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Abstract. In Ref. [1] the axiomatic foundation of the Hubert space structure of
quantum mechanics was outlined. Apart from a set of physically plausible axioms, the
(mathematical) assumption (V 1) of the minimal-decomposition property of the basenorm
space B was incorporated into the axiomatic scheme of the theory.

It is shown in the present paper that the assumption (V 1) is superfluous. In the first
part of the paper we give a short summary of the axioms; in the second part the main
theorems are proved without using assumption (V 1).

Introduction

In [1] a set of axioms for quantum mechanics were motivated by
formulating the principal laws of measurement; from these axioms it is
possible to deduce the Hubert space structure of quantum mechanics.
In [2] we have attempted to give a more detailed physical interpretation
of one of these axioms. A survey of the conceptual structure of our
axiomatic scheme is given in [3]. In the present paper we will propose
an improved formulation of some of the axioms and theorems of [1].
The concepts and symbols as defined in [1] (Chapter III) are used
throughout.

In Ref. [4] (§3.3) the mapping principle 3 c (Abbildungsprinzip 3 c)
of [1], Chapter III, § 1.5, has been reformulated; it seemed more suitable
to take, for the elements of K, more general subsets of K than those given
by the mapping principle 3 c. As explained in [4], § 3.3, this may be done
if the mapping principle 3 c is replaced by a new set of postulates intro-
ducing a set φ of "selection-procedures" (Auswahlverfahren) (cf. Ref. [4],
§3.3). The mapping principle 3d (Abbildungsprinzip 3d) of Ref. [1],
Chapter III, § 1.5, can also be replaced by selection-procedures in a quite
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analogous way. Therefore it is not necessary to repeate here the argument
in detail.

The main improvement in the axiomatic formulation of quantum
mechanics achieved by replacing the mapping principles 3c and 3d
by the selection-procedures was to obtain a clearer insight into the
physical meaning of the convex combinations of "ensembles" and
"effects", i.e. a more comprehensive formulation of the physical inter-
pretation of the elements of K and L. Using the concepts introduced
in Ref. [4], § 3.3, it is no longer necessary to give any further physical
interpretation of the convex combinations ^ ^ F ; such as presented

in [1], p. 231. In the same way, by replacing the mapping principle 3d
by a set of selection-procedures, we make any further physical interpreta-
tion of the elements of L superfluous (such as given in Ref. [1], p. 232).

1. A Survey of the Axioms

To start with, we give a short summary of the axioms introduced in
Chapter III of Ref. [1]. The fundamental objects of our axiomatic scheme
are the sets K and L. These sets were defined by the selection procedures
mentioned above [4]. By M' we denote (as in the mapping principle 3'
of Ref. [1], Chapter III, § 1.5) the "set of all experiments" consisting of
one "preparing-part" in interaction with a single "effect-part".

Axiom 1 (see [1] III, p. 202): The real function μ(V,F) on M' fulfils
the relation:

β) for every YeK there is an geL with μ ( E F ) = l ,
γ) there is a F e I (denoted by 0), with μ(£, 0) = 0 for all Ye K.
The following axioms (see [1], p. 216, 217), play a significant role

in the theory; in fact they imply the possibility of introducing the concept
of a "microobject" as a "real" physical object into the theory (see [5],
§ 14 and [6]).

Axiom 2a: The relation Vx y V2 is an equivalence-relation;

Axiom 2b: ( /x l )M' = | x L
For the arguments in Ref. [1], Chapter III, it was essential to intro-

duce (cf. p. 239 of [1]) the assumption (V 1). We will show below that
some of the theorems deduced in Ref. [1] can be obtained without
using (V 1).

In the mathematical literature the term "base-norm-space" is used
for the type of spaces such as the space B introduced in Ref. [1],
Chapter III, § 3. The case of a set K "bounded below" (introduced in [1],
Def. 3.10) is equivalent to the statement: OφK. In this case, the cone Q
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is usually called a "well based" cone. 0 φ K holds because of Axiom 4 a
formulated below. By this axiom it follows that K is a "base" of the cone Q.
The assumption (V 1) is called by mathematicians the "minimal de-
composition property". The conventional mathematical term for B\ the
dual of the Banach space B, is the "order-norm-space" since the unit-ball
of B' is the order-interval [— 1,1] (this result follows from Axiom 4a,
cf. Ref. [1], Chapter III, Theorem 6.4).

Axiom 3a, b (see [1], III, p. 243): The sets E and L are denumerable.
Axiom 4 a (see [1] III, p. 265): To every pair FιeL, F2eL and every

number η > 0 there exists a F3 e L with
a) μ{V, Fx)-η^ μ(F, F3) for all Ve K,
b) μ(V,F2)-η£μ(V9F3) for all VeK,
c) μ(V,F3) = 0 for all VeK0(F1)nK0(F2).
Without allowing any change in the physical interpretation of

Axiom 4b of Ref. [1], p. 277, it is possible to give a different formulation
of this axiom which suggest more clearly its physical meaning:

Axiom 4b: To every F e L and every η > 0 (η < 1) there exists a num-
ber δ(η)>0 (δ(η) not depending on Fϊ) with δ(η)^O for η-^0, and an
F'eL with K0{F')DK0(F) and [μ(V,F')^l-δ(η) for all V with

From this formulation of Axiβm 4 b it follows immediately
(because of F'^E if EeG and K0(E) = K0(F)): μ{V,E)^l-δ(η)
for all V with μ(V,F)^l-η. For all VeK^F) it follows (because of
δ(η)-*O for η-+0) μ(V,E)=l, i.e. K^F)CK^E). Thus we recover the
formulation of Axiom 4b as given in [1], p. 277.

It is not difficult to give a physical interpretation of Axiom 5 of [1],
p. 282, in terms of the "filters" FeL (see also [3]): If C ^ ) D C(V2) and
C(V1)ή= C(V2), so that V1 has more "mixing-components" than V2, then
a filter-apparatus FeL can in principle be constructed such that it does
not absorb to a physically measurable extent the objects of F2, but still
absorbs a physically measurable part of the ensemble Vι: therefore we
reformulate Axiom 5 of [1], p. 282, as follows:

Axiom 5. From C(VX) D C(V2) and C ^ ) φ C(V2) it follows: there is a
number α > 0 so that for every number ε > 0 an F e L exists, such that
μ ( F l 5 £ ) > 0 and μ(F 2,F)<ε.

The equivalence of this axiom to its formulation presented in
[1], p. 282, can be seen in the following way: Using the formulation of
Axiom 5 given above, it is easy to deduce (since L is compact!).

Theorem 1.1. From C ^ ) D C(V2) and C{yx) + C(V2) it follows: there
exists an FeL with μ(Vί9F) + 0 and μ(V2, F) = 0.

This theorem is equivalent to each of the following theorems:

Theorem 1.2. C(F1)DC(F2)αndC(F1)ΦC(F2)imp/iesL0(F1)
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Theorem 1.3. (^ ± V2)=>(VX = V2).
Theorem 1.3 however, corresponds to the formulation of Axiom 5 in

[l],p.282.

Proof of Theorem 1.3: If C ^ ) φ C(V2) then C ^ ) or C{V2) is a proper
subset of C(F l5 V2) = C(Vί) v C(F2). We can assume e.g. that C(VU V2)
D C(V2) and C{VU V2) φ C(V2). If we put C{Vί9 V2) = C(V3) (see [1], III,
Theorem 5.4) Theorem 1.2 gives L0(F3) + L0(F2). Because of £0(^3)
- L0(Vl9 V2) = LoiVJnLoiVJ it follows L0(Fi) Φ L0(V2) in contradiction

2. Some Consequences of the Axioms 1 to 5

Theorem 2.1. P = L (thus we prove Theorem 8.9 of [1], ///, § 8, with-
out using the assumption (V 1) \).

Proof. As shown in [1], p. 285-286, it is sufficient to prove, that for
every XoφQ such that μ(X0,1)=1 there exists an F e L such that
μ(X0,F)<0.

By Theorems 4 and 5 of [7] there exists to every Xo and every number
ε > 0 an element Fe e B' with 0 ̂  Fe ̂  1 and || 1 - Fe\\ < ε, so that Xo has
a minimal decomposition relative to the base Ke = Q n {X | μ(X, Fe) = 1}
i.e. there is a decomposition

X0 = aX1-βX2

with XuX2eKe and sup{|μ(X0, Y)| | -Fe^ Y^Fe} = ot + β. Since the
s e t - F e ^ y ^ F e is σ(JB;,jB)-compact, there exists a Yo with<x + β = μ(X0, Yo)
= u.μ(X1, Yo) — βμ{X2, Yo)] this result implies (because of \μ(X, Yo)| ^ 1
for all X e Ke) the relations: μ(Xu Yo) = 1 and μ{X2, Yo) = — 1. Together
with X1 = λίVί, X2 = λ2V2,VιeK, V2eK and F0 = ̂ (FeTY0) one
obtains the relations μ(V2, Fo) φ 0 and μ{Vλ, Fo) = 0 and FoeP (because
of 0 ^ F o ^ F e ^ l ) . Therefore we have C ^ Φ C ^ ) and C(F2)ί Cί^).
From Theorem 1.3 if follows, that there is an F e L with μ(F2, F) > 0 and
μ(F l5F) = 0, so that

F) = oιμ(λ1VuF)-βμ(λ2V2,F)=-βλ2μ(V2,F)<0.

Theorem 2.2. L = L = P (Thus we prove Theorem 8.11 of [1], ///,
§ 8, without using assumption (V 1) I).

Proof. The relation L = L = P is proved, if, for every XeB, with
\\X\\ = \ the relation

s u p { | μ ( X , 2 £ - l ) | | E e G H l

is valid, since then the convex and σ(B', jB)-closed set spanned by the
elements {IF — 1) with E e G is the unit-ball of B'.
6 Commun. math Phys., Vol 26
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We use again the minimal decomposition, employed in the proof of
Theorem 2.1:

X = aX1-βX2

with X1 e Ke and X2 e Ke.
If X' eKe, than \\X'\\ = supμ(X', 1). From ||1 - Fe\\ <,ε (where ε can

be chosen arbitrarily small) and

μ(X\Fe)=l for all X'eKe

it follows:

— ί — < | | X Ί | < — ί - for all X'eKp.

Because of 0 g Fe rg 1 we have

On the other hand because of Xί, X2 e i£e the inequalities

llXll^αll^H +j8| |X2 | | g(α + ) 8 ) ( l - ε ) " 1

hold. Since we assumed | |Z | | = 1, we have

The set — Fe ^ Y S Fe being compact, there is a Yo such that — F e ^ Yo

^ Fe and

α + J8 = μ(X9 y0) = αμ(A!, Yo) - i

This implies as in the proof of Theorem 2.1

μ(XuY0)=l and μ(X2,Y0)=-ί.

Defining F0 = ±(Y0 + Fe) and putting X^WXJV^ X2=\\X2\\V2,

VίEK, V2eK we have FoeP = ί,

\\X1\\μ(VuF0) = l, and μ(V29Fo) = 0.

Because of Xλ e Ke it follows

μ ( ^ i , F 0 ) ^ l - ε , μ(V2,F0) = 0.

As follows from the above remarks (to Axiom 4 b) we have the following
result: for an £ e G with K0(F0) = K0(E) there exists a number δ(ε)
for which

μ(V, E)^l-δ(ε) for all V with μ{V,F)^ 1 - ε .
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Therefore we have:

-2β\\X2\\μ(V2,E) + β\\X2

Because of <5(ε)->0 for ε-»0, it follows (\\X\\ = 1):

sup{|μ(JSf,2£--l) | |£eG} = l .

Thus the theorem is proved. We note however, that without using
assumption (V 1), we could not prove, that all exposed points oϊP = L = L
are elements of G. Neither was it possible to prove without using assump-
tion (V 1), that for every exposed point Fe of L the sets KX(F^ and K0(Fe)
are not empty.

Theorem 9.2b of [1], III, § 9, can be reformulated as follows:

Theorem 2.3. If B has the minimal-decomposition-property, i.e. if (V 1)
is valid, the following relations a) and β) are equivalent:

α) For every EeG with Eφ0 the set K^E) is not empty,

β) G is the set of all exposed points of L = L — P.

If (V 1) and one of the relations α), β), are valid, then the following
relations can be deduced (see [1], III, Theorem 1.4 and 9.5):

1) From E1eG, E2eG and Eλ rg E2 follows that E2 — E1e G.
2) The mapping E-+E* = 1— EoϊG onto G is an orthocomplementa-

tion of the lattice G. If the relation α) of Theorem 2.3 is not valid, then
the range of the mapping E -> 1 — E of G into L is not necessarily equal
to G. On the other hand because of P = L = L the mapping F->1 — F
is in involutory anti-automorphism of L. Therefore the following
theorem remains valid:

Theorem 2.4. The set of elements E' EL such that E = 1 - E and
EeG, forms a lattice G'. E is the smallest element of L^^K^E). The
mapping £-> 1 — E is a dual isomorphism of G onto G'.

Theorem 2.5. The following relations a), β) and δ) are equivalent and
β) implies y) (the assumption (V 1) is not necessary for the proof):

α) G = Gf,

β) For every EeG, E + Othe set K^E) is not empty.

y) all elements of G are exposed points of L = L = P,

δ) From ExeG, E2eG and Eγ ^ E2 it follows E2 — E1e G.
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Proof. Putting E2 = l, we get δ)=>aί).
Since Kι(E) = KΌ(l-E), K^E) is not empty, if l - £ φ l , i.e. if

E φ 0; thus we have α) =>/?).
j5)=><5) is proved in [1], III, Theorem 9.4.
β)^>y) is proved in [1], p. 294.
From Theorem 2.5 we see that all theorems in Ref. [1], Chapter III,

concerning the lattice G can be deduced from Axiom 4bz without
using (V 1). By Theorem 2.5, Axiom 4bz, is equivalent to the following
condition: £->l — E is an orthocomplementation of the lattice G. In a
general case (i.e. without assuming the validity of Axiom 4bz) one also
could consider the possibility G φ G'. However, in that case, the map
£ - * l — E is a dual isomorphism of G onto G'. We then have: cδG
= co G' = P = L = L (the symbol cδ denoting the σ{B\ B) closed convex
hull). Therefore the σ(Bf, B)-closure G of G contains all extremal points

of L = £ = P.

The conjecture that perhaps the case G φ G ' could be of significance
in a physical theory cannot be a priori rejected. However, one important
point should be emphasized here:

The case G φ G ' cannot be distinguished from the case G = G' on
the basic of physical experiments only, since Axiom 4bz has no direct
physical interpretation. Axiom 4bz is only a mathematical "idealization".
Therefore the case G φ G ' could only be of interest if other mathematical
idealizations introduced into the theory might contradict Axiom 4bz,
i.e. the relation G = G'. If, in theoretical physics, one encounters mathe-
matical inconsistencies, i.e. self-contradictory mathematical theories
then one may suspect that two incompatible mathematical idealizations
could have been introduced into the theory. The "current" quantum field
theory seems to be an example of such a situation the search for a con-
sistent mathematical formulation of the field theory being a night-mare
of many a physicist.

By Theorem 2.5, the significance of the "idealization" implied by
Axiom 4bz also becomes clear. We regret that it was not possible to
find a similar theorem clearing up the significance of assumption (V 1).

Using Theorem 8.10 of Ref. [1], Chapter III, we only can prove the
following:

Theorem 2.6. From (V 1) (without using Axiom 4bz) it follows that

G contains all exposed points of P = L = L.

One aspect of the significance of the assumption (V 1) and the

Axiom 4bz is suggested by Theorem 2.3. At present we are not able to

formulate in terms of G and P = L = L any necessary and sufficient

conditions for the validity of (V 1).
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3. The General Covering Condition

Let us assume the validity of Axiom 4 bz without assuming the validity
of (V 1). Then all the Theorems 9.5 to 9.11 of Ref. [1], Chapter III, can
be proved. The physical interpretation of Axiom 6 of Ref. [1], Chapter III,
§ 1, as given in Ref. [2] is an improvement of the formulation of § 10 of
Chapter III, Ref. [1] and does not depend on the assumption (V 1). In
[2] we tried to demonstrate on some examples of physical experiments,
how one is lead to the following two conditions:

a) mϊ{μ(V,E1)\VeC(±V2 + ̂ V4)}Φ0 (with E,eG and C(V1) = KO(E1))
and V4λV2 implies the existence of an F e L0(^i) w ^ h M 2̂> F) = 0 and

b) From inf{μ(F, £ 2 4 ) | Ve C(VX)} + 0 (with E2AeG and
= K0(E24)) and F 4 1 F 2 it follows, that for £ 4 G G with C(F4) = K 1 (£ 4 )
the relation μ(V, E 4 ) φ 1 is valid for all Ve C{^V1 + i>V2).

The two conditions a) and b) are equivalent - as shown in [2] - to
the "general covering condition", i.e. to

Axiomό: C{Vλ)C C(F 3 )CC( |F 1 + \V2) and A(C(V3), C(F 2 ))φ0 im-
plies C(V3) = C{VX).

The expression A( , •) in Axiom 6 is defined by the equation:

where the two elements Ex and E2 of G, are defined by the equations:

C(71) = X 0 (£i) and C(V2) = K0(E2).

It is interesting to note that one does not need the assumption (V 1)
to deduce the representation of the elements of K and L by operators in a
Hubert space if the assumption (V 3) is valid (cf. [1], p. 415). Once the
representation of the elements of K. and L by operators in a Hubert
space has been proved, the relation (V 1) follows easily. The representation
theorem is proved in Ref. [8] using the results of Refs., [2] and [1],
Chapter III, §18.

The assumption (V 1) does not seem to be so important as orginally
supposed in [1]. Only the idealization implied by Axiom 4bz seems to
play an essential role in the theory.
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