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Abstract. The boundary condition dependence of the correlation functions in a phase
transition region of the thermodynamic parameters is of great importance to understand the
character and properties of the phase transition itself. In this paper we study the boundary
condition dependence of certain correlation functions in the Ising model at low temperature.

§ 1. Motivation of the Paper. A Related Problem

The object of this note is the investigation of a problem, formulated
in §2, related to the old question of whether the value m*(f) for the
spontaneous magnetization in the Ising model, as computed by Onsager
and Yang, coincides with the appropriate derivative of the free energy

f (B, hy: S
m*(B) = —fg:l—) (1.1)

h=0% '
As is well known Onsager’s definition is essentially [1]:

(@)= lim (5.0, (12)
where {0,0,) is the two-spin correlation function defined as a suitable
thermodynamic limit of finite volume correlation functions.

The problem of showing the conjectured [1] identity of (1.1) and (1.2)
can be formulated in the frame of a more general conjecture which we
describe below [2].

Consider the sets of correlation functions {¢,0,0,...) a,b,c,...€ Z’
that can be obtained as a thermodynamic limit of finite volume correla-
tion functions using all the possible boundary conditions.

More precisely the finite volume correlation functions are defined
as follows: let 4 be a finite box and let X = {0y, 0, ..., 6y4)} be a spin
configuration (here g; = +1 denotes the value of the spin in the ith lattice
site of A); let —J >0 and

Hy(X)=J Y, o6,0;,—h ), o, (ij) means nearest neighbour (1.3)
(i) ied
i,jed
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and define as “boundary condition” a function X(X) such that
12(X) = 21J] a(4) (1.4)

where a(A) is the surface of A. We call H(X) = Hy(X) + 2(X) the hamil-
tonian for the Ising model with “boundary condition X”*.

The finite volume correlation functions with boundary condition
2 are the family of the functions of a, b, ... € Z"U A given by

Y 0,0,...e PH®

allX
e = 1.
<Ga0b6cad >E’A Z(B: ha 2) ( 5)

where the partition function Z(B, h, 2) is
Z(ﬂ’ h: 2) = Z e PHX),

allX

If for each A we are given a X, we can consider the thermodynamic
limit as 4 — o0 (i.e. as the sides of A — 0):

BB 1) = lim o logZ 8. . ) (1)

which is well known to exist and to be X-independent.

In general, for fixed a,b,c... € Z”, the limit as A —o0 of (1.5) does
not exist. However passing to suitable subsequences the limit (1.5) can
be assumed to exist for all a, b, ...€ Z".

Consider all the families of functions

6,,£0,0),{G,0,G,), ... 1.7

that can be obtained as limits of subsequences of (1.5) with all the possible
choices of X ;.

Each set of functions in (1.7) will be called an equilibrium state
corresponding to an external field h (see (1.3)) and a temperature S 1.
We shall say that the possible equilibrium states correspond to different
boundary conditions.

One can ask when the set of equilibrium states consists of just one
element i.e. when the limit as 4 — oo of (1.5) exists and is X ,-independent.
It has recently been possible to show that, if 4 &0 and J > 0, the limit as
A—-oo of (1.5) is indeed unique and Z-independent [3]. However for

! The reason for limiting ourselves to (1.4) is twofold: first the “Cyclic boundary
conditions” together with the boundary condition obtained by occupying all the sites
outside A with spins having a prescribed value can be described by surface terms verifying
(1.4); second it has been shown that, using boundary terms verifying (1.4) one can obtain
in the thermodynamic limit all the possible equilibrium states (i.e. by allowing more general
surface terms one does not get anything new) [8].
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h =0 and § large enough it is known that there are at least two different
equilibrium states. These two states have been investigated in detail and
have equal even correlation functions and opposite odd correlation
functions. Furthermore, if we denote them by 4™ and pu~, the following
properties have been shown to hold for large f (i.e. low temperature) [4]:

Jim_w*@0)=m? = lim 4~ (6.0,

lo)=m (o) =-—m

1 (o) I (. ) (18)

p(o.0,0,...)= hlugl+ ulo,0,0,...)

u (0,0,0,...)= hl—i>%l— ulo,0,0, ...)

where ui(axay ...) denotes the value of {g,0,...) in the state ut and u
denotes the (unique) equilibrium state at the same f and in presence of a
field h 0.
Another important property of u* is that (for large ) [4]
of(B,h) .
— 1.
oh (19)

+ g o — Ti _ 1
Ko = —p (o) =m= lim uo)= lim

It is tempting and natural to conjecture that u* and u~ are essentially all
the possible translationally invariant equilibrium states at h=0 and
that they represent the two phases in which the system can be found.
More precisely one can conjecture that if ¢ is another translationally
invariant equilibrium state (corresponding to the same § and to h=0)
then there exists a, such that

o=out +(1—oa )y~ 0=a,=<1 (1.10)

where this means that ¢(6,0,0, ...) = a,u" (0,0, ...)+ (1 —a,) ™ (0,0,...).

It is easy to see that conjecture (1.10) together with the properties
(1.8), (1.9) implies that the Onsager value (1.2) for the spontaneous
magnetization coincides with (1.1) at least in the region of § where (1.8),
(1.9) can be proven (i.e. low temperature).

Conjecture (1.10) implies several rather strong properties of other
correlation functions. It is the object of this paper to study some of these
properties and to prove that they in fact hold.

2. Formulation of the Problem

Consider a v-dimensional Ising model (v = 2) enclosed in a rectangular
box A containing N(A) lattice points. Consider the probability distribu-
tion induced at temperature B! on the spin configurations in A by the
hamiltonian Hy(X) and a boundary condition X ,(X): the probability of
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a spin configuration X is:

e BHX)
PA,Z(X) =

Z(4,B,2)

To each spin-configuration X in A we associate a set of lines con-
structed as follows: Consider the lattice bonds not lying on the boundary
of A and having opposite spins at their extremes; draw a unit segment

perpendicular to each of these bonds, through their center?. The set of
lines thus obtained splits into several disjoint self-advoiding lines some
of which are closed while the others begin and end on the boundary of A.
Let I' = (y,,y5, ..., ¥») denote this set of lines. Clearly given I' there are
only two spin-configurations X; (I') and X, (I') having I" as set of contours.

Let 2Y(I') and X%(T') be the surface terms associated with X, (I') and
X, (D).

We can ask for the probability that given contours y,, y,, ..., 7, are
part of I': this probability is given by

e~ 28I (o= BZa) 4 o=BZ2(D)

Irs(ys,..., n)
0p.5,401 - VW) = e Z(B. 4, 2) (2.2)

here [I'= ) [y'| and [y'| = length of y’ (this follows from the fact that

y'el
if h=0 H(X) =2J2y'|+ 2(B, X) + const.).
Suppose that the contours in I' = {y;, 7, ... y,} are all closed, then it
makes sense to consider

2.1)

1im g;,5.4(T) (23)
where g » 4(I') denotes the translational average of g 5 4(I') i.e.:
Gsall)= ' T 5 al+3) (24)
o N(A) I'+xed -

here I' + x means the set of contours obtained by translating by x the
contours in I,
The conjecture discussed in the preceding section implies that

0y(I) = lim g 5 4(T) 29)

exists for all closed I' and is X independent.
In this paper we prove that (2.5) is indeed true. The proof is based on
the fact that the possible limits of the r.h.s. in (2.5) define possible tangent

2 This construction is well known (see D. Ruelle: Statistical mechanics, Benjamin 1969,
p- 117). For a detailed discussion of the ambiguities that arise when four lines meet in a
corner see G. Gallavotti, A. Martin-Lof: preprint. “Surface tension in the 2-dimensional
Ising model”, to appear in Commun. math. Phys.
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planes to a certain convex surface in an infinite dimensional Banach space.
We show that these tangent planes are tangent at the same point 0 and
that, at this point, the tangent plane is unique because its components
verify an integral equation with a kernel which is an analytic contraction
in a neighbourhood of 0.

A similar technique was developed in connection with the investi-
gation of the thermodynamic properties at low density [6].

3. Geometric Interpretation of g(I")

Let B be the Banach space of all the translationally invariant “poten-
tials” on the non-intersecting closed contours:

()= D" (y;...7,) if I'=ly,...7,} 7;=closed

(3.1)
o] = Y o) <+oo.
Oell
Define
Up(I)= Y &) (i.e.: I'" built with closed contours in I'). (3.2
rcr
and
1
P, o(®) = 1o e BTl (= BEOM) | o=BEDD) = BUs ()
w0 = gy e, e

We shall first show the following
Theorem. Under the above conditions and if f is large enough (V@ € B):

P(®) = /}im P, 5(D) (3.3
exists and is X-independent. (The limit A— oo is taken over the net of
increasing rectangles.)

Proof. Observe first that

2e 2080 § oIl g~ Vo (D)
rca

IIA

Z e PIll(e=BEOM | o=BED D) p=FTUa(D) (3.4)
rca

< De2JBaA) Z e Bl p=BUa(D)
- rca
hence the limit (if it exists) is X independent.
Now, denoting |y| = length of y and |I'| = X;|y;| if I' = (y4, 75, ...) and
setting 2J =1:

Zo(B, A)= Y e FllempUaD — 3 =Bl g=hIl"l =BV (3 5)
rc4d Irrorc4
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where Z,(B, A) is defined by the equation in (3.5) and the second sum
runs over all the possible families of contours I'"U I’ with I built with
open contours and I" built with closed ones and I'UI” is admissible
(i.e. I and I" disjoint).

Clearly
ZoBNZZoB, A)= Y e Pl tlad) (3.6)
F;lgs:d
Zo(B, A) < Zo(B, A)( > e-/"”) : (3.7)
rca
I'" open

The sum in (3.7) can be estimated as follows: suppose there are K con-
tours in I", i.e.: I'" = (y1, 75, - .-, Vk) With lengths n,, n,, ..., ng.
These K contours will start in Py, P,, ..., Py e boundary of A. The

points (P, P,, ..., Py) can be fixed in (ag) ) different ways where o(A)

is the length of the boundary of A.
For each of these ways there are at most 3" *"* " *rx pogsible
contours 7] ... yx with respective lengths n,,n,,...,ng and end points

(P, P,, ..., Py) hence

T eIl < z ("(A)) > H(3e-ﬁ)n,

rca ngi=

I'" open , . , (3(%2
a(A) 3e” 3e” ’
< — | = -
=;<K>(l—3e"’) (1+ 1—3e—ﬂ)
hence if B is large enough (since a(A)/N(A)—0):

——logZ 0([3 A)— ——1gZy(p, A)—0. 3.9

N (/1) N (/1)

It is now easy, using standard subadditivity techniques) to show the
existence of the limit [5]

1
lim " N — _1gZo(B, A) = P(®). (3.10)

We are now in a position to discuss the geometric meaning of o(I').
From (3.5) it is clear that:
1 _ 0P, (D)
_ [N= —£< °
IF[ 00,4,5(I') 20(I)

and therefore g4 4 5 are essentially the components of the tangent plane
to the convex surface P, ;(®) defined for @ € B. Hence every limit point
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o(I") defined as
o) = /}1_{1;10 POint@p,A,z(F)

defines a tangent plane to the X-independent surface

1

P(®)= lim N(A)

ngQKB’é)'

In the next section we show that the tangent plane to P(®)in # =01is
unique if f is large enough.

§ 4. Uniqueness of o(I")
We prove the following theorem:

Theorem. The convex functional P(®) on B has a unique tangent plane
at @ =0 provided B is large enough.

Proof. It is of course enough to show that one can construct a tangent
plane whose components are continuous in @ for ||®|| sufficiently small.
The key remark is that, as shown in the preceding section,

0 1 * ,—BIX|-BUa®) — lim P*
P(®) = }1_{{)10 ) logX;Ae = /}I_IEO P (D)

where the sum runs over the sets of closed contours in A. Hence the func-
tions
¥ e~ BIX|-pUs(X)

X2Y
ei(Y) = i* e~ FIXT=BUa(X) (4.0)

X

are such that their averages define the components of the tangent plane
to the surface P} (&) and therefore their limits define a tangent plane to
the surface P(®). We shall now seek equations for g% and their limits as
A— o0 and, using them, we shall show that /}1_{1010 0%(X) = o(X) exists for

all X and defines a tangent plane to P(®) which depends continuously
on @ around @ =0 if § is large enough.
Let us denote in this section with capital letters X, S, T, T’ etc. sets
of compatible closed contours (previously denoted by I', I'” etc.).
Define [6]
UpX)= Y &(S) (4.1)

y1eScX
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where y, is chosen arbitrarily in X (but with a fixed well defined criterion).

Wi(X,Y)= Z P(SUY), 4.2)
71€SCX

LX,Y)= ) &Tus)= Z Wa(T,S), 4.3)
y1eTCX P+SCY
P*+SCY

KoXIT)= 3 X f[@”““““—n T+0, 4.4)

n=1 {S1...8q j=1

i0i=

Then consider a finite A and a family of contours X = (y, ... y,) with the
I'’s closed. We have (in close analogy with Ref. [7, 4]):

X)=2Z"1 Y e PIIFIXD=hUa
X'AnX=0
= e BUs(X) p=Blyil Z~1 Y e AUXOIFIXD
X'nX=9¢
. e PUa(XDuX) Z KX, T)
TCX
1
= ¢~ BUa(X) o= Bln1l Z KX, T) Z e BUXMDI+]Y|+]T]) (4.5)
TnX=0 YAn(TuX)=0
. e~ BUa (XY UT)

— ¢~ BUBX) 5~ Blv1l Z K(X,T) Z (—1)N(X")Qﬁ(X(1)UX"UT)
TnX=0 X'ny1¥0
where all the contours are contained inside A and X"y, & @ means that
all the contours in X" intersect y;. The prime means that X" =@ is
allowed. Z is the normalization factor as in (4.0).
These equations can be regarded as integral equations of the form

04 = Xa%a+ xaKe} (4.6)
where
a(X)=0 if number of contours in X >1 47
= e Blvil=B20r1)  if X =1y, 4.7)
and

(K) (X) = e~ Blvil g=BUaX)

Y KX, T) Y (m1VE(RXOUX"UT)
TnX=0 X'ny1*+0 (48)

(X)) =1f(X) if Xc4a
=0 if X¢4

where the * means that if X =y, (i.e. if X contains just one contour (y,)
then the term T = @, X" = 0 is missing (because it has been included in o ).
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If we consider the above equation as an equation over the space of
the f’s with the norm

f(X)]
(1l = sup W 4.9)
we find
‘</3/2— Of: 3"e‘ﬁ"/2> °
IK| < efli?lle e©'*'=D = (B, ®) (4.10)
if B is large enough and | ®| small enough.
Therefore we can write for all X
X)) = ) K X)) Xca (4.11)
K=0
and
g3l S o~ <™
T—[[K 4l 1-L(B, )
hence |o%(X)| < (const) - exp — /2| X].
It is easy to see that, using the strong property (4.10), the
Lim @7(X) = ¢a(X) (4.12)

exists and is a solution of the equation
Q¢=OC+K¢Q¢. (4.13)

The kernel K, depends continuously on & (ie. if &— @, then
| Ky — Kgpoll—0) hence ¢4(X) depends continuously on & for ||
sufficiently small and f fixed but large enough. Hence the tangent plane
to P(®) is unique at @ =0 if § is large enough.

The equation verified by the tangent plane components at ¢ =0 are

oX)=e Bl 3" (— VDXV Y), (4.14)

mel*@

i.e. are the equations found and studied by Minlos and Sinai [4].

5. Conclusion

We have considered the v-dimensional Ising model and the equi-
librium states for the system enclosed in a box A and subject to arbitrary
boundary conditions. We have studied the probability that the boundary
I'" between the spins up and the spins down contains a given set I of
closed disjoint contours. Calling g ,(I") this probability we have shown
that the limit

lim g,(I") = o(I) (CRY)
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exists on the net of increasing rectangles and is independent on the
boundary conditions used to compute
_ 1
D=5 ZZ 4l +x)
r+xcda

translational average of g ,(I).

Two questions remain open:

1) whether

/}1_{1010 @4 =o(I') T built with closed contours,

i.e. if (5.1) holds with g, replaced by g,.

2) whether the independence of ¢(I') from the boundary conditions
implies that the genral translationally invariant equilibrium state for the
Ising model can be expressed as a superposition of only two extremal
states (observe that converse is true: ie. (5.1) is a necessary condition in
order that the equilibrium state for the Ising model be expressible as a
linear combination of only two extremal states).

It is of some importance to observe that the solution of problem 1)
above does not necessarily come before the solution of problem 2). In
fact, as shown in [7,8], a given translationally invariant equilibrium
state of the infinite system can be obtained as the thermodynamic limit
of a suitable boundary condition which is such that ¢,(I') is already
translationally invariant i.e. 9 ,(I') =g, + x) if I" and I' + x € A.

Restricting ourselves to such boundary conditions (which are of
course enough for a complete investigation of the translationally in-
variant equilibrium states) one can take the bar out of Eq. (5.1). Another
interesting boundary condition in which ¢ ,(I') = ¢ ,(I" + x) is the periodic
boundary condition in A.
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