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Abstract. The equivalence of a Gibbsian equilibrium condition and the KMS con-
dition is proven for one-dimensional quantum lattice systems with a finite range interaction
at arbitrary temperature, and for quantum lattice systems of arbitrary dimension, with a
finite body interaction, at high temperature.

§ 1. Introduction

There are a large number of conditions which characterize equilib-
rium states of infinitely extended lattice systems (see [5] for example).
Most of them are known to be mutually equivalent for classical and
quantum lattice systems. One exception has been the equivalence of the
Gibbsian equilibrium condition and the KMS condition for quantum
lattice systems. We shall show this equivalence for one-dimensional
quantum lattice systems at all temperatures and for a general class of
quantum lattice systems at high temperature.

In Section 2, we shall fix our notation and terminology. In Section 3,
we collect some technical estimates. In Section 4, we formulate a Gibbs
condition, which becomes equivalent to equilibrium conditions of
Lanford and Ruelle, and Dobrushin when the interaction is classical.
In Section 5, we derive the equivalence of the Gibbs condition and the
KMS condition. In Section 6, we derive the equivalence of the Gibbs
condition and the variational principle when the state is invariant under
lattice translations.

§ 2. The KMS Condition

We consider a v-dimensional quantum lattice system. For a finite
subset / of Έv, N(I) denotes the number of points in / and d(ϊ) denotes
the largest distance between 2 points in /.

The C*-algebra 9ί (of quasi-local observables) contains a sub-C*-
algebra 2ί(7) for each subset I oϊΈ satisfying the following conditions:
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(1) 21(7) for each finite subset / is a full matrix algebra of some finite
dimension. (2) If 7 and Γ are disjoint, 2t(7) and 21(7') commute element-
wise. (3) If / is the union of In, then 21(7) is generated (as a C*-algebra)
by the union of 91(4). For each Q e 21, we call the infimum (in the set
inclusion order) of sets / satisfying Q e 21(7) the support of Q and denote
it by suppQ. We denote N(Q) = N(suppQ)9 d(Q)~d(suppQ). \\Q\\Nύn

denotes the infimum of £ IIQill such that β = Σ β f

 a n d

such { β j does not exist, we define | |β | | jv^w= oo. | |β| |d^m denotes the
infimum of £ ||βill such that Q=YjQi and d(βf) ^ m. If such { β j does

i i

not exist, we define | | β | | d < m = oo.
A representation τ of the translation group Έ by ^-automorphisms

of 21 is supposed to exist such that τ(x) 2ί(7) = 21(7 + x) for every x e Έv,
where I + x = {x + a; ae I}.

For each finite subset 7 of Έ, we are given a self-adjoint element
Φ(I) e 21(7), called an interaction potential, satisfying the following
conditions: (1) Φ (empty set) = 0, (2) τ(x) Φ(I) = Φ{I + x), (3) | |Φ||
ΞΞ Σ ||Φ(/)||/JV(/)<oc. Let iV(Φ) denote the supremum of N{I) such that

Φ(7) =(= 0. In the following we shall be interested in Φ with a finite N(Φ)
(namely the case where n-boάy interaction is absent for large ή). Let
d(Φ) denote the supremum of d(I) such that Φ(7) Φ 0. A finite range
interaction is characterized by d(Φ)< oo.

The energy UΦ(I) in a finite region 7 is defined by UΦ(I) = £ Φ(7')
/'CJ

We have \\UΦ(I)\\ SW\ N(I). The time translation automorphisms σt

for — oo < t < oo are defined by

σtQ=\imeίuΦ{I)tQe-iUΦ{I)\ β e 2 I (2.1)
/->oo

where the limit is known to exist if N(Φ) < oo. ([13] or [15]. For a weaker
condition on Φ, see [14], p. 193.)

A state φ of 21 is defined to be a KMS state with an inverse temperature
β (in the units where the Boltzmann constant is 1) if φ satisfies the follow-
ing KMS condition: For any elements Qί and Q2 in 21, there exists a
function F(z) oϊz in the complex plane which is continuous for Im ze [0, β],
holomorphic for Imze(0,j8) and satisfies F(t) = φ(Q2σtQ1)9 F(t + ίβ)

pMQi)Qz)
For each state φ, there exists a Hubert space Jί?φ, a representation πφ

of 2ί on JίPφ and a cyclic vector Ωφ e Jf such that φ(Q) = (Ωφi πφ(Q)Ωφ).
(Here an inner product (x, y) is linear in y according to the physicists'
convention.) If the state is invariant under time translation (namely
φ(σt(Q)) = φ(Q) for any Qe2i, ίelR), then there exists a strongly con-
tinuous unitary representation Uφ(t) of telR such that Uφ(t)πφ(Q)Ωφ
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If φ is a KMS state, φ is invariant under σt. Furthermore the vector
Ωφ is cyclic and separating for the von Neumann algebra $R = 7^(91)".
(The cyclicity by definition, and the separating property by the KMS
condition.) It should be added that 21 is simple, πφ is faithful and hence
φ is faithful.

By Stone's theorem, there exists a self-adjoint operator Hφ such that
Uφ(t) = eiHφt. The positive self-adjoint operator

Δ=e-'H*{ = ΔΩφ) (2.6)

is called the modular operator for the cyclic and separating vector Ωφ

of SOI. The automorphism σf — σ_βt is called the modular automorphism.

§ 3. Technical Lemmas
/. Time Translation

First we consider the case of arbitrary dimension v and a finite-body
interaction (N(Φ)<oo). Let δAQ denote the commutator [A, Q] and
δuφ(i)Q= Σ [Φ(J X Q] f°Γ finite or infinite I. The sum is norm con-

Γci

vergent if | |β| | jv^w< °o for some m.

Lemma 1. // N(Φ) < oc and | | β | U ^ w < oo for some m, then

\\(δUφ(I)TQ\\^{2(N(Φ)-ί)\\Φ\\γ(n-l)\ana\\Q\\N^m (3.1)

where | |Φ|Γ= Σ II^WII and a = m/(N(Φ) — ί). The power series
IaO

σίQ= Σ " ' ^ ( i O - ί V u / β (3.2)
n = 0

is absolutely convergent for

'Γi
\t\<r(Φ)^{2(N(Φ)-ί)\\Φ\\'

if Il6lliv^m< °° for s o m e m- The convergence is uniform for \t\ ^ T and
\\Nίm^MifT< r{Φ). For such t and Q9

sm (3.3)

for some constant a(T; m).

The proof is essentially in [13]. We denote σf by σt.
The corresponding Lemma for the case v = l is the following:

Lemma 2. // v = 1, d(Φ) < oc and | |β| |d<m

 < °°Ϊ then the power series
(3.2) converges absolutely for any t in the complex plane. The convergence
is uniform for \t\ S T for any T and (3.3) holds for some constant a(T; m).
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The proof is in [2].
The absolute convergence in the above Lemmas is established for

the series (3.2) after the defining summation for (δuΦ{I))
nQ is substituted.

From this it immediately follows that under the conditions of Lemmas 1
and 2

lim σ/ Q = σt Q (norm convergence). (3.4)

If / is finite, then

σt

IQ = eiUΦ{I)tQe-iυΦ{I)t. (3.5)

If t is real in addition, σ/ for finite / obviously extends to a one-parameter
group of ^-automorphisms of 51. Hence ||σ/|| = 1 for real t. By taking
limits, we obtain the same properties for general / and in particular for
σt; so then (3.4) holds for extended σf and σt.

For real 5 and ί, we have σt

I

+sQ = σ/(σ/β) for any / and Q e 5ί. By an
analytic continuation, the same equation holds for complex s provided
that the two sides are definable by (3.2). Hence we may define σ*+is for
real t and s satisfying \s\ < r(Φ) by

σt

I

+isQ = σt

I(σι

I

sQ). (3.6)

2. Surface Energy

Let /'\/ denote the intersection of Γ and the complement Γ of /.
Suppose ΓDI and let

WItΓ= Σ Φ ( W 2 ) , (3.7)
0 ΦIiCJ, 0 Φ/2CJ'\/

W^Ww (3.8)

Wj is the sum of the interaction potential across the boundary of / and
its complement.

Lemma 3. As a finite subset Γ tends to Έv, || Wι Γ — Wj\\ tends to 0 if
JV(J)< oo.

Proof. This follows from the absolute convergence of the sum (3.7)
for Γ =ΈV and finite /. The latter follows from

Σ\\*(hvi2)\\^Σ Σ HΦ(r)ll=N(/)iiΦir. Q.E.D.
pel Γ'sp

Let ha(I) denote the ratio of the maximum number of mutually
disjoint translates of a cube of side a which are contained in /, and the
minimum number of translates of a cube of side a the union of which
can cover /. When we say that / tends to Έv in the sense of van Hove,
we consider a net of finite subsets Ia such that Ia tends to Έv in set in-
clusion order and ha(Ia)—>ί for every a.
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Lemma 4. // / tends to Έv in the sense of van Hove, then
\\Wj\\N^Nm/N(I) tends to 0, provided that N(Φ)<oo.

Proof. Let C{a) denote the cube of side 2 a and center at the origin.
N(C(a)) = (2a + l)v. Since | |Φ| | '<oo, there exists an a for any given
0 < ε < l such that | | Φ | Γ - ]Γ | |Φ(/)| |<ε. Let the integer n satisfy

C(ύ)D/9θ

1 - ( 1 - n " 1 ) v < ε . Let b = 2an. For any finite set /, let Pε

n be the set of
points p such that p + C(a) is in /. If hb(I) > 1 — c, then there exist mutually
disjoint translates Jk of C(b) contained in / such that

Σ N(Jk) £ hb(I) N(I) > (1 - ε) N(I). (3.9)

On the other hand

(3.10)

Since the point sets (Jk)ln are mutually disjoint and contained in /ε

in,
we have

N(ή £ X N((Jk)T) > (1 - ε)2 N(I). (3.11)
k

Let / \ £ n - 7ε

sυr. Inequality (3.11) implies

N(Pε

ur)/N(I) < ε(2 - e). (3.12)

Let

Wi= Σ Σ *(hvl2),

Then

ll^i!ljvgiV(Φ,^ Σ Σ
pe/l;11 Ir3p,Γ<f:p

ιιwy*sjv, ,^ Σ Σ
pel%ur 1'sp

Since WI=W1 + W2, we have

which tends to 0 as ε->0. Q.E.D.

Lemma 5. // / tends to Έv in the sense of Van Hove, then

\\wi\\dzd(Φ)/N(I) tends to 0, provided that d(Φ)< oo.

The proof is similar to that of Lemma 4.
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3. The Intertwiner A\

Let

^} ^ ) (3.13)

where the expansional is defined in [3] (3.13) is well-defined by Lemma 1
if |Imί| <r(Φ). By Propositions 3 and 4 of [3], it has an inverse:

μ ^ Γ ^ E x p J J ; -σίs(itWItΓ)dsl (3.14)

For /' =ΈV, we write Λ\ instead of A\ΈV. For finite /', we have by Theo-
rem 3 of [3]

Since UΦ(Γ) - WItΓ = UΦ{I) + UΦ(I'\I\ we have for Q e

i £ / Φ ^ i t ϋ Φ ( I ) ( 3 1 6 )

When t is real, this equality for an arbitrary /' is obtained from the same
for finite Γ by a limit argument. (Note that σ[s for real is is a ^auto-
morphism.) Hence by analytic continuation, (3.16) holds for general /'
for βe9I(/), finite / and \lmt\<r(Φ) if N(Φ)< oo, and for βe9I(/) 5

finite / and any ί if v = 1 and d(Φ) < oo. In particular

(3.17)
t

iy
1 . (3.18)

§ 4. Gibbs Condition

Let φo denote the central state (i.e. tracial state) of 2I(/). Since 91(7)
is a full matrix algebra of finite dimension if / is finite, we may view 91
as the tensor product 2ϊ(/)(g)2I(Jc) [12]. For a state φ of 9Ϊ, we now
introduce the following:

Gibbs Condition. For each finite ICΈV, there exists a positive
linear functional φIC of Λ(Γ) such that

φ(Q) = (φIo®φIC)(e-βuΦ{I)l2ΛI*QΛIe-βVΦ{I)l2), (4.1)

where Aτ = Aψ2.

We shall first show that this condition is equivalent to conditions of
Lanford and Ruelle [11] and Dobrushin [7, 8] when the interaction is
classical, namely when each Φ(I) belongs to an abelian subalgebra 501
of 9ί and φ is restricted to 501; 901 is the algebra generated by number
operators at each lattice site. If a state φ satisfies (4.1) and the interaction
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is classical then the state is classical too, in the usual sense [6] that the
vanishing of the conditional expectation of an operator Q with respect
to 9JΪ, φo(Q\W) = 0, implies φ(Q) = 0. (Q = φo{Q\W) is defined by the
requirements QeVJl and (po(QQi) = (Po(QQi) f° r a n < 6iG2R.) This
follows from (4.1) for Q e 91(7) for any finite / and hence for all Q e 91.
We then restrict φ to 2R. Since σt(Q) = Q for Q e 9H, we have A1 = £ ^ ' / 2 .
So we have as Gibfcs condition

(4.2)

For Q1 e9I(7)n9Jϊ, let us consider the conditional expectation

* (4.3)fi(Qi) φo( Q1)W)
Then

= φIC(fi(Qi)Q2) (4.4)

for β ^ S Ϊ M n ϊ R , β 2 e9I(7c)nS«. Lanford and Ruelle consider the
situation where there is a minimal projection PQ in 91(7) n9Jl (the projec-
tion onto the no-particle state in 7) such that e~β(UΦ{I) + Wl)P^ = PI

0.
Then MPb^φΌiH) and (4.4) implies
Hence

The Eq. (4.5) when written in terms of measures on the spectrum of 9JΪ,
is the equilibrium condition of Lanford and Ruelle.

To be more explicit, for a classical lattice gas the spectrum of 301 may
be seen as the space έ?(Έv) of all subsets of the lattice, and φ gives rise
to a measure μ there. The isomorphism of 9Jt with LGO(^(ZV), μ) may be
written, for Q in 9ί(7), as

β = Σ Q~(X)n(X)n(l\X)
XCI

where n(X)= (X) n(x), n(x) = α*(x)α(x) is the number operator at the
xεX

site x, and similarly n(X)= (X) α(x)α*(x). Thus the function Q~ corre-
jceX

sponds with the operator Q, so

= f Q~(X)μ(dX)

where the latter equality defines Qj{X,dY) ([11], Eq. (3.2)). Then we have

Σ ί Pf(X)Q2~(Y)Qi(X,dY)
XCI 0>(IC)
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Now also

fi(Qi)=φKPS) Σ e χp (- Σ ns)\ er(^u 7).
XCI \ SCluy:SnIΦ0 /

[The weight coming from φ^ in the summation over X C / is a constant,
which is equal, for example, to the weight for X = 0 and the latter is

So, if β i is in 21(7), Eq. (4.5) becomes

Σ ί e

= Σ ί (
XCI &{IC) \ SCXuY:SnX*V>

expressing exactly the condition in (3.10) of [11].
Conversely a classical state φ has a unique extension φ to the whole

algebra 21 under the requirement that for every β, φ(Q) = φ(φo{Q\W)).
Then if (4.5) holds we have (4.2) for β = β i ® β 2 , β 1 e2I(J)nϊ f t and
β 2 e2I(/C)n9ϊt, where φ J C(β 2) = φ(Po®Q2) Since such β are total in 9K
in the setting of Lanford and Ruelle, (4.2) holds for β e $R and hence (4.1)
holds for β e 21. This shows the desired equivalence.

The condition given by Dobrushin is known to be equivalent to that
given by Ruelle and Lanford.

§ 5. The Equivalence of Gibbs and KMS Conditions

Theorem 1. When N(Φ) < oo and β/2 < r(Φ), or when v = 1, d(Φ) < oo
and β is arbitrary, a state φ satisfies the Gibbs condition if and only if
it satisfies the KMS condition.

Proof. First assume the Gibbs condition (4.1) for φ. [Our Gibbs
condition is formulated only for β/2 < r(Φ) if v is general and N(Φ) < oo.]
Let β = Qxσiβ/2(Q2), QίeA,Q2e21(7). Then by (3.17) with t = iβ/2,

By taking adjoints and replacing β 2 * by β 2 , we h îve

Using (5.1), the tracial property of ψo and (5.2), we obtain

(pier (O )O ) (5 3)

whenever Q2 e 2t(/), Q{ e 21. By taking the limit, we obtain (5.3) for any
Qi with | |S 2 | | i V g m <<». If β 2 e2ί(/), then ||(<5 t ;Φ ( Zv )rρ2 | |Ngm< co for
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m = n(N(Φ)-ί) + N(I). Hence (5.3) holds if Q2 is replaced by

(d/dzYσz(Qi)\z = o
For Q2 e 91(7), 7 finite, consider the function

f(z) = φ{σz(Q2)).

It is well defined, uniformly bounded and holomorphic for z satisfying
|Imz| ^ β/2 (< r(Φ)). By (5.3) with Qγ = 1, we have f{n)(ίβ/2) = / ( n ) ( - ίβ/2)
for w = 0, i, 2,... . Hence

f(z + iβ/2) = f{z-iβ/2) (5.4)

holds for z in some neighbourhood of 0. By analytic continuation, (5.4)
holds in a neighbourhood of real z. Hence f(z) can be extended to a
periodic entire function. A periodic entire function can be uniformly
bounded only when it is a constant. Hence we have f(z) = /(0). Namely
φ is ^-invariant.

We now consider Qγ{f\ where Q^eA, /e^(IR), the space of in-
finitely differentiable functions of compact support,

/(ί) = ( 2 π ) - 1 J / ( p ) ^ t d p , and β ^ / H J σt{Qi)f{t)dt.

We have ^ ( Q ^ / ^ ρ ^ / J with ft{s) = f(s-t\ which holds obviously
for real ί and has an analytic continuation for arbitrary t. By the σΓ

invariance, we have

ψ(QΛft) σ,(β2)) = Φ(o

which holds for real s and hence by analytic continuation for all s we are
considering [|Ims| <r(Φ) for general v and JV(Φ)<oo, arbitrary s for
v = 1, d(Φ)< oo~\.

Substituting Qi(ft--^j2) for Qγ in (5.3), we obtain

) (5.5)

By taking limits, this equation holds for arbitrary Q2 e 91. Taking F(z)
to be <p(e2az[Q!(/)]), we have F(ή = (Q2σt(Qι)) and F(ί + iβ)
= (σf[Qi(/)]β2)' which is the KMS condition for operators Qι(f)
and Q2.

It is known that this implies the KMS condition for any Q1 and Q2

in 91 (see Lemma 2.2 of [1], for example).
We now prove the converse. Assume the KMS condition for φ.

We consider arbitrary β when v = l and d(Φ)<αo, and β satisfying
β/2<r(Φ) when v is general and N(Φ)<oo. Let

ί). (5.6)

By the KMS condition one has
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for Qx e9I(/) and Be% where / is finite. By (3.18), we have

By taking the adjoint and replacing Q x* by Q 1 ? we also have

o--W 2(Qi)(^*)-v t'φ< ί>'2=(V)-v t' w 2 e i .
Hence we have

for any Q2 E 2ί, β x E 21 (J), which implies φj = ψQ®φIC where φ / c is the
restriction of φ 7 to 2ί(Jc). Solving (5.6) for φ, we obtain the Gibbs con-
dition. Q.E.D.

§ 6. Equivalence of the Gibbs Condition with the Variational Principle
for Translationally Invariant States

Theorem 2. A state φ, invariant under the lattice translations τ(α),
satisfies the Gibbs condition if and only if it satisfies the variational
principle:

s(φ) - βφ(AΦ) ^ s{ψ) - βψ(Aφ) (6.1)

for all translationally invariant states ψ, where

(6 2 )

and s(φ) is the mean entropy of φ([9~\). β is arbitrary when v = 1, d(Φ) < oo
and β is restricted to be in [0, 2r(Φ)) when v is arbitrary and N(Φ) < oo.

Proof. It is known that the limit

P(Φ) = HmN(iy' logφKe-011*™) (6.3)

as / tends to Έv in the sense of van Hove satisfies

= sup(s(ψ)-βψ(AΦ)) (6.4)

where the supremum is over all translationally invariant states ψ.
We now assume the KMS condition for a state φ and show that

s(φ)-βφ(AΦ) =

By the Gibbs condition, we have

Ψl(Q) = cφι

0(e-βvΦiI)Q) (6.5)

for any Q e 2I(/), where the constant c can be determined as

c = φ' 0(<Γ'"'Φ<")- 1Φi(l).

Let ρI(ψ)e'ίί(I)+ be defined by

βe8ί(/)
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The mean entropy is defined by

s ( ψ ) = - l i '

[This definition differs by a constant from the definition using the
matrix trace instead of the normalized trace φ^. However our defini-
tion (6.3) of P(Φ) is also in terms of ψo and hence (6.4) holds.] From (6.5)
we have

Let ^φ,πφ and Ωφ be associated with φ by the GNS construction.
Then ψj is the vector state whose vector is

where Ωφ(h) for a relative Hamiltonian h is defined in [5]. By Proposi-
tion 4.1 of [5], ΩφiβWJeV^. Hence by Theorem 12 of [4] we have

[The latter follows from Ωφ = πφ(Λj)Φ and VΦ=VΩ .]
The above inequalities when restricted to 91(7) yield

\\ΛI-
1\r2ρI(φI)SQi(φ)S\\ΛI\\2ρI(φI).

Since logρ is operator monotone for positive ρ,

- 2 log M Γ * II =logρjiφ) - \ogQl(φi) g 2 log \\Aj\\

Since

ρΛφ,) =-βUΦ(I) - logφ 7

0 (e-^ Φ

M/IΓ^Φ/ω^Mf!! (
and

UmN(I)-1φ(Uφ(l)) =

for translationally invariant φ, we obtain

s(φ)-βφ(AΦ)-P(Φ) = 0

if we prove
1 log M/" 1 11=0, (6.6)

MogM.II-O. (6.7)

By Lemma 1 for ΛΓ(Φ)<oo, | s | ^ T < r ( Φ ) , and by Lemma 2 for
v = 1, d(Φ) < oo, |s| ̂  Γ, we have
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where k = N for general v, and k = d for v = 1. Hence

log \\Λ,\\ S (ββ) a{β/2, k(Φ)) || W,\\k7ίkm ,

log || A, ~11| ^ (j8/2) a(β/2, k(Φ)) \\ W, \\ k < k m .

Since || Λι ~x \\~ί ^ || Λ, ||, we have

jlog I Λj || I ̂  (jί/2) αOS/2,

|log UΓ' || I g (j8/2) fl(j8/2,

By Lemmas 4 and 5, we have (6.6) and (6.7).
It is known that a state satisfying the variational principle satisfies

the KMS condition [10]. Q.E.D.
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