermion test-function spaces ̂ l JT^ΦC2, where 3?(™} = L2(R2, (k2 + m2)sd2k\

In this paper we give a derivation of (1.1) even in the presence of an arbitrarily
large negative boson mass renormalization. That such a renormalization is
possible has already been demonstrated in the Hamiltonian formalism by Glimm
[3,4]. The basic idea is to decompose V into parts with high and low Fermi
momenta. The high momentum part requires a "smaller" infinite ultraviolet mass
renormalization than does the whole interaction, and the difference can then be
used to dominate the finite boson mass renormalization. The low momentum
part of e~v may be expanded in a power series, since both fermions are bounded
operators. Thus the Sch winger functions of the theory can be expressed as a power
series in the Schwinger functions of the high momentum part. We prove a bound
of the form (1.1) for the high momentum interaction and, applied to each term
of the power series, this yields a bound of the same form for the full interaction.
Our principal result is:

Theorem 1.1. In the presence of α finite boson mass renormalization — M, a
bound of the form (1.1) still applies, uniformly in the ultraviolet cutoffs, and the
Schwinger functions converge as the cutoffs are removed.
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In section II we prove Theorem 1.1, assuming the result for the high momentum
interaction. In Section III we prove the result for the high momentum inter-
action, where the lower bound ρ on at least one of the fermi momenta is determined
by the size of the coupling constant λ and the negative mass renormalization — M.

II. The Low-momentum Expansion

The ultraviolet cutoff interaction and un-normalized Schwinger functions
are given by:

= 2π$d2pd2q(gφJ( - P -

(ZS^f\f1,...,fn;g1,...,gm,h1,...,hm)

= <Π"= i

where φκ(x) = (χκ*φ)(x), Ψσ\x) = (χσ*Ψ(ί))(x) and the ultraviolet cutoff function χσ

satisfies χσ(')-+δ(-) as σ-> oo, \χσ(k)\^—. In particular we will choose either
2π

χσ(k) = ~θ(σ- \k\) or χσ(k) = ̂ -θ(σ-\k1 1), with θ(s) = 1, s £ 0, θ(s) = 0 otherwise, the
2π 2π

latter cutoff being necessary in order to give a connection with the Hamiltonian
formalism via the Feyman-Kac formula of Osterwalder and Schrader [5]. The
space-time cutoff g( ), O^^^l, is either in C%(R2) or else is the characteristic
function of a compact region. In either case we denote by Λ = [ — ί, t] x [ — α, a]
a rectangular region containing suppt. g. We define the high and low momentum
parts of the interaction as the operators VItKtQt<r, δVj κ ρ obtained by the decom-
position, for ρ ̂  σ,

~ θρ(p)θβ(q)) + θρ(p)θρ(q)}, θρ(p) = θ(ρ - \p\) ,

and the full renormalized high momentum action is then defined as:

y(λ,M) _ y(λ,M) _:xyryκ,ρ,σ ~yκ,σ Aθyl,κ,ρ'

Expanding the low momentum action in a power series, we have:

(ZS)^σ

M\f1,...,fn;g1,...,gm,h1,...,hm)

^In order to obtain estimates uniform in K, we integrate by parts in

= Σ?= i



Finite Mass Renormalizations 239

where

„(*<>, OXM ' = 2,3,

— here gxι(y) = θ(xί — yl)g(y) and * denotes convolution in the space variable
only. It is easily seen that:

Lemma 2.1. FΞΞSUP \\F®X\\ _ 1 ? G =sup ||G(0J| _ A are yίra'ίe and F^x converges
K,X,ί ' JC,l 2

inJΊf-i as ?c->oo, uniformly in i and x.

Inserting the expression for δVj κ ρ into (ZS)j£'σ
M) we obtain:

9)

'

where (ZS) '̂ĵ  denote the Sch winger functions for V^ρ

M

σ\ In Theorem 3.1 we
'prove that a bound of the form (1.1) holds for ( Z S J i f ρ^ρ0 = ρ0(^Λί) and

G ̂  σofe ̂  M), with constants ct (ρ, 1, M) independent of TC, σ and furthermore
that these Schwinger functions converge as σ-»oo, τc->oo. Applying this bound
to (2.2) term by term we obtain, for ρ^ρ0(λ, M), σ^σ0(ρ, λ, M):

i. d^TΪ^^

=^

where

c4(ρ, /I, M) = 2c2(ρ, /I, M), and we have used the estimates of Lemma 2.1. Conver-
gence of (Z5)^M) as σ->oo, τc->oo, also follows immediately from (2.2), using the
convergence of (ZS)(^ρ

M^ and of F^ in Jtf* _ 1 . This completes the proof of Theorem
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1.1, since Z^'σ
M) >0, uniformly in κ9 σ, for sufficiently large σ, follows from Z^'0) > 0,

which has been shown in [2].

III. The High-momentum Interaction

We now study the Schwinger functions for the high-momentum interaction
V^'ρ

M

σ\ (2.1). Since λ and M are fixed throughout, we suppress them in our notation.
Defining the compact operator on ̂  = ̂ fo)(g)C2 with kernel

^Λp, q) = 2π o ( φ ( p _ q)(q^m2Γ^χσ(p)Uq)(^ - θQ(p)θβ(q)) ,

one finds that the Schwinger functions (ZS)Kjβ>(T are expressed in terms of solutions
of a Fredholm equation by [1, 2],2

(ZS)K, β) σ(/! ,...,/„ 0 !,..., 0m Λ !,..., A J

^ <Π?= ιfl/<)Π7= i ̂ (% )Π^ i ̂ (2)fcKF— >
Γ-l

= ίdμoΠ?=ι0(/i) (-) det^S^, hk'φκ)DQ,σ(φκ) ,

where S'6iff(g,h; φκ) = (D0g,(l + λKK!ρίσΓ
1S0h)^ D0 and ,S0 are multiplication

by (p2 + mo)~^ and -̂  - ̂  respectively, and

We choose the ultraviolet boson mass renormalization δm*= —2\d2p
J

Theorem 3.1. ( Z S ) K t Q t f f ( f l 9 . . . , fnιgi9 ...,gm;hl9 .-..,hj satisfy a bound of the

form (1.1), for QέZQo = Qo[λ, — L with constants q(ρ, λ, M) uniform in K and

σ^σ0(ρ, /I, M), <m/ converge as σ, κ;— »oo.

Proo/. Since HΠ?=ι0(/i)ll2^c 1c5(n!) iΠ?=ιll/ill-ι» ^ is sufficient to show
that detjkS'ρtσ(gj,hk'9φκ)Dρtσ(φκ) converges in L2(dμ0) and that for some p^2,

||det,^σ(^,/ιfc;(/>J^σ(0Jl|^^

for some constants ct uniform in K, σ and for ρ, σ sufficiently large.

1 The kernel B(p, q) of an integral operator B on the weight space J^m) is defined by (Bθ)(p) =
\d2q(q2 + m2)sB(p, q)θ(q), θ 6 ̂ m).

2 We use the notation detp(l +5) = det((l +5)exp (Σ^Iι(-)nn~1Bn)) most commonly used in the
literature, [6], This differs from the notation of [2] which would use det2 instead of det3.
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The first term in Dρ σ(φκ) clearly converges in Lp(dμ0) as σ, fc->oo as is clear
since Tr(Xκ>0>σ-Kκ>ρ)>ί^(x)(/>,(x)<^2)W^1)(x)>? while the second part
of its exponent is a constant in q space. We also easily see the second term in DQ σ(φκ)

ίM\
converges in Lp, p^ 1, for ρ ̂  Q^ (—- j and σ ̂  σQ(ρ, λ, M, p\ as σ, κ-+ oo. To prove

, A ,

A2

2
integral operator on J^'1 with kernel:

this, note that its exponent may be written as — :(φ, Gκ,β,σφ)ι '•• Here Gκ > ρ > σ is the

M2

where μ(p) = (p2 + μξ)*, ω(p) = (p2 + m2,)*.
It is easily shown that the function Ge σ(/c) satisfies:

Lemma 3.2. (i) Gρ>(7(fc)-» Gρ(/c) = Gβ> ̂ (fc) for each fixed k, Q
I k2\

(ii) |Ge>σ(fc)| ίϊ const In 1 H — ̂  + const uniformly in σ and
MO/

(M\
ρ < i ρ = ρί\^λ

These conditions are sufficient to ensure that Gκ ρ σ are Hubert-Schmidt
operators converging to Gκ Q in the Hubert-Schmidt norm, uniformly in K,

as σ-»oo, and to G.ΞΞG as K->OO. Also G <0 if ρ^ρ^ —1 and thus
λ

^Qi and σ^σ t = σι(ρ, A, M, p). If follows that e*2f2:(+>G"-°-°+h:

ί ί 2λ p
converges a.e. in g-space and that (since pλ2GKίQ >

\\e
II ̂

^£ι and σ^σ x . Lp convergence follows immediately by uniform integrability.
Finally we come to

— -'Ύτ(K* + K
' """ 'k

(σ) (3.1)

where Ψ = D0g1Λ...ΛD0gm, Φ = S0gίA...AS0gm are vectors in the m-fold antisym-
metric tensor product Λm3? of 3? = ffl ±®C2. Here both D0 and S0 are isometries
from Jf7 * to Jf . It is easily seen that KKfQf(J e C3 and converges in the C3 norm as
jc, σ->oo, for almost all 0; Seller shows that this is true in the C4 norm and a simple
interpolation argument gives the result for the C3 norm also, see the appendix.
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It follows immediately that (X)m(l+/lKκ > ρ > σ)~1det3(l + ̂ Kίρ5σ) converges in
norm in ylmjf as σ, K-*GG, for almost all φ. Similarly K*tQt<r + KKtQt<r converges
in Hubert Schmidt norm as σ->oo and by arguments similar to those for
'•(Φ>Gκ,ρ,σΦ}i' one shows that :Tr(X* ρ σ + Xκ ρ σ)

2: converges a.e. as σ, κ->oo.
Thus we have shown that XKtQy(r(φ) converges a.e. as σ, κ->oo.

To obtain a uniform Lp bound, we note that by (3.1)

\XκtQ,σ(Φ)\ A2

By an elementary generalization of the Carleman inequalities [6] one has

__ (-— TrfjK* +K.

Lemma 3.3. - * """ "

with immediately gives an upper bound uniform in σ :

const l n l + —

^ΓL-ilW-illM-^ e [

Thus XKtβί(f(φ) converges in Lp(dμ0) to Xκ,Q(φ) and we need only demonstrate
a bound uniform in K. However this is essentially what was done by Seller, [2],
for the case ρ = 0, and his method of proof extends immediately to ρ φ 0. This
completes the proof of the Lp(dμ0) convergence of XKtβ>σ(φ) and thus also of
Theorem 3.1.

We remark that we could equally well have considered a pseudoscalar Yukawa2

theory or a more general mass counterterm such as M$dxf(x):φ2(x):, \f\^g.

Note: After submitting this paper for publication, I received a manuscript from E. Seiler and
B. Simon proving essentially the same result, [7].

Appendix

We will show that the operators K = K(φκ) e Cp for any p > 2. We introduce
operators K(a} on ffl with kernels obtained by replacing (p2 + m^)~ 1 by (p2 + mo)~α

in the definition oϊK(p,q\ and the operators I(£\ 0^£<oo, of multiplication by
(p2 + m2

oγθ((B-\p\)sgna). Thus

Since the characteristic numbers μn(C) (the eigenvalues of the operator |C| in
decreasing order) of a compact operator satisfy μn(AC)^ \\A\\ μJ^Q, jU2n+ι(C1 + C2) ̂

2), we obtain:

(A.I)

where we have used \\I($\\ =(B2 + mlY and μn(Q<Z\\C\\pn-79C e Cp. We now choose
B, depending on n, to maximize (A.I). Thus, for n sufficiently large, we define

= (w*||ί:(1-β)||4/||Ji:(1+/ϊ)||2)
1/(β+/ϊ) and thus by (A.I):

(A.2)
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By studying the corresponding Feyman diagrams, it is clear that X ( 1~α )eC4,
K(ί + a) e C2 for κ> oo, 0<α<i It follows from (A.2) that K(φκ) e Cp9 p>2, κ< oo,
for we need only choose a/β > (4 — p)/(2p — 4), and then

To discuss the limit κ;->oo we first consider the inequality corresponding
to (A.I) for (\dμQμ2n + l(K)pYlp and again choose B as a function of n to maximize
this inequality. We conclude that K(φκ) converges in Cp, p>2, to an operator
K(φ) for almost all φ.
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