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Abstract. Let E(λg) be the vacuum energy for the P(φ)2 Hamiltonian with space
cutoff g(x) ^ 0 and coupling constant λ Ξ> 0. For suitable families of cutoffs g ->• 1, the vacuum
energy per unit volume converges; i.e., — E(λg)/§ g(x) dx-^ α^λ). We obtain bounds on the λ
dependence of α^A) for large and small λ. These lead to estimates for E(λg) as a functional
of g that permit a weakening of the standard regularity conditions for g. Typical of such
estimates is the "linear lower bound", —E(g) ^ const j g(x)2 dx, valid for all g ̂  0 provided
that P is normalized so that P(0) = 0. Finally we show that the perturbation series for a^λ)
is asymptotic to second order.

Section 0 : Introduction

This paper is a continuation of our previous investigations [6, 7] on
the infinite volume behavior of the vacuum in P(φ)2 We are mainly
concerned with E(λg\ the ground state energy of the P(φ)2 Hamiltonian,

H(g) = H0 + λ$ g(x) : P(φ(x)) : dx . (0.1)

The polynomial P is semibounded and normalized, i.e.

P(X)=
r = l

the coupling constant λ ̂  0, and the cutoff g(x) ^ 0. In [6, 7] we restricted
our attention to sharp space cutoffs: g = χ^ the characteristic function
of the interval [ — //2, <f/2]. In particular it was shown that the vacuum
energy per unit volume, α^ = — E(χ;)/£, converges to a finite constant
α^ >0 as *f-»oo [6] and that this convergence is monotone [7].

In the present paper we extend the results of [6] and [7] to more
general cutoffs g. In Section 2, for example, we extend the convergence of

Research partially supported by AFOSR under Contract No. F 44620-71-C-0108.
Postal address after September 30, 1972: via A. Falcone 70, 80127, Napoli, Italy.
A. Sloan Foundation Fellow.



234 F. Guerra et al :

the energy per unit volume to a class of non-sharp cutoffs. In Section 1
we obtain bounds on E(λg) for both small and large values of λ. These
lead to improved estimates for E(g) as a functional of g and permit a
weakening of the standard regularity conditions on g (this is outlined in
the Appendix).

Finally, in Section 3, we prove that the perturbation series for the
infinite volume quantity α^ is asymptotic to second order.

We remind the reader that Nelson's symmetry states that

<fl0, e-tH< Ω0> = <ί20, <Γ'fl*Ω0> (0.2)

where Hf = H(χ^) and Ω0 is the free vacuum.

Section 1 : Coupling Constant Dependence of the Energy

For the theory with Hamiltonian (0.1) we introduce the notation
α^(λ) or &t(λP) for —E(λχ^. Our goal in this section is' to obtain
estimates for the λ dependence of α00(A) = lim α^(A). We begin by investi-

«?->oo

gating the λ dependence of E(λg). Throughout this section we make the
standard assumption that g E L1 nL2, g ̂  0.

According to the NGS proof of semiboundedness [8, 1, 16, 5]

, (1-1)

where V= J g(x) : P(φ(x)) : dx. (Here we have used Nelson's best possible
hypercontractive estimates [10] to determine the constants in (1.1).)
The NGS proof of the finiteness of the L1 norm on the right of (1.1)
consists of showing that the region in Q space where V is large negative
has small measure. Explicitly for large K [5, p. 21],

μ{qεQ\V^-b(logK)n}^e-cK\ (1.2)

where 2n is the degree of P, 0 < α < 1/2 w, and b and c are positive constants
that depend on g. The estimate (1.2) clearly implies that e~v e Lp for
all p< oo.

It is interesting that the estimates (1.1) and (1.2) display the correct
dependence of E(λg) on λ but not on g. For instance we know [3] that
E(λg) grows linearly in L= \supp g\, whereas from (1.1, 1.2) alone we can
deduce at best an L(logL)" behavior. On the other hand the fact that V
is not bounded below implies at once that E(λg) is not linearly bounded
in λ for large λ [18, p. 175]. We expect therefore that the following
lemma provides the correct λ dependence of E(λg).
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Lemma 1.1. For large λ,

\\e~λv\\,=e0(λ(l^m. (1.3)

Proof. By (1.2) it is sufficient to show that

00

J exp [bλ(logKγ - cK«] dK = e

0(λ(lo*λ)n) .
i

After the change of variables K = λβx, where j8>α~ 1, the integral
becomes

λβ ] explbλ(βlogλ + \ogx)n-
λ-β

The integral from λ~β to 1 can be estimated by

λβ J exp[_bλ(β\ogλ
λ-β

whereas the integral from 1 to oo is

Oλβ

Corollary 1.2. There is a constant c (dependent on g) such that for
large A,

λ)n. (1.4)

As for the small λ behavior, the observation that the first order term
in the perturbation series for E(λg) vanishes leads to this estimate:

Lemma 1.3. There is a constant a (dependent on g) such that for
small λ

-E(λg)^aλ2. (1.5)

Remark. This estimate is an immediate consequence of the fact that
the perturbation series for E(λg) is asymptotic in λ [18, 15] but we give the
more elementary argument below. The asymptotic nature of the perturba-
tion series (which is non-zero in second order) does show that (1.5) is the
best possible estimate for small λ.

Proof. Since V and e~v are in I? for all q < oo, it follows from Holder's
inequality that f(λ)=\\e~λV\\ί = (Ω(),e~λVΩoy is analytic in λ in the
right half plane and f(n\λ) = <Ω0, (- V)ne~xvQ^. In particular /'(O) = 0
and, writing f(λ)= 1 + A2/(2)(£)/2, 0< ξ<λ, we conclude that, for
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d = sup /(2)(£)A f(λ) ^l+dλ2 when λ<L Therefore by (1.1)
0<ξ<l

for small λ. |
These estimates for E(λg) extend at once to α^A):

Theorem 1.4. For small λ, αco(A) = 0(A2); for large λ,
= 0(λ(logλ)n).

Proof. We know that for some T> 0 [7, p. 16]

(For an improved version of this result see Theorem 3.3 below.) Therefore
by (1.4) and (1.5) αχ/l) is bounded as claimed with bounds independent of/.
Accordingly these bounds hold for α^. |

Remark. In Section 3 we prove that the limit limα^^V^2 exists and

takes precisely the (non-zero) value given by perturbation theory. As for
the question of whether our large λ estimate can be improved, we note
that if the estimate (1.4) for E(λg) is best possible, then by monotonicity
(α00(λ)^ — E(λχs)/£) so is the estimate for α^A).

Using Theorem 1.4 we can obtain bounds on E(g) as a functional of g.
But before doing so we note that E(g) is concave in g:

Lemma 1.5.

E(λg, + (1 - λ)g2) ^ λE(9l) + (l-λ) E(g2) .

Proof. Let g = λg^ + (1 — λ)g2 and let Ωg be the vacuum vector for
H(g). Then

= λ(Ωg, H(gι)Ωg) + (l-λ) (Ωg, H(g2)Ωg)

Corollary 1.6. α^ (λ) and α^A) are convex and hence continuous
functions of λ. In particular, if μ^λ, then
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The reason that bounds on α^ lead to bounds on E(g) is this:

Theorem 1.7. For # e L1 nL2, # ̂  0,

N

Proof. We first prove the lemma for step functions g = Σ 7ι X(βr-ι,αr]
r = l

where χ(β>fc] is the characteristic function of the interval (a, b]9 )V^O,
— oo < α0 < a1 < - - < aN < oo. By Nelson's symmetry (0.2) and Eq. (8)
of [7]:

1 / N

-Efo)= lira—log (ΩO, Π e-""—-')H"Ωo

where Hr = H(yrχτ).

But \\e~aHr\\ = e~
aE(γrχτ) = eaτ*τ(yr} ^ e

aT*~(yr\ Therefore

£ lim τlog ^-^-)Γα-(^
^C

Now consider a general function g e L1 nL2, g Ξ> 0. We can certainly
approximate 0 by non-negative step functions #y as above such that #,- -—>•£/

and the norms ||0y||Lι are uniformly bounded. By a standard argument
using DuhameΓs formula [18] it follows that e~

H(9j}-^e~H(9) in norm and
hence E(g )-+E(g). On the other hand, since α^A) is continuous in A,
ocσo(gj(x))-^(x00(g(x)) a.e. in x. Therefore by the bounds of Theorem 1.4
and by the Lebesgue dominated convergence and monotone convergence
theorems, (1.6) extends to general g. |

Corollary 1.8. // 0 ̂  g(x) ^ 1,

Proof. Follows from the theorem and Corollary 1.6. |

Corollary 1.9. Let ε > 0. There are constants a, b and cε such that

-E(g)^a\ f g(x)2dx+ J g(X)(logg(x)Ydx]9 (1.7)
la(χ)^2 g(χ)>2 J

x, (1.8)
and

-£(^)^cεj^)1+εJx. (1.9)

Proof. (1.8) and (1.9) are clearly consequences of (1.7) which itself
follows directly from the theorem and Theorem 1.4. |
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The inequality (1.7) is highly suggestive. It indicates that the con-
dition geZ/nL 2 is unnecessarily strong in order that H(g) be well-
defined as a self-adjoint semi-bounded operator. It should be sufficient
to require that the right side of (1.7) is finite. This line of thought is
pursued in the Appendix.

We remark that similar arguments permit a sharpening of the proof
[7, Theorem 2] of the Glimm- Jaffe estimate on local perturbations of the
Hamiltonian [4] in the sense that the constant c can be determined
more precisely:

Lemma 1.10. Let W—^ g(x) : Q(φ(x)) : dx where the polynomial
P + Qis semibounded andQ^g^l, supp #C[-α,α]C[- //2, //2] . Then

where c = \\g\\ , - [α^P + Q) - α<JO(P)] + 2a[*ao(P) - α,(P)].

Since the second term in the definition of c goes to zero when f -> oo
we obtain this estimate on the physical Hubert space :

Corollary 1.11. Let W=\ g(x) : Q(φ(x)) : dx where degβ < degP,
ί/eL1, and \g\ ̂  1. Then for any ε>0, there is a constant d independent
of g such that

When Q is semibounded, we can also drop the restriction g ̂  1 in
Lemma 1.10 and obtain bounds of the form (1.7).

Section 2: Convergence of the Vacuum Energy per Unit Volume

In [6] it was proved that for the P(φ)2 theory with a sharp space
cutoff the energy per unit volume converged as the cutoff went to infinity.
Here we extend this result to a more general class of space cutoffs.
Consider an increasing sequence of intervals (not necessarily of the form
[ — n/2, n/Z] as in the previous section) with characteristic functions χn

such that the lengths ||χj t -> oo. We shall prove:

Theorem 2.1. Let {gn} be a sequence of functions such that

n^cχn (2.1)

for some constant c, and, as n— > oo,

II0,,-JU2/II*J2-»0. (2.2)

Then lim£( f f l l)/|| f lfj|i=-αβ o.
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Remarks 1. For gn satisfying (2.1), the hypothesis (2.2) may be
equivalently written as \\gn — χJι/||χJι-»0; moreover the volume
factors || gn \\ I'm the conclusion may be replaced by ||0Jι or ||χJι = HχJi,
since \\gn-χn\\p/\\χn\\p->$ implies \\gn\\p/\\χn\\p-*L

2. In particular, conditions (2.1) and (2.2) hold for a sequence going
to 1 in the sense of Osterwalder-Schrader [11].

3. It would be interesting to prove convergence for some class of
cutoff functions which are not necessarily of compact support or uni-
formly bounded. If the monotonicity of E(g) in g were known, such a
result would follow easily from the methods below.

The basic idea in the proof of the theorem is to exploit the known
convergence when gn = χn and to estimate the error arising from the
"discrepancy" (gn — χn) by means of the concavity of the energy. We
prove a series of simple lemmas which serve to establish the theorem first
when gn satisfies (2.1) with c=l, then when χn^gn^cχn, and finally
when gn satisfies (2.1) itself.

Lemma 2.2. // \\fn\\2

2/cn-+0, then E(fn)/cn^ΰ.

Proof. By the estimate (1.8), -α||/J^E(/M)^0, and the lemma
follows immediately. |

We denote the maximum (resp. minimum) of two functions / and g
by / V g (resp. / Λ g).

Lemma 2.3. Take 0^λ<LIfgn^O satisfies (2.2), then

gn V χn))/\\Xn\\2 (2-3)
and

n Λ χn)/||χJ2

2 . (2.4)

Proof. To prove (2.3) we write λ(gn V χn) = λgn + (1 - λ) fn where
fn

 = λ(gn V χn - gn)/(i - λ) ̂  0. By the concavity of the energy (Lemma 1.5),

Since by (2.2) ||/J|f/||χJ|i->0 we obtain (2.3) by dividing by \\χn\\2

2 and
applying Lemma 2.2. The decomposition λgn = λ ( g n / \ χ n ) + (l — λ)hn

similarly yields (2.4). |

Lemma 2.4. IfQ^gn^χn and gn satisfies (2.2), then

limE(gn)/\\gn\\l= -α<χ).

Proof. By Corollary 1.8 and Remark 1 above, ]imE(gn)/\\gn\\2 ^ — «„.
On the other hand, by (2.3),

i = -^(λ) (2.5)
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by the known convergence for sharp cutoffs. Since α^/ί) is continuous
in λ (Corollary 1.6), we may put λ = 1 in (2.5) to conclude the proof. |

Corollary 2.5. // gn^V satisfies (2.2), then HmίfeJ/llftJIi ^ -««,.

Proof. By the lemma and the estimate (2.4)

for any 0^/l< 1. But the left side, as a lim of concave functions in A,
is concave and hence continuous in λ so that we may take λ=ί. |

Lemma 2.6. //* χn^gn^cχn and gn satisfies (2.2),

Proof. By the previous corollary it remains only to show that
llgrJ^ -<*«,. We write χn = c'1^ + (1 - c"1)^ where

#« = (CX« ~ 6U/(C ~ 1) It is easY to see that gn satisfies the hypotheses of
Lemma 2.4 so that by concavity

7, l |2

and the lemma follows. |

Corollary 2.7. Ifgn satisfies (2.1) and (2.2),

Proof. Use (2.3), Lemma 2.6, and the continuity of α^Λ,). |
Proof of Theorem 2.1. The theorem is a consequence of Corollaries

2.5 and 2.7. |

Section 3: Asymptotic Nature
of Second Order Perturbation Theory for α^Λ,)

For a normalized interaction polynomial P, the first non-trivial term
of the formal perturbation expansion in λ for α^/lP) = —E(λχ^ is the
second order term λ2a^(P). Since the series for E(λχ^) is known [18, 15]
to be asymptotic we have

= 42)(P). (3.1)
A O λ*

An explicit computation (see [7], §6) shows that <42) is an increasing
function of / which converges as /-»oo. Defining a(^ = a(^(P]
= lim ̂ 2)(P), we have the following theorem:
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Theorem 3.1. The perturbation series for α^/l) is asymptotic at least
up to the second order; i.e.,

a^(P). (3.2)

In order to prove this result we need a stronger version of the hyper-
contractive bounds of Section 4 of [7]. First we note the estimate:

Lemma 3.2. // the bounded self -adjoint operator A is positivity-
preserving, then for all 0 ̂  λ ̂  1,

2. (3.3)

Remark. We recall that \\A\\ p q is the norm of A as a map from Lp

to Π.
Proof. We have \\Af\\, ^ \\A\f\ \\, = <Ω0, A \ f \ ) = (AΩ0, l/ l>

^MΩoll 2 1 1 / 1 1 2 so that M||2 f l^<Ω0,Λ2ί30>1/2. By duality \\A\\^2

= Mil 2,1 j and interpolation yields (3.3). |
Then we can establish the following general theorem concerning the

perturbation of hypercontractive semigroups e~tH°. We take the perturba-
tion V in the standard class [18]

τT= J7 |K real; VεLp for some p>2; e~v ε f) Lq

so that H0 + V is essentially self-adjoint on D(H0)nD(V).

Theorem 3.3. Let e~tπ° be a posίtivity-preserving hypercontractive
semigroup with \\e~tH°\\2Λ ^ 1 for t ̂  T. Then for every α > 1 and Vei^,

provided that t ̂  4Γ/(α - 1).

Proof. By the Spectral Theorem

I 2,2

7(«-Dβo||
i:I 2,2

since by a lemma of Segal [16] (see also [18]),

for any semibounded operators A and B with A + B essentially self-
adjoint on D(A)r\D(B). Consequently,

17 Commun. math. Phys., Vol. 29
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II -7(α-l)# 0 | | | | -7(α-l)H 0 | |
Since |k 4 I l 2 , 4 = l l e I l i f 2 ^ l for ί^4Γ/(α-l), the theo-

- I (Ho + xV)
rem follows from the estimate (3.3) with A = e and λ = 1/2. |

Proof of Theorem 3.1. By monotonicity in f [7] we have

^(λ)/λ2^^(λ)/λ2. (3.5)

Therefore, taking first the limit λ->0 and then /-»oo, we conclude by
(3.1) that

(3.6)

On the other hand, for arbitrary ε > 0, we have by Theorem 3.3 with
*/2

= λVt = λ j : P(φ(x)) : dx,

by Nelson's symmetry (0.2). Therefore,

so that dividing by λ2 and taking /->• oo

α^μVA^α.αi + εJAV

Taking first Λ,->0 and then ί-^oo we conclude by (3.1) that

ε)α^. (3.7)

Since this relation is valid for any ε > 0 we see that (3.6) and (3.7) establish
the theorem. |

Appendix: Minimal Conditions on the Space Cutoff

Since the main purpose for studying the spatially cutoff Hamiltonian
H(g) is to obtain information about the infinite volume limit g->l, the
only relevant conditions on g are those required by this purpose. For
instance the smoothness condition #eQ° is convenient for methods
involving or yielding "higher order estimates" (see the original self-
adjointness proof of Glimm and Jaffe [2] or [13]); in our work [6, 7]
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the sharp cutoff g = χ^ is useful. Both of these cases are covered by the
standard regularity condition geZ/nL 2 [18]. Nevertheless it is an
interesting mathematical question to isolate the minimal condition on g
needed to establish that H(g) is a semibounded operator essentially self-
adjoint on C°°(//0). (Of course we always require that g(x)^0.) In this
Appendix we prove a theorem with "almost" minimal conditions on g
and we discuss our conjecture of a necessary and sufficient condition for
self-adjointness.

As we suggested following the estimate (1.7), the condition g e L1 nL2

is much stronger than necessary for self-adjointness and semiboundedness.
In particular g e L2 is used in the standard proof only to conclude that
|0| 2 n is finite; here 2n is the degree of P and

1/2

(A.1)

where μ(k) = (k2 + m2)1/2. This norm enters because \\:φ2n(g): Ω0 | |2

= const \g\2n- As observed in [12] \g\j^ const\g\'j where

(A.2)
i μw j

In fact:

Lemma A.I. The norms \g\j and \g\'j are equivalent,7=1,2,....

Proof. Let Cj(k) be the j-fold convolution μ"1 * ••• * μ~i(k). Since
\g\2 = §\g(k)\2Cj(k)dk, we need only show that for large k the ratio of
Cj(k) to (logfc)7'" y/c is bounded away from 0 and oo.

Proceeding by induction, we suppose that

c,.(fc)= const (log fey -y/c
for large fe. (The inductive assumption is clearly true for j = 1.) Then

Cj+ι(k) ^ const J

> const * (logp)7'"1

 d

_ const

μ(fc)

For the reverse inequality we note, following [12, Lemma 4.1], that
the Fourier transform of μ"1 is the modified Bessel function K0(mx)
so that

Cj(k) = const J eikxKJ

0(mx) dx.
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Since K0 vanishes exponentially at infinity and has a logarithmic
singularity at the origin the dominant behavior of c7 (/c) for large k is
given by that of the function

/ + ! k

Using the recursion relation fj+1(k)= -- - — J fj(p)dp, we prove by
k Q

induction that for large |fe| (say k positive)

\fj(k)\ ^ const (logky-i/k . (A.3)

Assuming (A. 3) for j and using the fact that /) is bounded, we have for
large k

const k

const k

^ const (log fey/fc.

The validity of (A.3) for 7 = 1 follows from the recursion relation and the
fact that/oeL 1 . |

Thus the condition g e L2 could be replaced by either |$|2w< oo or
\9\/2n<00' However, since these norms are somewhat inconvenient we
introduce a slightly stronger condition, namely geLί+ε:

Lemma A.2. For any ε > 0 and positive integer j there is a constant c
such that

\g\j, \9\'j^c\\g\\ί+ε. (A.4)

Proof. By the previous lemma it is sufficient to prove (A.4) for \g\j.
We take ε < 1 otherwise (A.4) is trivial. Since (logμ)7~ 1/μ e U for all p > 1,
we apply Holder's inequality with p = (1 + ε)/(l — ε): \g\j^ const | |<7 2 | |p/ 2

= const \\g\\2P'^ const \\g\\(2p'γ = const \\g\\ 1+ε, by the Hausdorff-Young
inequality [19]. |

For the applications below, it is enough that \g\j ^ c\\g\\ ί +ε. This can
be proved without reference to the norm \g\'j by means of the Hausdorff-
Young and Young inequalities [16].

Corollary A.3. Suppose P is semibounded and geL1nLί+ε, g^O.
Then H(g) is semibounded and essentially self-adjoint on C^ί/o).

Proof. According to the preceding discussion the hypercontractive
proof [18] goes through with g ε L2 replaced by geL1+ε. That H(g)
is essentially self-adjoint on C°°(#0) and not merely on D(H0)πD(V(g))
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is proved in [17]. Here

V(g)=l:P(φ(x)):g(x)dx. |

Note that in Corollary A.3 it has not been necessary to require that P
is normalized (i.e., P(0) = 0). However we now wish to weaken the
hypothesis g e L1 and so we assume that P is normalized. An examination
of the NGS proof of semiboundedness (see (1.1)) shows that the assump-
tion geL1 enters in a rather crude estimate that establishes that the
ultraviolet-cutoff interaction is semibounded. As seen from the estimate
(1.7) a more appropriate condition on the small g behavior is that
ge L2. We prove:

Theorem A.4. Suppose that P is semibounded and normalized and that
g e L2 4- L1 +ε, g ̂  0. Then H(g) is semibounded and essentially self-adjoint
on C°°(#0).

Remarks. 1. The notation g e L2 + L1 +ε means that g = f + h where
/ G L2 and heL1+ε. Clearly there is no loss in generality in assuming that
f = g when g^ί and / = 0 otherwise.

2. Since g is not necessarily in L1 we will not prove that e~tV(9} is in
L1 (Q) as in the NGS proof. In essence our proof involves the fact that

exp(-\g(x):P(φ(x,s)):dxds
\ o

is integrable in the Q-space associated with the free Markov field [10].

Sketch of Proof. The idea of the proof is standard (see [18]): We
approximate g by a sequence g^ in Lίr^L1+ε and prove that the semi-
groups e~tH(dj} converge strongly to a continuous semigroup whose
generator can be identified as (H(g) /C°°(//o))". Since h is already in
L1nL1+ε we take gj = fj + h where /).eZλnL1+ε, /}^0, /;-»/ in L2,
and ||/j||2^ l l / l l i F°r instance fj = fX(-jj) The two key facts in the
proof are that for any 1 <p< oo: (i) \\V(gj)-V(gk)\\p-*Q in LP(Q) and
(ii) \\e~tH(βj)\\ptp is bounded uniformly in j. The first fact follows from the
convergence ||0y — gk\\2-+Q and the second from Lemma A.5 below since

2ί ,

^exp [const ( j/ 2 +f/z 1 + ε )]

by the estimates of Theorem 1.4. |

Lemma A.5. Let geL1r\L1+ε, g^Q. Then for all 2^p<oo and

\\e-tH^\\p,p ^ exp y Jα>0(x)/2)<ίx . (A.5)
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Remarks. 1. By duality \\e~tH\\pii)= \\e~tH\\p^p> so that we have the
bound when 1 < p < 2.

2. By a slight alteration of the proof one can prove a similar bound
for \\e~tH\\pίq, p<q, provided that t is sufficiently large.

3. By the method of Theorem A.4, the lemma can be extended to the
more general case g e L2 + L1 +ε, when P is normalized.

Proof. Let /(z) = exp[-ί(tf0 + z7(0))]. For any p,q [7], ||/(z)||M
^ ||/(Rez)||M. Thus when Rez = 0, \\f(z)\\^^ ^ 1, and when Rez = p/2,

by Theorem 1.7. The lemma now follows from the Stein Interpolation
Theorem. |

The condition geL2 + Lί+ε can probably be weakened further; for
example, we expect that those g for which the right side of (1.7) is finite
will suffice. Thus our condition on g is not minimal but it has an almost
minimal character as we now explain. In order for H(g) even to be
defined on finite particle vectors it is necessary that \ \ ' φ 2 n ( g ) : Ω 0 \ \ 2

= const \g\2n be finite. Since there are geL2+ε and geL1 for which
\9\2n = °° our conditions on g are only slightly weaker than the necessary
condition \g\2n< °° This leads to:

2n

Conjecture. Suppose that P(X)= X brX
r, b2n>Q. Then \g\2n<oo

r = l

(°r \9\2n < °°) is a sufficient as well as a necessary condition that H(g)
be semibounded and essentially self -adjoint on C^/fo).

The key to proving this conjecture is to show that if \g\2n is finite then
so is E(g). In support of the conjecture we note that |^|2n< °o implies
that E(g) is finite order by order in perturbation theory. Moreover in the
one case where E(g) can be explicitly computed (P(X) — X2) we have the
bound [14] for any ε > 0,

^ const \ g \ 2 .
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