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Abstract. We show that arbitrary finite boson mass renormalizations are possible in the Euclidean
Yukawa, theory. We work in the Matthews-Salam representation with the fermions “integrated out™.

1. Introduction and Results

We study the Yukawa, quantum field theory in a finite volume as a Eucli-
dean boson field theory with the fermions “integrated out”. The possibility of
integrating out the fermions in the Yukawa theory was first demonstrated, in the
external boson field case, by Matthews and Salam [1] and in the two-dimensional
finite volume interacting theory, by Seiler [2] who showed that the resulting
Fredholm determinants are L, functions of the boson field. He thus obtained
estimates on Schwinger functions of the form:
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with ¢;, ¢, independent of ultraviolet cutoffs. The norms are those for the boson and
fermion test-function spaces #“}, # "9 ® C?, where # ™ = L,(R?, (k* + m*)’d*k).

In this paper we give a derivation of (1.1) even in the presence of an arbitrarily
large negative boson mass renormalization. That such a renormalization is
possible has already been demonstrated in the Hamiltonian formalism by Glimm
[3,4]. The basic idea is to decompose V into parts with high and low Fermi
momenta. The high momentum part requires a “smaller” infinite ultraviolet mass
renormalization than does the whole interaction, and the difference can then be
used to dominate the finite boson mass renormalization. The low momentum
part of ¢ 7" may be expanded in a power series, since both fermions are bounded
operators. Thus the Schwinger functions of the theory can be expressed as a power
series in the Schwinger functions of the high momentum part. We prove a bound
of the form (1.1) for the high momentum interaction and, applied to each term
of the power series, this yields a bound of the same form for the full interaction.
Our principal result is:

Theorem 1.1. In the presence of a finite boson mass renormalization —M, a
bound of the form (1.1) still applies, uniformly in the ultraviolet cutoffs, and the
Schwinger functions converge as the cutoffs are removed.
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In section IT we prove Theorem 1.1, assuming the result for the high momentum
interaction. In Section III we prove the result for the high momentum inter-
action, where the lower bound g on at least one of the fermi momenta is determined
by the size of the coupling constant 1 and the negative mass renormalization — M.

11. The Low-momentum Expansion

The ultraviolet cutoff interaction and un-normalized Schwinger functions
are given by:

VM0 = 1V, = (V=302 M) 92067
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where ¢(x)=(x*@)(x), PO(x)=(,*P?)(x) and the ultraviolet cutoff function y,

. 1 . . .
satisfies xa(-)—>5(-) as a—mo,]f((,(k)|§—7;. In particular we will choose either

X,,(k)_ — 9(0'—- |k]) or ¥,(k)= 9(0 |kq]), with 6(s)=1, s =0, 8(s) =0 otherwise, the

latter cutoff being necessary in order to give a connection with the Hamiltonian
formalism via the Feyman-Kac formula of Osterwalder and Schrader [5]. The
space-time cutoff g(-), 0<g=<1, is either in CF(R?) or else is the characteristic
function of a compact region. In either case we denote by A=[—t,t] X[ —a, a]
a rectangular region containing suppt. g. We define the high and low momentum
parts of the interaction as the operators V; . , ,, 6V; . , obtained by the decom-
position, for g <o,

1P =1 P)TLD{(1 = 0,(p)0 (@) +0,(p)0,(@)}, 0, (p)=0—Ip),

and the full renormalized high momentum action is then defined as:

VEM — YIM _ 35V o - (2.1)
Expanding the low momentum action in a power series, we have:
(ZSYEM 1 s [a3 1 -oos Gms Py s )
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In order to obtain estimates uniform in x, we integrate by parts in 6V; ,

5V1v"»9=jt‘tdx0§a—adxl< J2dxig(xo, X1)(xo, x1)> PP (x) P M (x)

T LGP,
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where

1
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— here g, (y)=60(x, —y,)9(y) and % denotes convolution in the space variable
only. It is easily seen that:
Lemma 2.1. F=sup [F?,||_,, G,=sup |GY,| _, are finite and F?, converges
in_, as k—oo, uni}’érmly iniand x.

Inserting the expression for 6V}, , into (ZS)&M we obtain:
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where (ZS){) denote the Schwinger functions for V%™, In Theorem 3.1 we

prove that a bound of the form (1.1) holds for (ZS)%,)) if ¢ 2 0,=gc(4, M) and
o200, A, M), with constants cJg, 4, M) independent of x,¢ and furthermore
that these Schwinger functions converge as g— 00, k—c0. Applying this bound
to (2.2) term by term we obtain, for 9=g,(4, M), 0= 0(0, 4, M):
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NS

ca(0, 4, M)=2c,(p, 1, M), and we have used the estimates of Lemma 2.1. Conver-
gence of (ZS):M as g— 0, k— 00, also follows immediately from (2.2), using the
convergence of (ZS)? M), and of F¥, in # _ . This completes the proofof Theorem
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1.1, since Z¢M >0, uniformly in k, g, for sufficiently large o, follows from Z*?) >0,
which has been shown in [2].

II1. The High-momentum Interaction

We now study the Schwinger functions for the high-momentum interaction
V&M (2 1).Since A and M are fixed throughout, we suppress them in our notation.

K,0,0

Defining the compact operator on # =#{"®C? with kernel

Ky 0ol @) =21 20 (6,0 p—a¥@>+m?) 17, (0)7,(a)(1 — 0,(p)0 (0)) .
pe+mg

one finds that the Schwinger functions (ZS), , , are expressed in terms of solutions
of a Fredholm equation by [1, 2],2

(ZS)K,Q,O‘(fl’ AR fn;gh LS gm; hla ahm)
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where S, ,(g,h; ¢)=(Dog, 1+ 1K, , )~ 'Soh);, D, and S, are multiplication

by (p* +mg)~* and ?—m% respectively, and
p~+tmy

22
—ATr(K 0,0 =K, o0,0) +5 Tr(K 0,0 — K7 0. 0)>
_ » Uy 5@y 2 » 0,0 K, @0

DQ,O’(¢K) =€

MZ
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2
We choose the ultraviolet boson mass renormalization ém?2 = — Zfdzp—x‘&.

p*+mg
Theorem 3.1. (ZS), , (f1>--s fu3G1s - Gms Bys ..oy By satisfy a bound of the
M
Jorm (1.1), for 9 Z0¢=0, (zl,—/1—>, with constants c,(g, A, M) uniform in x and

o200, A, M), and converge as o, Kk— 0.
Proof. Since |[ i< d(f)ll2S e[ Tr- 0 fil -1, it is sufficient to show
that det; S, J(g;, hy; ¢.0D,, (¢,) converges in L,(du,) and that for some p=2,
”detjkslg,o(gj’ hy; ¢K)Dg,a(¢x)“p§ C1C§mn;'"= 1 ”gJ” -1 ”hJ” -1
for some constants ¢; uniform in «, o and for g, o sufficiently large.

! The kernel B(p, q) of an integral operator B on the weight space #™ is defined by (BY)(p)=
[d*q(q® +m*’B(p, )0(q), 6 € ™.

? We use the notation det,(1 + B)=det((1 + B)exp (3521 (~)"n~'B") most commonly used in the
literature, [6]. This differs from the notation of [2] which would use det, instead of det;.
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The first term in D, ,(¢,) clearly converges in L,(du,) as g, kx—00 as is clear
since Tr(K, ., — Ky o.0)=[dxg(x)$ () PP (x)P(x)), while the second part
ofits exponent is a constant in g space. We also easily see the second termin D, (¢,)

. M
converges in L,, p=1, for =2, (7) and o=0,(0, 4, M, p), as o, k— 0. To prove
2

this, note that its exponent may be written as %:(q&, Gy 0.09P): - Here G, , , is the

integral operator on , with kernel:
G, 0,00s )= (2m) 2 2Pl @ulp) 2 1la)~* [d*kG, ,()G(p—~ KNGk —q)
1 —1k)1— 1 _1 2 2
GQ’G(k) = Zfdzl {Xd(l + 2 k)Xa'(l 2 k)(l Hg(l + 2 k)gg(l 2 k)) Xo'(l) } M_‘

o(l+ Lkl —Lk) o A2
where u(p)=(p*+u3)}, w(p)=(p*+mp)?*.
It is easily shown that the function G, ,(k) satisfies:

Lemma 3.2. (i) G, ,(k)=G,k)=G, . (k) for each fixed k, o;
2

(ii) |G, (k)| <const In (1 +W) + const uniformly in o and
(0]

i) 6k<01f ozau ()

These conditions are sufficient to ensure that G, ,, are Hilbert-Schmidt
operators converging to G, , in the Hilbert-Schmidt norm, uniformly in «,

M
as g—oo, and to G,=G, , as k—oo. Also G, ,<0 if =g, <7) and thus

1. M 22 .
Gy o0 <m if =0, (7> and 6 =0, =0,(0, 4, M, p). If follows that **/%®.Gx.c.c0):

converges a.e. in g-space and that (since pA*G, 0e<2)

6, Grrgah) |
- P, K, 0,0 1t
lle? b= >
|/det,(1-pi*G, ,..)
ZellP¥Geelli <const,

if =0, and 62 0;. L, convergence follows immediately by uniform integrability.
Finally we come to

Xk,g,o(¢)5detjkslg,a(gj’ hk7 ¢K)e
=('Ps ®m(1 + /’{KK,Q,U)— 1¢)A’".7f

}’2
e— T Tr(KE 50+ Ky 0.0):

/12
—Tr(K¥ , o+ Ky 50)%
e dety(1+ K, ,.0),

dety(1+ 1K, ,.) 3.1)

where ¥ =Dyg,A... ADyg,,, P=S,g,A...ASyg,, are vectors in the m-fold antisym-
metric tensor product A™# of # =#,@C?. Here both D, and S, are isometries
from #* to . It is easily seen that K, , , € C; and converges in the C; norm as
K, d— 00, for almost all ¢; Seiler shows that this is true in the C, norm and a simple
interpolation argument gives the result for the C; norm also, see the appendix.
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It follows immediately that (X)"(1+AK, ,,)” 'dets(1+4K, ,,) converges in

norm in A™# as o, k— o0, for almost all ¢. Similarly K , ,+K, ,, converges

in Hilbert Schmidt norm as ¢—oco0 and by arguments similar to those for

(@, Gy, p,sP); - One shows that :Tr(K} , ,+K, ,,)*: converges a.e. as g, k— 0.

Thus we have shown that X, , .(¢) converges a.e. as g, k— 0.

To obtain a uniform L, bound, we note that by (3.1)

X, 0,0(P) 2

——Tr(K¥ ... +K

o) m _
<TT7=dlgil -5 lml e I&™(1+ 2K, ,,0) " dets(1+AK, 5 Il -
By an elementary generalization of the Carleman inequalities [6] one has

FHTEKS g0+ Ko o?
Lemma 3.3. |Q"(1+ 1K, ,,) " dets(1+ K, , ) pmpSe? ' ,

with immediately gives an upper bound uniform in o:

m A?
m 54 KTr(KE 4o+ Ko,
X, 0, DN =T Tre illgll - syl - 502 4

2 constln 1+—K—
én;"l:l”gjn—%”hj”—%eze ( #O)GLp(d:uO)'
Thus X, , (@) converges in L, (duo) to X, (¢) and we need only demonstrate
a bound uniform in x. However this is essentially what was done by Seiler, [2],
for the case ¢=0, and his method of proof extends immediately to ¢=0. This
completes the proof of the L,(du,) convergence of X, , ,(¢) and thus also of
Theorem 3.1.

We remark that we could equally well have considered a pseudoscalar Yukawa,
theory or a more general mass counterterm such as M[dx f(x):¢*(x):, | f1<g.

Note: After submitting this paper for publication, I received a manuscript from E. Seiler and
B. Simon proving essentially the same result, [7].

Appendix

We will show that the operators K=K(¢,) e C, for any p>2. We introduce
operators K® on # with kernels obtained by replacing (p* +m3) ' by (p*+m3)™*
in the definition of K(p, q), and the operators I, 0< B < oo, of multiplication by
(p*+mgy0(B— |p))sgna). Thus

_ 1) __ - 1- 1+ 1 1
K=KW=[{ 9K [PKU+P _Log p<t.

Since the characteristic numbers p,(C) (the eigenvalues of the operator |C| in
decreasing order) of a compact operator satisfy p, (AC)< | Al 14 C), pons 1(C1 +Cr) =
#AC 1)+ 1, (C5), we obtain:

Han+ 1(K)S(B? +md) | K ™2 on™* + (B> +mg) | KU *P| ;02 (A1)

where we have used [[I?|| =(B?+m2)* and u,(C)< | C llpn‘}T,C e C,. We now choose
B, depending on n, to maximize (A.1). Thus, for n sufficiently large, we define
B2+ m?=n*| K9, /| KA P )Ve*P and thus by (A.1):

Uops I(K)gconst HK(l —a)Hg/(Hﬂ)HK(l +ﬂ)”%/(a+ﬁ)n—%+%ﬂ/(a+ﬂ) . (A.Z)
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By studying the corresponding Feyman diagrams, it is clear that K ®eC,,
K1+ e C, for k>0, 0<a<}. It follows from (A.2) that K(¢,) € C,, p>2, k<0,
for we need only choose a/f>(4—p)/(2p—4), and then

K|, const [ KU~ [ K® gD,

To discuss the limit k—>oo we first consider the inequality corresponding
to (A.1) for ([duopa,+ 1(K)P)''? and again choose B as a function of n to maximize
this inequality. We conclude that K(¢,) converges in C,, p>2, to an operator
K(¢) for almost all ¢.
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