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Abstract. Dyson's power counting theorem is extended to the case where some of the mass
parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared con-
vergence conditions which combined are sufficient for the convergence of Feynman integrals.

1. Introduction

In the theory of renormalization Dyson's power counting theorem plays a
decisive part [1-3]. The contribution of a proper Feynman diagram to a Green's
function has the form

J = $dkR{k,p)

R = - P (1.1)

where

fc = (fci...fcj> P = (

kj = (kjokjikj2kj3), Pj = (PjoPjiPjiPji),

dk = dk1... dkm , dkj.. .dkjodkj1dkj2dkj3,

kj and pj are Minkowski vectors with the metric ( + 1 , — 1, — 1, — 1). The vectors
lj are linear combinations

) (1.3)

of the vectors kl9...,km and pί9 ...,pN with K/φO. P is a polynomial in the com-
ponents of k and p. The denominator of R is the common denominator of the
unrenormalized integrand and the subtraction terms.

If all masses are non-zero Weinberg's version of the power counting theorem
can be used to prove that the integral (1.1) is absolutely convergent provided the
renormalized integrand R has been constructed according to Bogoliubov's sub-
traction rules [3,4]. It can further be shown that the limit ε->+0 exists as a
covariant tempered distribution.

So far the power counting theorem has only been stated for non-vanishing
masses. In the present paper Weinberg's ultraviolet convergence conditions are
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supplemented by infrared convergence conditions which will be shown to be
sufficient for the convergence of integrals (1.1). The limit ε-» + 0 [5] as well as the
application to field theoretic models [6-9] are discussed in separate papers.

Our results are consistent with recent work by Bergere and Lam, as well as by
Trute and Pohlmeyer, on the asymptotic behavior of parametrized Feynman
integrals for small mass values [10-12].

Some general definitions are given in Section 2. Section 3 contains the state-
ment and proof of the power counting theorem. The concept of reduced integrals,
which is useful for some application of the theorem, is introduced in Section 4.

2. General Definitions

We consider integrals of the form (1.1). L denotes the space of the linear forms

I=tajkj+Σbjpj (2.1)

which will be interpreted as inhomogeneous linear forms in the integration varia-
bles kί9 ...,km. Elements of L are called linerarly (in)dependent if their homo-
geneous parts (in fe) are linearly (in)dependent. A set of elements in L is called
a basis of L if their homogeneous parts form a basis for the space of the homo-
geneous forms in k.

We observe that always for an absolutely convergent integral (1.1) a basis

exists consisting of linear forms which occur in the denominators of (1.1). Other-
wise there would be at most m' <m linearly independent forms

0..-.L. (2-3)
with the remaining lj being linear combinations of vectors (2.3) and pjt Extending
(2.3) to a basis

ljί9..., ljm,9 w l 5 . . . , w c rri + c = m

of L with Jacobian one (relative to /q,...,/cm) we find

J = μijι...dljm4w1...dwcR

with the divergent subintegral

Therefore, a basis (2.2) of L must always exist if the integral (1.1) is to be absolutely
convergent.

For the formulation of the power counting theorem we will need certain sub-
integrals which we set up as follows. Let

u1=liί9...9ua = lia,vί=ljl9...,υb = ljb (2.4)

be a basis of L with Jacobian one (relative to kl9...,km). Using (2.4) as new inte-
gration variables for (1.1) we obtain

J = $dudvR9

u = ( u ί . . . u a ) 9 v = ( v 1 . . . v b ) 9 (2.5)

du = du1 ...dua, dv = dv1 ...dvb
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where P and lj are expressed in terms of u, v and p through

k = k(u,v9p).

We consider a hyperplane H defined by the condition that the linear forms

have constant values. The subintegral of (1.1) along H is then given by

(2.6)

We distinguish two different definitions for the dimension of a subintegral (2.6).
The upper dimension dim refers to the behavior for large values of the inte-

gration variables. The lower dimension dim refers to the behavior for small
values of the integration variables. We define

dim J(H) = dzguR + 4a, (2.7)

dim J(H) = deguR + 4a . (2.8)

The upper degree degu (or lower degree degj denotes the leading power of ρ in
the limit ρ-»oo (or ρ->0) if Uj = ρύj is substituted into R. More precisely,

(2.9)

if
R R

l im-rφO, oo, lim— φO, oo (2.10)
ρ^ooQV ρ->θQY

for almost all values of Ml5...,wfl and the remaining parameters vu...,vb,p1,...,pN.
We quote some rules for the upper and lower degree. Let N,D,F,Fl9...,Fr

be complex-valued functions of real four-vectors uί,...,ua,v1,...,υb,pί,...,pN to
which the definitions degu and degu may be applied. Then the following rules hold

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

, (2.17)

. (2.18)
7 = 1 j
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Let F be a polynomial of u = (uu...,ua), v = (vl9...,vb) and p = (Pi,...,P]v) with
vectors wί} υj9 pr. Then we may write

a, δαΦO (2.19)

where Mα are independent monomials in u and Qα are polynomials in v, p which
are not identically zero. The upper and lower degrees of F are given by

uF = max {degMJ , (2.20)
(X

. (2.21)

3. Convergence Theorem

In this section the power counting theorem will be formulated for integrals J
of type (1.1) assuming that a basis (2.2) of L can be formed. Weinberg's hypo-
thesis of the power counting theorem may be stated as follows:

Ultraviolet Convergence Condition. The inequality

3 (3.1)

holds for any basis (2.4) and for any hyperplane H defined by constant values of
vl9...,vb.

In particular, the upper dimension of the full integral J should be negative.
Weinberg's condition (3.1) is sufficient for the absolute convergence of J provided
all masses are different from zero

In the general case we propose in addition the following

Infrared Convergence Condition. The inequality

dim J(H) = deguR + 4a > 0 (3.2)

holds for any basis (2.4) satisfying

W i i = = . . . = m . β = 0 (3.3)

and for any hyperplane H defined by constant values of vu.. .,vb.

The ultraviolet and infrared convergence conditions combined form the
hypothesis of the

Power Counting Theorem. Let J be an integral of the form (1.1) for which a
basis (2.2) of L can be formed. J is absolutely convergent if the ultraviolet con-
vergence condition (3.1) and the infrared convergence condition (3.2—3) hold.

Due to the inequality

-. < U I -+-•
o2
ε
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the absolute convergence of (1.1) is implied by the absolute convergence of the
corresponding Euclidean integral

J = $dkR(k,p)

R = ̂ - ^ (3.4)

7 = 1

where now

Therefore, we may restrict ourselves to proving the absolute convergence of (3.4)
under the conditions (3.1-3).

We begin proving a lemma on the infrared convergence of certain integrals
which are homogeneous in the integration variables.

Lemma. Consider integrals of the form

M
F= I duγ...du (3.5)

j

where the Uj are linear combinations of the Euclidean four-vectors uu...,ua and M
is a monomial in the components ofuu...,ua. M may be factorized as

M=f\Mί (3.6)

where Mt is a monomial of ut. For any subset

uiι9...,uic (3.7)

of the integration variables we form the integral

Fiι..Ac= J dUil...dUi.J?lι'"wϊγ, (3 8)

j

where the product Y[iltwmic extends over all Uj which are linear combinations of
j

vectors (3.7) only. The integrals (3.8) are called sections of (3.5).
The statement is that the integral (3.5) is absolutely convergent if the dimension

diχ ic of each section (3.8) is positive:

dimFilmmJe=diίmmmie>0. (3.9)

This condition includes the dimension of the full integral which we denote by d,

Proof We decompose the integral (3.5) into

p (3.10)
M

FP= j du1...duaγΛ 2
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with the sum extending over all permutations

Ί . . . α \
P =

h-h.

We will check the convergence of each term FP. In order to simplify the notation
we rename the integration variables and monomials by

Moreover, we denote the momenta Uj and exponents rij of the denominators by

Wli9...,W2l9...9...,WaU...

such that each Wtj is a linear combination of v ^ , . . . ^ with non-vanishing coef-
ficient of wv

i

wij= Σ ciji>Wi>> c u i * °

In this notation FP may be written in the form

2^1 l l l ^ l j ) j ^ ^ l l l l ^ V 2 ^ 2 | 1
J' J' j (3.11)

According to the hypothesis of the Lemma the dimension dc of each section

f ' = F ^^φr JJw WSF' αi2)

j J

is positive,

j

We choose a number δ with

dc satisfies the recursion formula

Ie j + ̂ - i (3.13)

|

(3.14)dc>δ>0

and form the

G= j d

for c =

integral

j

1,

I"1

...,α

; w 2 < ί 2 <
AΛK i

i ΓK^2/2'"'
J (3.15)

Since |w a |^ 1 and d—δ=da — δ>0 the integral Fp is majorized by G,

(3.16)
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We will prove the convergence of G by recursively estimating the integrals

Γ A M Γ A ^ <<XA1\
\j = I uW 4.1 ... I αW . ( 3 . 1 / )

j

The dimension of

\Na

is [see Eq. (3.13)]

Now, by a change of integration variable,

--' J flκr

In the last line the limit l/|Wα_i|-> oo could be performed since the dimension of
the integral is negative. Hence

where ya-ι is a constant.
Repeating this argument recursively we obtain

by Eq. (3.13-14). Finally

The integral on the right hand side exists since its dimension

dimF1-d1+δ = δ>0

is positive. By (3.16) each term of the decomposition (3.10) is absolutely convergent
which implies the absolute convergence of (3.5). This completes the proof of the
lemma.

We now turn to the

Proof of the Power Counting Theorem. Let So be the set of all momenta /,-
with m7 =0. Let S be any subset

SQS0

T denotes the complementary set

τ=so\s.



80 J. H. Lowenstein and W. Zimmermann

We require that with a momentum lj the set S should contain any lt which satisfies

/? = /*, m ~ 0 .

We decompose the integral (3.4) into

( 3 1 9 )

s
where

O +mj)
l?^r2inT j

For studying As we select momentum vectors

M 1 =/ i l , . . . , M β = /iβ (3.20)

in S which form a basis of S. Then /,-eS is a linear combination of u1,...,pί,...,

We say that S or the integral Λs has zero external momenta if β f = 0 for all l^eS.
For r small enough the term As vanishes unless all external momenta vanish.

For the proof we observe that u\^r2 since the ua occur among the lteS. The Uj

are of the form

UJ=

where \ηΛ\^η with ^ being characteristic number of the integral. Now

implies

r^γ^- for any Qj9

if the domain of integration is not empty. If at least one β + 0 we may choose r
such that

^ - . (3.21)
+ η

But then the domain of integration is empty and Λs = 0. Hence for r small enough
we find

(3.22)

where S is restricted to those subsets for which Qj = O for any IJGS.
In each integral As we introduce new variables of integration as follows. By

adding suitable vectors

v1=lj1,...9υb = lh, a + b = m, (3.23)
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we extend (3.20) to a basis

ul9...9ua,vί,...,vb (3.24)

of L with Jacobian one (relative to k1,...,km). Then each IJES is a linear com-
bination of u ί,..., ua. The remaining lj are linear combinations ofu1,...,ua,v1,...,υb

p l 5 . . . , p N . We next write the numerator P as a polynomial in u

Mx=f[Miaι, α = K,...,αα), (3.25)
i = l

w i t h t h e c o e f f i c i e n t s b e i n g p o l y n o m i a l s i n ^ i , . . . , ^ , pl9...,pN T h e n

α

^.= f duτ^Mvπ (pY'Π^p+mW ( 3 2 6 )

We now estimate the i -integrals

Q

To this end we consider the integral

p

SdvYlτ(i]+M2pγiu(i]+™ir> ( 3 2 8 )

with M > 0 . In (3.28) all masses are different from zero. Because of the ultraviolet
convergence conditions the integral (3.28) is absolutely convergent. Each lj in
(3.28) is of the form

Using

m m

we find

= C J

Hence

f ,
J VU(VJ
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is absolutely convergent. The denominator does not depend on u while the
numerator is a polynomial in u. Applying Lemma 3 of Ref. [13] we find that

cd C*fa P)
J

is absolutely convergent. With this we can estimate (3.27):

j \dV ;
M2

using ̂ — ^ — ύ H—j~

using

j / 2 + M? \L—V\ l/ - F l2

Ij + Mj = Mj M)

The integral of the last line only depends on p and the masses. Hence

ί duγ&ji (3-29)

The integrals on the right hand side can further be estimated by

f , \Ma\ d , , \MJ

i d u r r ! d uJ (]2\nj J ΓT (μ\nj

If ̂  in S llsih) ifέlinS HsVj).

lsVj)

where d is the dimension of the integral. Thus

UΊ^Σc* ί durπ]k (3 3°)
with the sum restricted to those Mα which occur in (3.25) with non-vanishing
coefficient. According to the Lemma (page 8 of this paper) we have convergence
of the integrals on the right hand side if the dimension of any section is positive.
In order to check the dimension d of the full integral

M
I= J duTTΨp ( 3 3 1 )

we form the subintegral

P (3.32)
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of (3.4) along a hyperplane H defined by constant values of vl9...,vb. By the
hypothesis (3.2-3) the lower dimension δ of J(H) is positive,

J>0. ( 3 3 3 )

This implies

0 < δ = 4a + deguP - deg Y\s(ljP - degM

Hence the dimension of (3.32) is positive.
We further have to verify that the dimension dh ic of each section

M

l l i l . . . / c ( / j )

is positive. Here M α l l lc is the restriction of the product (3.25) to factors depending
on uh ...wία. Πii. .ic denotes the product over all factors for which ijeS is a linear
combination of the vectors wfl ...wίc only. Useful information is obtained by com-
paring the expansion

. (335)

of P with respect to monomials Mα in u1,...,ua with the expansion

K' (3.36)

with respect to independent monomials Mf

a, in uh...uic only. We know that
Maiι ic occurs as a factor of at least one monomial Mα with C α φ0. Since the
monomials Mα are linearly independent the factor C'a> of M'a> = Maiι ic in (3.36)
must also be different from zero. This implies the inequality

degM,PgdegMβ ί l... ί c (3.37)

which will be crucial for the proof of the theorem. degu, denotes the lower degree
with respect to the variables u' = (uiί9...,uic). We now form the subintegral

^ (3.38)

along a hyperplance W defined by constant values oiυu...,vb and the momenta
Uj which do not belong to u'. The lower dimension δ' of (3.38) is positive by
hypothesis (3.2—3),

With (3.37)
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follows. Hence the dimension dilmmΛe of (3.38) is positive. According to the lemma
each integral on the right hand side of (3.30) converges. This completes the proof
of the theorem.

4. Reduced Integrals

In this section we discuss integrals of the form

f β ϊ (4.1)

in the notation of (1.1) and

M.
- , nj>0, (4.2)

where Mj is a monomial in k and p. For integrals of this type we introduce the
concept of the reduced integral. Let

S = (lh,...,lj) (4-3)

be any subset of the momenta lί9 ...,/„. From the elements of S we select a basis,
i.e. we choose linearly independent forms u1,...,ua of L such that each IJES is
a linear combination of uί,...,ua and p1,...,pN. With respect to S we form the
reduced integral

/ r e d (S)α $du1...duaY\sAj(lj)

lj = lj(u,p), u = (u1,...9ua)

where the product Y[s extends over the ijβS only. The reduced integral (4.4) is
defined up to a factor which depends on the chosen basis.

Of special interest are reduced integrals of vanishing masses and vanishing
external momenta, i.e.

nij = 0 if ijeS,

lj = lj(μ), independent of p, if IJES .

In this case each factor Afij) occurring in the reduced integral is homogeneous
in u.

In case that (4.1) represents an unrenormalized Feynman integral the reduced
integrals have a simple graphical interpretation: /red(S) is the Feynman integral
which corresponds to the reduced diagram S' = S/T where all lines of T have
been contracted to a point.

With the concept of the reduced integral we can give an equivalent formula-
tion of the infrared convergence condition for integrals of type (4.1)1. Consider
a basis

u 1 = lh,...,ua = lia, Vi = ljl9...9vb = ljb (4.5)

of L with

m ί l = . . . = m i β = 0 . (4.6)

1 This formulation was used by Mack [14] to study infrared convergence of integrals like (4.1)
in the context of conformally in variant theorems.
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For any such basis the infrared convergence condition reads

We now form the reduced integral

/ r e d(S)α μuUsΔβj) (4.8)

with respect to the set S of all momenta lj with m^ = Q and lj = 0 at u = 0. Then
for any IjφS we have

1 if ijφS.
θJ Jor /yΦO at M = (

Therefore,

degu Y\ Aβj) = deg Πs^Λ") (4-9)

and

ι(S). (4.10)

Hence an equivalent formulation of the infrared convergence condition for the
integral (4.1) is

dim/ red(S)>0 (4.11)

for any set S of momenta lj with

\ if LeS. (4.12)
and lj = 0 at κ = 0J J

With this result, we are able to formulate the infrared convergence condition for
an integral of the type [notation of (1.1) and (4.1)]

βj (4.13)
7 = 1

where Q is a polynomial in k and p, in terms of a power counting criterion in-
volving the formal integral

μkγ\SoΔj(lj) (4.14)

where the product is restricted to the set <S0 of momenta with m7- = 0. In particular,
we have the following

Corollary to the Power Counting Theorem. The integral (4.13) is absolutely con-
vergent if the ultraviolet convergence condition (3.1) holds and if any reduced
integral of (4.14) with vanishing external momenta has positive dimension.

Proof

^£guδ Π Δj(lj) = degMρ + degu f[ Aft)
J = l J = l
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Hence the infrared convergence condition of (4.13) is implied by that of (4.1).

Any reduced integral of (4.1) with (4.12) is also a reduced integral of (4.14). This

completes the proof.
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