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Abstract. Spin projection operators which constitute a resolution of the identity in the
space of second rank tensor wave functions are constructed. These projectors are then
used to establish Lagrangian quantum field theories for free massive particles with spin-1
(two equivalent formulations) and spin-2.

1. Introduction

Recently, Aurilia and Umezawa [1, 2] have introduced an elegant
systematic and flexible method for constructing quantized field theories
for free particles with higher spins. For such particles the method yields
a single wave equation, which implies all the usual subsidiary conditions,
including symmetry or antisymmetry properties, so that the wave func-
tion in question has exactly the number of components appropriate to
its spin value. Further, in virtue of these subsidiary conditions, the
original equation then reduced to the Klein-Gordan equation for inte-
gral spins and to the Dirac equation for half-integral spins. The method
of Aurilia and Umezawa represents a decisive advance in the theory of
higher spin particles initiated by Dirac [3], Fierz [4], and Pauli [5],
developed further by Rarita and Schwinger [6] and many others, and,
in fact, excellently reviewed by these authors themselves [2].

The quantization of the various wave equations in the A.U. approach,
i.e. the derivation of commutation relations and Feynman propagators
is achieved by introducing the operator [7, 8, 9] d(p), known as the
Klein-Gordan divisor, which has the property

d(p) Λ(p) = Λ{p) d(p) =-(p2- m2), (1.1)

where the kernel Λ(p) is given by the wave equation

G. (1.2)

The operator d(p) is closely related to the spin projection operators Θ(s)
introduced by Fronsdal [10], which project the spin s components out
of an arbitrary wave function. In fact d(p) is equal to the projection
operator when p2 — m2 = 0.
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When the mass-shell condition is not satisfied, then the spin projec-
tion operator contains singular terms, viz. powers of p~2, so that the
wave equations introduced by Fronsdal [10]

(Θ(s)y -p — m)ψ = 0,

for half-integer spin, and

(Θ(s)p2-m2)φ = 0,

for integer spin, contain singularities which are not at all desirable,
especially when interactions are introduced. Previously the removal of
such singularities has been effected by the introduction of auxiliary fields,
a concept suggested by Fierz and Pauli, and later developed by Fronsdal
[10] and Chang [11]. In the A.U. theory, an alternative to the method
of auxiliary fields is proposed which has been successful in treating
vector, two- and threespinor, and vector-spinor fields.

In this paper the method is applied to a second rank tensor field
ψμv(x). In section two, all the projection operators for the different spin
components contained in this tensor are derived. The anti-symmetric
part is examined in section three, and two (equivalent) formulations of
the theory of spin-1 in terms of anti symmetric second rank tensors are
worked out. One of these formulations closely related to the Proca
description of spin-1, involves some new results, and the other is a slight
generalization of a recent formulation due to Takahashi and Palmer [12].
Some insight into the relationship of these two approaches is afforded
by relating them to the Bargmann-Wigner equations [13]. In section
four, the description of a massive spin-2 particle in terms of a second
rank tensor ψμv is considered. A wave equation, second order in the first
derivatives of the wave function is obtained which implies all the usual
subsidiary conditions for spin-2, including the symmetry and traceless-
ness of ψμv, and, in virtue of these, reduced to the Klein-Gordan equation.
The results obtained agree with those of Bhargava and Watanabe [14].
These authors obtained their results by a different, somewhat tentative,
method and with the aid of a correct but unproven assumption which
we did not have to make. We believe, moreover, that our analysis is
significant as an illustration of the method of Aurilia and Umezawa:
indeed it is probably the simplest non-trivial example of their method,
for the spin-1 examples of section three lack some of the typical com-
plications of the general case. This is worthwhile, since, at present no
theory of spins 5/2,... or 3,... free from subsidiary fields exists, and if
such theories are to be found it seems most likely that the approach of
Aurilia and Umezawa should yield them.

Finally it is noted that the results of Bhargava and Watanabe, which
we have here confirmed in all details, contradict the work of Rivers [15],
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whose analysis implies that it is impossible to have a consistent quantized
theory of spin-2 fields unless it is assumed a priori that ψμv is symmetric.

2. Projection Operators

In this section we construct projection operators which project out
of an arbitrary second-rank tensor ψμv, parts which transform irreducibly
under the group of spatial rotations. It is well known that the symmetric
part of ψμv involves spin-2 and spin-1 each once and spin-0 twice, while
the anti-symmetric part involves spin-1 twice. We seek a resolution of
the identity

I=S+A, (2.1)

where S = D{2) + D(l) + D(0) + T(0), (2.2)

'(l), (2.3)

in an obvious notation in which the bracketed integers denote spin
values. Eq. (2.1) written out in full is

gμ*gv

Q = Ί (gμ

σg
v

tt + gμX) + i W* ~ » (2.4)

and we proceed as follows to derive explicit formulas for the projectors
occurring on the right of (2.2) and (2.3).

The two elements of the centre of the enveloping algebra of the
Poincare algebra are

and W = — wμw
μ,

where w μ = i f i μ v σ ρ S v V (2-5)

In (2.5), Svσ denotes the spin operator, and we can write

ρ. (2.6)

For massive particle-like representations, the eigenvalues of p2 and W
are m2 > 0 and s(s + 1) m2. Now an arbitrary tensor ψμv carries a reducible
representation involving several spins as already noted. The correspond-
ing spin operator is

(S«eΓρ = (Σ«e)μgl + gμ

σ(Σ«%, (2.7)

where (Σ^)μ = i(g«σg
βμ - g«μgϊ) (2.8)

is the spin operator for a four-vector
The first step in the construction of the required projectors is to

construct projectors onto the parts of ψμv which carry spins 2,1, 0. Using
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the standard expression

P(s)-U W-S'V+VP2 (29)

we obtain 2

24/Γ 12/r

W2 2W

Up4 3p2

Use of (2.6), (2.7) and (2.8) leads hence to the explicit expressions.

1 / v a , a v , u v , v μ x

Γ^~ (dρP Pσ + ̂ SP Pρ + ̂ ρP Pσ + QσP PQ) '-

2

1 1
»** 3p2

4

In these equations, we have made the obvious identifications of 0(2) and
D(ί) with P(2) and the symmetric part of JP(1).

To complete the resolution, we follow the systematic approach of
Aurilia and Umezawa [2]. These authors instruct us to consider all
operators of the form

D(%D(γP(Stf (2.13)
for S = 0,1,2, s1=0,ί and s2 = 0,1. Herein, we have
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which are the projectors onto spin-0 and spin-1 for a four-vector. To
explain the procedure, let us note that ψμv transforms under Lorentz
transformations like a product φμχv of four vectors. The operator (2.13)
yields the spin-S part of \pμv which transforms like the spin-5 part of the
direct product of the spin sί part of φμ and the spin s2 part of χv. Since
5 = 2 can only arise when sί=s2=ί, the results

D(sί)
μD(s2γβP(2r/ρ = 0, unless s1=s2 = l,

confirm what we have seen already. Similarly, since S = 1 belongs to the
anti symmetric part of the direct product when sί = s2 = 1, we may con-
struct the projector, A(ί) say, by taking

πv nμ π\
Q ΌQΌGJ

pvP - gμfP - glPμ^ glPμPQ)

Likewise it is natural to identify D(l) and A'(I) with

\ lD(l)μ D(0)} ± D(0)μ D(1)J] P(l)α/ρ

and we check that D(l)μv

ρ as given by (2.11) emerges, as consistency
demands, and that

= -^r KPμP« + 9μ*?VQ ~ Gμ

QfPa ~ 9lPμPQ), (2.15)

follows. Further, D(0)μ D(0)v

β P(l)a

σ

β

ρ vanishes. Finally, turning to S = 0,
we find

D(O)μD(θγβ P(Of/ρ = pμfpσpQ/pA .

Since D{\)μ D{% P(0)a/Q and D(0)μ D(l)v

β P(Of/e vanish, it is seen that the
Aurilia-Umezawa procedure [2] yields the required projectors and no
more. However it is possible to resolve P(0) in another way, by the trace



216 A. J. Macfarlane and W. Tait

operator

and

4 ( 2 1 7 )

In Sect. 4, where the kernel of the spin-2 Lagrangian is constructed it
will become obvious why the latter spin-0 projectors are used in prefer-
ence to the former; in order to have an obvious proof that ψμv is traceless.
The resolution (2.1) to (2.3) is now fully specified, with

and A'{\)

given respectively by Eqs. (2.10), (2.11), (2.17), (2.16), (2.14) and (2.15).

3. The Two Descriptions of Spin-1 by Anti-Symmetric Tensors

It is well-known that the Proca equations for spin-1 can be written
in terms of an antisymmetric second rank tensor. Recently Takahashi
and Palmer [12] have shown that there is an alternative formulation of
spin-1 theory in terms of such a second rank tensor. This formulation
is simpler in appearance but equivalent to the previous one. One way
to obtain the primitive versions of these two theories is to set out from
the Bargmann-Wigner equations for a symmetric second-rank spinor φ.
Expanding [16] φ in the form

φ = imyλCΛλ+iσλvCFλ\ (3.1)

where C is the charge conjugation matrix, Aλ a four vector and Fλv an
anti-symmetric second rank tensor, we can show that the equations

PvF
λv = m2Aλ, (3.2)

Fμv = pvAμ-pμAv (3.3)

follow from the fact that φ obeys the Bargmann-Wigner equations. The
Proca equation for Aμ follows by inserting (3.3) into (3.2). Alternatively
we may use (3.2) to eliminate Aμ, and obtain

β = m2Fμ\ (3.4)

or equivalently
(p2-m2)Fμv = 0

= 0 (3.5)
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To derive the Takahashi-Palmer equations, we use a different ex-
pansion of the symmetric second rank spinor

φ = imγλCAλ+ \y5σλvCGλ\ (3.6)

in which Aλ is a four vector and Gλv is an anti-symmetric tensor. The
validity of this expansion rests on the fact that yλC and y5σμvC are as
good a set of 10 independent symmetric Dirac matrices as yλC and
σμvC. Indeed the relation

holds. The fact that φ obeys the Bargmann-Wigner equations now gives

^βaβp
βG°° = m2Aa

Gaβ= -^εaβσep"Ae,

which imply

{p2-m2)G" + p"pcG
f't-peplO"^0, (3.7)

or, equivalently

(p2 - m2) Gxβ = 0

PαG*" = 0 (3.8)

The fact that (3.5) and (3.8) stem from the same Bargmann-Wigner
equations makes manifest their equivalence, which has also been proved
by Takahashi and Palmer, but in a different way. Of course it follows
from (3.6) that G is just the dual of F. Explicitly we have

1 σ Q 2 ύ σ ρ μ v υ

We now apply the method of Aurilia and Umezawa to derive single
equations which are equivalent to the sets (3.5) and (3.8).

Let the six projectors in (2.2), (2.3) be denoted by (i= 1, ...,6), then
for a given spin, A defined by (1.2) can be written as

Λ(p2) =-(p2- m2) Pt - m2 Σ akPk, (3.9)

where Pt is a projector for the given spin and where the Gk are non-zero
numbers. Also the Klein-Gordan divisor is given by

Pi+τ^Σ^-Λ (3-10)
m a

Now, (1.1) is satisfied identically and the Klein-Gordan equation and the
subsidiary conditions follow from (1.2) in virtue of the properties of the Pt.
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For the case of Pt = A(l), the specification of the corresponding wave
equation is completed by chosing the αf in such a way that singular terms
of (3.9) cancel out. Taking the coefficient of A'(l) = — 1 means that
singular terms of the type

2p Q ° σ Q Q

cancel, and taking the coefficients of Z)(2), D(l), D(0) and T(0) equal
(to b, say; bΦO) suffices to cancel all other singular terms. This yields

- 9μ9μ

e9l)

and we also obtain

2m2 v;

(P

2-m2)

(3.12)

Now a Langrangian density

q?—w+ Aμv σQ

yields the Euler-Lagrangian equation

Λμ

σ

v

ρΨ
σρ = 0 (3.13)

in straightforward fashion for no anti-symmetry condition need be
imposed on ψ beforehand. Indeed with Λ(p) given by (3.11), Eq. (3.13)
not only implies ψμv 4- ψvμ = 0 but also implies pμψ

μv = 0, and hence
reduces to (p2 - m2) ψμv = 0. Thus (3.13), with (3.11), is equivalent to the
Takahashi-Palmer equation (3.8). In fact, these authors derived an equa-
tion which is the b = 1 special case of (3.13) with (3.11), and showed that
(3.8) followed.

A similar analysis can be performed in the case of Pt = A'(l). It yields
a single equation of the type of (3.13) with A'(p) given by

βP
μpσ + gμfPQ - gμfpσ - glPμPQ) (3.14)
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This equation implies the subsidiary conditions ψμγ + ψvμ = 0 and
εaβμvp

βψμv = 0 and hence reduces to the Klein-Gordan equation, so that
equivalence to the Proca description (3.5) is seen. The Klein-Gordan
divisor is then

(p2-m2)
σQ 2m2 σ e Q σ

<o-glpμpQ) (3 i5)

so that in this case, as in the previous one, the Feynman propagator is
known explicitly in the form

d'ip)

p2-m2

In view of the dual relationship between the two formulations of
spin-1, it was not necessary to apply the Aurilia-Umezawa procedure
twice. Indeed we have for A(ί), A'{\), Λ, Λ', given by Eqs. (2.14), (2.15),
(3.11), (3.14)

4 bμvaβ/i \λ)yδ

4 t'μ\ay/±\l)yδ b ~ Ά \L)μv >

-F Λ*β pyδσQ —

where A, A' are defined by the equations

A =A +bS,

Λ' = A' + b'S.

It is not surprising that the dual relationship involves only the anti-
symmetric part of the kernels and not the full kernels since these occur
in Lagrangians in which the tensor ψμv is not a priori anti-symmetric.

4. Spin-2 Wave Equation

It was shown by Bhargava and Watanabe [14] that it is possible to
construct an Euler-Lagrange equation for a massive spin-2 field in which
the symmetry and the tracelessness of the tensor field employed were not
assumed at the outset (cf. also Nath [16]), but emerge finally from this
equation.

16 Commun. math. Phys., Vol. 24
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The set of equations which define a spin-2 field are

(p2-m2)ψμv = 0

(4.1)

giving five independent components in the rest frame. In this section we
use the method of Aurilia and Umezawa [2] to derive a wave equation
for ψμv which implies the three subsidiary conditions (4.1), and upon
using these reduces to the Klein-Gordan equation. It will be seen that
this method is systematic and does not involve the assumption that the
Umezawa-Visconti result [8] (that the highest order of p in d(p) is 2s,
where s is the spin) is valid. The derivation of a spin-2 equation by
Bhargava and Watanabe makes this assumption, which turns out to be
valid, although it has only been proved in situations where Λ(p) is linear
in p9 and whose range of validity, clearly wider than that for which its
proof exists, but equally clearly limited, is as yet undetermined.

Using the projectors found in section two, let

A{p)= -(p2~m2)D(2)-a1m
2A-tm2T(0)-x0m

2D(0)-xίm
2D(l)

where all the parameters are non-zero and, for simplicity, are chosen to
be real. In this case, however, they cannot be chosen in such a way that
all the singular terms cancel, although the terms proportional to

( v μ + μ v μ v l μ )

are removed by putting χί = — 1. The remaining singularities

pμpvgσQ gμvpσpβ

P4 ' P2 ' P2 ' P2

may be removed by multiplying A on the left by invertible operators of
the form

l+cPkMPι;

where M is some matrix and c is a suitable coefficient, chosen so that
the singularities generated by PkMPι cancel those in A. Consider

Όp

XSl s D(0Γβ ±jr gξη T(0)H

Yμv

ρ = τ(oκwβ ^ψ- m i l = - ~ gμvgσQ
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\?~UV \r(χ,β /ZV UV Γ (T r Q
Λ a β ϊ σ Q

= ~ ^ 9 9a Q —9 ~~2 2 ' ^ 4 >

All the singularities can therefore be generated by multiplying A on the
left by η2ηχ where

Not all of the four parameters a, b, c, d are necessary for the purpose of
eliminating singular terms, and it is possible to have either a = 0 or c = 0;
but the latter leads to a non-hermitian Lagrangian density. Consequently
we set a = 0.

Now in order to have the hermiticity of the Lagrangian compatible
with the vanishing of the singular terms, it is necessary to multiply by
another operator

It follows that

+ 9μ

Q9l) - %

m2gμvgσρ [- \ t - % - •& x0 + £ bx0 + | d t - | bdx0

+ q&xo-ldt+lbd

9μvPσPQ C- i + bcx0 - 3qbcxo~]

+ m2 ^p9<" [1 + i χ 0 + bdx0 - dt] (4.2)

i ί ϋ ^ P [i + i X o _ foXo + bdx0 - qxo(ί + 3bd)] (4.3)

^ v ; ^ ( 4 β 4 )

( 4 5 )
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The singularities are removed by requiring that the coefficients of the
last four terms vanish, and the hermiticity of the Lagrangian is assured
by requiring that the coefficients oϊgμypσpρ and pμpy gσρ are equal. Thus
(4.5) gives

so that hermiticity

Put
α = -

= -

and β = 3-

3
— 8

It follows that

demands

1

1 ι 1

+ ϊct-

q2-\q +

bcx0

that

ct =

bcx0

\bcx0

- l

1
— 6

-hq-

+ q(-

j β = i ( 3 α

2 + 2α-f l ) . (4.6)

Now (4.2) and (4.4) give d = 0 and xo= — 1, and hence (4.3) demands
that b + q = 0. Putting

— i /• _|_ i _|_ _±_ -y- i nγ ]L /I f _L — r)// V

4 I- ι̂  3 "̂  12 0 4- 0 4 ^^ 4 ^ ^ - ^ Ό

then y=^(3q2 + l) = (x + 2β. (4.7)

The resulting Λ, depending on two parameters (α, ax) is then

(4.8)

where j8 and y are defined by (4.6) and (4.7). Since q Φ 0 then α + — \
and, of course, aγ Φ 0.

The Klein-Gordan divisor, defined by

where

d = D{2) + ( p 2 ~ 2

m ) [αfM + r 1 T(0) + xά1 D(0) + xf1
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turns out to be

+ gμpvpe

+

(4.9)
(p2-m2) Γ t α ( α + l ) IJV (α+1) 2 p 2

m 2 [ 2 { 2 a + \f9 9σa+ 6 ( 2 α + l ) 2 m 2
ΛΪ^ V /

jρ

Λ and d are the same as those derived in Ref. [14], and the Lagrangian
density and propagator are given by

(4-10)

It is to be noted that A in section three corresponding to particles
described eventually by an anti symmetric tensor involves the projector
onto symmetric components in the simple form

-bm2S, b φ O .

Also A in section four which corresponds to particles eventually
described by a symmetric tensor involves the projector onto anti sym-
metric components in a correspondingly simple fashion

— a1m
2A, α-L+0.

Further, the procedure involving the operators η, which is the essential
new feature in the Aurilia and Umezawa approach, is non trivial only
for spin zero components of the symmetric part of \pμv. Remarks analo-
gous to these will serve to minize the effort involved in applying the
Aurilia-Umezawa approach to more complicated situations, some of
which are currently under investigation.

One of the authors (W. T.) is indebted to the Carnegie Trust for the Universities of

Scotland for financial support.
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