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Abstract. It is shown, using the BPHZ renormalization program and Zimmermann's
normal product algorithm, that a strictly renormalizable effective Lagrangian for the
Abelian massive Higgs model does exist: Ward identities are fulfilled, and normalization
conditions, defining a theory in an indefinite metric Fock space, may be implemented.

1. Introduction

A number of examples of renormalizable Lagrangian models in-
volving symmetry breaking [1-3] have been recently formulated, in
versions which do not make use of any symmetric regularization proce-
dure [4-7]. The basic tool is the so-called "normal product algorithm"
(NPA) due to Zimmermann [8], which provides a cut-off free formulation
of the BPH renormalization procedure.

For models in which symmetric mass parameters do not vanish, there
are two alternative ways of using the NPA: one which respects the super-
renormalizibility of the non-symmetric couplings [6, 9] and which we
shall call, according to Schroer's terminology, "soft quantization", and
another one, the "hard quantization", which treats all couplings as
having power index 4 [4, 5]. These two methods yield identical Green's
functions, according to an equivalence theorem [10,6]. The first approach
meets, however, difficulties in cases where some symmetric mass
parameters have to vanish, whereas the second method is applicable to
all cases - and only meets difficulties in principle when some renormalized
masses vanish.

Recently, Lowenstein, Weinstein and Zimmermann [6] have for-
mulated the soft renormalization method for the massive Abelian Higgs-
Kibble model in the Stueckelberg gauge [11] (massive QED of the σ
model). In this case, the equivalence theorem [6, 10] ensures that the hard
renormalization procedure exists. It turns out, however, that a direct
formulation of this hard renormalization is not completely trivial, which
is the motivation of this paper.
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2. Construction of the Effective Lagrangian

The Abelian massive Higgs model is characterized, in the tree
approximation, by the Lagrangian obtained by performing a σ field trans-
lation v on the Lagrangian for the electrodynamics of the σ model:

q> _ c£> I a?
°̂  tree °^ 0 ~ °^ I, tree

— eυAμdμπ

-eAμ(πdμσ — σdμπ)
9 \ Λ / 9 9\ 9 v /

The notations are the following. The diagonal elements of the metric are
(1, — 1, — 1, — 1). The spontaneous breakdown parameter υ is the
vacuum expectation value <φ> of the complex scalar Higgs field φ = v
+ σ + in, so that <σ> = <π> = 0. Aμ is a vector field, with mass m in the
symmetric limit ι; = 0, and Fμv = dμAv — δvAμ; d means the gradient
operator dμ: e.g., dA = dμA

μ.
At the symmetric limit v = 0, ̂ tree is left invariant by gauge trans-

formations, with the exception of the mass term A2 and the gauge term
(dA)2. Symmetry breaking (t ΦO) does not alter the charge conjugation
symmetry, under which the σ field is even, and the π and A fields odd.

An alternative but equivalent characterization of this model in the
tree approximation is provided directly in terms of Green functions. This
is done by requiring the Ward identities (notation will be explained in
Appendix A)

m2 + — d2} dA(x) = - evμ2π(x) + e(σ(x) + v) δπ(x)

-eπ(x)δσ(x)-dμδAμ(x) (2)

(in fact, only the equality of the σδπ and —πδσ terms is required) and the
8 normalization conditions for the vertices (one-particle-irreducible or
"proper" Green's functions; the definitions are given in Appendix A)

Γσσ(p2 = m?) = 0, -^ Γσσ(p2 = m2) = i

ΓL(P2 = m2

A) = V, -^ Γτ

AA(p2 = m2

A) = i

ΊΛ.: (3)
= m2= -24ιλ

\syrn pt.
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where

D(p2)^ΓππΓΪA + ΓπAμΓπAμ (4)

and κ2, χ2 are the zeros of

-^(p2-μ2

π)(p2-am2-ae2v2) + e2v2

P

2 = 0 (5)

i.e., the zeros of Eq. (4) calculated from the tree Lagrangian (1). ΓAA and
ΓAA are the transverse and longitudinal parts of the two-vertex for the A
field:

The first four normalization conditions define the masses and
scales for the physical fields σ and Aτ the fifth defines the 4 — σ coupling
constant, the sixth the symmetry breaking parameter v. The last two
define the masses κ2 and χ2 of the ghosts [12]: recall that the matrix
propagator for the two coupled fields π and AL, AL being a ghost, is
given by minus the inverse of the matrix

" Γππ(p2) ΓπAv(p)

The six physical parameters of our theory will thus be m\, m2, λ, v, κ2,
χ2 or, equivalently, those appearing in the tree Lagrangian (1), with the
relations

=

κ2, χ2 are the roots of Eq. (5).
We now turn to the "hard" quantization of this model: we shall

construct an effective Lagrangian JS?4 (all couplings are treated as having
power index 4), such that Ward identities with the structure of Eq. (2)
and normalization conditions (3) are fulfilled in all orders of perturbation
theory. For this purpose, we shall make extensive use of Zimmermann's
effective equations of motion and Zimmermann's identities relating
normal products of different degrees [8]. The procedure applied here
was first designed for the σ model with nucleons [5].

Let us write the most general effective Lagrangian ^4 such that
charge conjugation symmetry holds. No linear term will be present,
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because of the conditions: <Λ> = <σ> = <π> = 0;

σ)2 + \ dπ(dπ)2

— tA -dπ + uσA2 + A •(εππdσ — £σσdπ) (6)

+ A2(hσσ
2 + M2) ~ OX + fπn

2)σ

This Lagrangian contains 19 parameters, which will be reduced to 8 free
parameters by requiring the proper Ward identities. The effective
equations of motion for the σ, π and A fields are, in the symbolic nota-
tion (A.6) of Appendix A:

dad
2σ=-Sσσ

2+Sσ+δσ

2

with

Sσ = uA2 - εππdA - (επ + εσ)A dπ + 2hσA
2σ

-3fσσ
2-fππ

2-4gσσ
3-2gσπσπ2

π
ί O )

- 2/πσπ - 2gσπσ
2π - 4gππ

3

jμ = 4vA2Aμ - tdμπ + 2uσAμ + εππdμσ

Now, taking the divergence of the equation of motion for A, eliminating
terms such as 52π, πd2σ and σd2π by use of the proper, possibly non-
linear, versions of the effective equations of motion for σ and π with the
correct degree's assignments (Appendix A), and applying the rule [13]:

we obtain

(M2+γd2)dA=

+ - - Λ^3[Sπ] + N4 - σ(Sπ - ρππ + tdA)--- π(Sσ - ρσσ) (9)
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Using Zimmermann's identity, we may reduce the N$ product to an N4

product :

_ (AT - JV4) [Sπ] = - NJrt nd2σ + r2σd2π + r3dσ dπ + r4σπ3

A -πdπ (10)

r10σπA2 + rllLA2dA + r12A
μAvdμAv + r^

The 13 reduction coefficients rf are expressed in Appendix B as proper
Green's functions evaluated at the origin of momentum space (in fact,
due to Bose statistics and Lorentz co variance, r2 = r3 and r9 = 0).
Eliminating the πd2σ and σd2π terms in Eq. (10) by use of the equation
of motion, and substituting in (9), we obtain

dA= --~ρππ+-—δπ
dπ d^

(11)

The last term is a sum of 14 independent products. In order to obtain a
Ward identity with the same structure as in (2), we have to cancel them
and, moreover, to require the equality of the σδπ and — πδσ terms:

This leads to 15 equations between the 19 coefficients of J^4. 11 equations
allow us to express implicitly these coefficients in terms of eight free
parameters α, fo, c, d, 0, w, ε, and ρ, according to:

w2 r

ε ε

= w(\+d); u = εw(i+d)+—r2; βσ = e(l

W
4 π

O c> c>

1 r
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As we shall see later, the remaining four equations are then identically
fulfilled.

The eight free parameters can be recursively determined as formal
power series by the normalization conditions (3), for instance. The
presence of couplings involving the reduction coefficients rt does not
make any difficulty. Indeed, let us take h (the number of loops) [14, 10]
as the expansion parameter; the rf's are given by superficially convergent
one-particle irreducible graphs [see their expressions (B.3)], so they are
calculable in order n in terms of the (n— i)st approximations of the
parameters a,b,c.... (For instance, in the tree approximation, η = 0;
b = d = Q,a = m2, c = μ2, g = 1/α, w = ev, ε = e, ρ = λ, so that the recursive
procedure can start.)

It now remains to prove the Ward identities, the effective Lagrangian
being (6) with assignments (13). Identities (11) have now the form:

(a + gd2) dA + dμδAμ + cwπ - wδπ - &(σδπ - πδσ)

= ΛΓ4[Θ] ( j

where

^4= - J l i - f l ^

The four equations left over during the reduction of the 7V4 products in
(11) are precisely the equations #j = 0, / = ! , . . . , 4. What remains to
prove is that they are fulfilled to all orders in h.

By standard methods [see, for instance, Ref. 1], we can express
identities (14) in terms of proper Green's functions; in momentum space:
7 n^ Γ" ίrt Ί<Γ P Π\ _1_ I Λ > Γ1 (If 'P n n\1P 1 μμί...μsσ

MπN\P> ^' * •> \L) ' W 1 μi .- μsσ
MπN + l(^ ? "-> ̂  P)

N

JM' (16)

+ ε Σ /; ι...μsσM-ιπN+ 1(K;P^;β,P + Pj)
7=1

= -i^μι...μsσMπW(p;ί:;P;β); (S,M,N)Φ(1,0,0) or (0,0,1).

Here P = (pί...pN), Q^(q1...qM)9 K = (k1...ks)\ p+Σkt+Σpj
+ Σqk = Q Q^ means that element ^ has to be omitted from Q. The
right-hand side is a proper Green's function involving the normal
product ΛΓ4[Θ].



Construction of a Strictly Renormalizable Effective Lagrangian 25

Among identities (16), let us select those whose right-hand sides do not
possess a Born approximation, and write them symbolically as

μi -.μsσ π . μi .μsσ π ,^

(5, M,]V)Φ(1,0,0), (0,0,!);(!, 2,0), (1,0, 2), (2,1,1) or (3,0,0).

One remarks that the R^s may be expressed as linear combinations of
derivatives of left-hand sides of identities (17) taken at zero momenta
[use expressions (B.3) of Appendix B]:

^ = wcwr-ίp; "p'0;0)- ̂  (0: -" 0;^ »
d2

dp δq " π " π ' p-1-

if.1 P2

Ό p,-P,0)-w;3(p;-ps0,0)].=o

w

3

R3 = -3— »;„*(-?; 0;0;p,0)|p=0

(0;0, -p p)- Wμvπ(p 0, -p;

It is easy, now, to prove by induction the desired result. In the tree
approximation (zeroth order in h) Rt = 0. Suppose now that Ri = 0 up
to and including order n—i. Since the right-hand sides of identities (17)
have no Born approximation and are linearly homogeneous in the Rt\
the left-hand sides are zero in order n. Hence, by the remark hereabove,
RI = 0 in order n.
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Appendix A - Some Notations

Let X denote any string of fields

X = Aμi(Zi)... Aμs(zs)σ(x1)... σ(xM)π(yl)... π(yN). (A.I)

Disconnected, connected and proper (one-particle irreducible) Green's
functions are respectively:

Gμί.,.μsσMπN(zί ...zs;xί...xM',yi...yN)

Gc

μί...μsσMπN(...) (A.2)
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Fourier transforms are defined, e.g., by

•^μι...μsσ"«"(fcl - - ^S ί Pi ' ' PM \ <Zl ' - <?*) (A.3)

= j Π dzj Π dx J Π dΛ e'<Σ^ + ΣPI*I + Σ«ι*) <τ*>p .

Green's functions involving a normal product A^[θ] (x) of degree (5
associated to a polynomial of fields θ(x) [8] are noted

Classical equations of motion are the Euler-Lagrange equations
δ<&(x)/δΦ(x) = Q, Φ(x) being any field Aμ9 σ or π. For the case in which
all couplings in the effective Lagrangians are taken with power index 4,
the quantized effective equations of motion [8, 12] are the following
relations between Green's functions (linear and bilinear equations only
are considered here):

(A.4)

TN4 Φ, — (x)X + <TΦ1(x) δφ2(x)Xy = 0.

The "contact terms" δφ are defined by (e.g., for Φ = Aμ):

<TδAμ(x)Xy EE -i ^δ(x-z^) <T^> (A.5)
7=1

where Jί̂  means that field Λμ.(z^ has to be omitted in string (A.I).
Identities like (A.4) will be written symbolically as

^ = 0 (A.6)

keeping in own one's mind the proper degree's assignments explicitly
displayed in (A.4).

Appendix B

We give here closed expressions for the reduction coefficients rt of the
Zimmermann identity (10). They are calculated as usual by use of the
normalization conditions for normal products [8]. We obtain, for
instance [we replace t/dπ by w, anticipating results (13)]:

π ] (0) σ(p) π(0)/|p=0
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By use of the equation of motion (7) for the π field, we easily verify that,
for proper Green's functions

(if X*π or Aμ)

and also

The expressions for the rf's are thus:

w d2

8 (oq)

r4= i-^-Γ^O; 0,0, 0,0)
o

w
r5-zVr-3-2(0'0'0'0'0)6

w

a" (B.3)

w d
Q

w

^/vΓ/i
O

" A -

- 5r12 = — fifvΛ— — Γμvlπ(0, k, 0; -/c)|i=04 " δk.,

48 raι,\2 zi, Γ^k\~k)\k = o
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One also has

12 okμ

The following two identities are true:

r2 = r 3; r9 = 0. (B.4)

Indeed, Γσπ2(p;q, —q — p)is symmetric under the interchange q +± — p — q
at p fixed (Bose statistics); moreover, this function is a scalar: then

with x = p2, y = q(p + q)l hence the result r2 = r3 is easily derived. To
show that r9 = 0, one remarks that Γμπ3(0;g, — g, 0) must be even in q
due to Bose statistics; on the other hand, it is a vector: therefore it has
to vanish.

We finally note that the rf's (B.3) are given by one-particle irreducible
graphs which have at least one loop: they vanish identically in the tree
approximation.
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