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Abstract. It is proved that the relative entropy for a quantum system is non-increasing
under a trace-preserving completely positive map. The proof is based on the strong sub-
additivity property of the quantum-mechanical entropy.

The object of this note is to prove that the relative entropy functional
for a finite quantum system is nonincreasing under a trace-preserving
completely positive map of the state space into itself. This theorem is a
generalization of an earlier result for expectations [1] (since expectations
are completely positive maps [2]) which is in its turn a generalization
of a well-known theorem in information theory [3, 4]. The proof is based
on the strong subadditivity property of the quantum-mechanical entropy
which was derived recently by Lieb and Ruskai [5] from certain trace
inequalities proved by Lieb [6] and, in an alternative way, by Epstein [7].

The physical interest of completely positive maps lies in the theory
of measurements and the operational approach to quantum mechanics
[8, 9]. We will give some simple arguments that the operations should
be chosen to be completely positive.

Denote by B(jj? ) the bounded operators in a separable Hubert
space $e, by Tpf) the trace class operators in 2tf and by T+(jf) the
positive elements in Ύ(ffl ). Furthermore, let Mn be the algebra of n x n
complex matrices.

Let A9BeT+(Jίf). Define the operator-valued entropy by S(A)
= -A\nA.

Let λ e (0, 1) and define

Sλ(A\B) = λ~1 [_S(λA + (1 - λ)B) - λS(A) - (1 - λ)S(BJ]

The relative entropy is defined by

= ]imSλ(A\B).

From Lemma 4 of [10] it follows that this definition is equivalent
to that used in [1, 10].

We know that Sλ(A\B) is positive [10], hence the trace is well-defined,
eventually infinite. When λ JO, Sλ(A\B) is monotonously increasing,
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hence the limit S(A\B) exists. If S(A\B) < oo then

S(A\B) = ]imSλ(A\B)

exists as a strong limit. From the properties of the trace follows that

S(A\B) = sup sup Tr PSλ(A\B)
P λ

where P runs over the finite-dimensional projections in ^f.
A linear positive map Φ of a C*-algebra s$ into a C*-algebra $ is

called completely positive if the induced map

is positive for all n [11]. Stinespring [11] has proved that if ja/ is a C*-
algebra with unit and if & = B(3?) then there is a ^representation
π of j/ in a Hubert space Jf" and a bounded linear map V: 3? -> 3tf '
such that ΦA = V+ π(A) V. Conversely every map of this form is completely
positive. It is obvious from the definition that the class of completely
positive maps is closed under composition and positive linear combina-
tions. Let Φ be a positive linear map of T(2? ) into itself which preserves
the trace i.e. Tr ΦA = Tr A, all A e Tpf ).

Consequently Φ maps the set of density operators into itself. Assume
that Φ is completely positive with a definition analogous to that above.
Then the dual map Φ+ defined by

for all XεB(3f\ A e T f f l ) , is a completely positive normal map of
Bpf ) into itself, Φ+ 1 = 1 and consequently ||Φ+ || = 1. We can of course
consider Φ to be the dual of Φ + , restricted to the normal linear functionals
on B(tf).

Denote by CPpf ) the set of all completely positive maps Φ+ oϊB(34?)
into itself and let CP^} be the subset satisfying ||Φ+ 1| ̂  1.

The definition of a completely positive map has an interesting physical
interpretation. Regard Φ as an operation [8, 9] on the space of normal
states, i.e. the density operators, of a finite quantum system (1). Let Mn

describe a quantum system (2) which is independent of (1), i.e. the Hubert
space for the combined system (l) + (2) is the tensor product 3tf
= ̂ f1®^?2 where dim 2tf 2 = n. Then Φn describes the resulting opera-
tion on the system (l) + (2) provided that Φ does not influence system
(2) directly: Φn(A^®A2) = ΦAΐ®A2. The condition that Φn is positive
is obviously necessary in order that states for the total system shall be
mapped on states.

It is reasonable to assume that the operations arise through the
interaction of the system with an external quantum system i.e. that they
are of the form [10]

ΦA = Ύr2U
+(A®B)U
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where A e T(Jf J, B e T+ pf2) and U is unitary in ̂  ® Jf2. Then Φ is
completely positive. In fact if {|i >},{!&>} are complete orthonormal
sets in ffl \ and Jf 2, respectively, then

satisfies

which is completely positive by Stinespring's theorem.
We will see below that any trace-preserving completely positive map

can be approximated by maps of this type. As examples of completely
positive maps occuring in the theory of quantum measurements (apart
from the expectations [1]) we can mention the imperfect measurements
defined in [10] § 5 and the co variant instruments defined in [12] Theo-
rem 4.

Theorem. If Φ is a completely positive trace-preserving map o
into itself, then for all A, £e

S(ΦA\ΦB)^S(A\B).

The theorem will be proved via a number of lemmas.

Lemma I. If A, An, B, Bn e T+ (jίf) and if An -+A,Bn^>B uniformly then

S(A\B)^\immϊS(An\Bn).

Proof. Obviously S(An) -> S(A) and S(Bn) -> S(B) uniformly. Conse-
quently ΎrPSλ(An\Bn)^ΊΐPSλ(A\B) for every λ and every finite
dimensional projection P. The statement follows from

S(A\B) = sup sup Tr PSλ(A\B) .
p λ

Lemma 2. Let tf = 3#Ί®tf2 and put A^=Ύτ2A for AeT+(Jίf).

S(A1\B1)^S(A\B).

Furthermore, if Al9 B 1 e T + ( J ί f 1 ) 9 A2<ΞT+(3P2\ and Tr A2=i, then

Proof. The first statement is the strong subadditivity as formulated
in [1] Proposition 2. The second statement is trivial.

Lemma 3. Φ+ belongs to an extreme ray in CP (J^f) if and only if it is of
the form Φ + (X) = V+ X V where V e B(3f\ The finite linear combinations
Σ" Vt

+ X Vi9 Σ
n V+ V^I are dense in CP1 (3?) in the sense of weak operator

convergence for every X.

Proof. The first statement follows from [13] Corollary 1.4.3, [14]
4.7.22 and the fact that Φ+ is normal. The second statement follows from
[13] Lemma 1.2.4 and the Krein-Milman theorem.

Lemma 4. Let Φ be a trace-preserving completely positive map of T(jf )
into itself, and let {Pn} be a family of finite-dimensional projections such that
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Pm^Pn for m^n and such that Pn->I strongly when n-> oo. Then there
is a family {Φn} of completely positive maps such that Φn is trace-preserving
on Pn$e and ΦnA -> ΦA uniformly for all A e T+(Jίf).

Proof. First note that An=PnAPn^A uniformly when w->oo ([1],
Lemma 4). We can write A - An = A+ - A~ where A+ and A~ are in
T+(JP) and A+A- =0. Obviously ΦA^' e T+W) and Tr ΦA^~ ->0
when n-»oo. Consequently ||Φ^f"||-»0 and \\Φ(A — AJ\\-*Q when
n-*oo. Define Φ'n through Φ'nA = PnΦ(An)Pn. Then

\\ΦA-Φ'HA\\ £ \\ΦA-PnΦ(A)Pn\\ + \\PHΦ(A)Pn-Φ'HA\\

ΦA\\^>Q when n->oo.

Define Φn by ΦnA = ΦnA + VnAVn where 7n - (PΛ - Φπ

+ /)*. Then
||ΦnA - Φ^ || -*0 and Tr ΦnA = ΊτA for all A such that A = An.

Lemma 5. Assume that 3tf is finite-dimensional and put ΦA = Σn VtA V*
where V{ ε B(3?\ Σ" Vl^Vi = I (i.e. Φ is trace-preserving). Then

S(ΦA\ΦB)^S(A\B).

Proof. Put JP ' = 3e®$en where dim tfn = n. Let {|ι>} be a complete
orthonormal set and |α> an arbitrary unit vector in j(?n. Define

Then W+ W = /®Pα where P^ = |α> <α| and there is a unitary operator U
in W such that W=UI®PΛ. Consequently

U(A®PJU+=ΣViAV+®\iy<j\

Tr2 U(A ® PΛ) U
+ = Σ VtA V+ = ΦA .

From Lemma 2 follows that

Lemma 6. Assume that 2? is finite-dimensional and let Φ be a trace-
preserving completely positive map of B(^) into itself. Then

S(ΦA\ΦB)^S(A\B).

Proof. Lemma 3 implies by duality that Φ can be approximated by
finite linear combinations

with Φ+ / - Σ Vt

+ Vi ̂  I. Then

where Vn+i=(I — Φ*I)*9 is trace-preserving. From Lemma 5 follows
that for all positive A9 B

S(ΦnA\ΦnB)ZS(A\B).
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Due to the fact that dim 2tf is finite we obtain uniform convergence
ΦnA — ΦA -> 0 for every A. Obviously

S(ΦA\ΦB) = lim S(ΦnA\ΦnB) ^ S(A\B).
n

Proof of the Theorem. Choose a set of projections {Pn} and define Φn

as in Lemma 4. From Lemma 6 above and Lemma 3 of [1] we know that
for every n

S(ΦnA\ΦnB)^S(An\Bn)^S(A\B).

From Lemma 2 follows that

S(ΦA\ΦB)^limMS(ΦnA\ΦnB)^S(A\B)

and the theorem is proved.
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