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Abstract. It is shown that in all solutions of the Einstein-Boltzmann equations in
which the particle distribution function is isotropic about some 4-velocity field, the
distortion of that velocity field vanishes; further, either its expansion or its rotation
vanishes. We discuss briefly further kinetic solutions in which the energy-momentum
tensor has a perfect fluid form.

1. Introduction

The General-Relativistic theory of a collision-dominated one-
component gas is governed by the Einstein gravitational field equations1

Rab-$R9ab + Agab=Tab (1.1)

where the energy-momentum tensor Tab is obtained from a suitable
model for the gas. A fluid model is appropriate if the collision dominance
is assumed to imply that the gas is sufficiently close to equilibrium to
allow the definition of a unique 4-velocity and the use of a conventional
thermodynamic formalism. Included in this description is the perfect
fluid approximation where one neglects the dissipative effects of heat
conduction and shear viscosity.

Though inapplicable at very high densities, within its range of
validity relativistic kinetic theory provides a more detailed description
than the fluid model. For example it allows one to calculate the form
of the transport equations which, in the macroscopic theory, are a
phenomenological assumption. To a certain extent kinetic theory may
therefore be used to examine the nature and validity of the fluid theory.

In this paper, we study kinetic theory when the one particle distribu-
tion function is everywhere isotropic, extending the results of EGS
(Ehlers, Geren and Sachs [I]), and then consider the nature of the perfect
fluid approximation. Preparatory to stating our precise result, we first
briefly review the fluid and kinetic models.

1 Latin indices run from 0 to 3, Greek indices from 1 to 3. We use square brackets
to denote skew symmetrization, round brackets to denote symmetrization. The speed
of light is normalized to unity.

1 Commun. math. Phys., Vol. 23
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In the fluid model (see e.g. [2]) the matter is regarded as a continuum
with the average matter velocity at each point represented by the 4-
velocity vector ua,uaua= — 1. Its first covariant derivative ua.b may be
expressed in the form ([2], [3])

ua,b = ωab + °ab + ̂ θhab - ύaub (1.2)

where ύa = ua;bu
b is the acceleration vector2, ωab = ω[ab] is the vorticity

tensor (ωabu
b = Q), oab=^σ(ab} is the shear tensor (σabu

b = 0, σa

a = 0) and
θ = ua.a is the expansion. The projection tensor hab is defined by
hab = dab + uaub> so hab

ub = O The vorticity vector is defined by
ωa = ̂ ηabcdubωcd, and the magnitudes ω of the vorticity and σ of the
shear by ω2 = ωaωa = ̂ ωabωab, σ

2 =^σabσab respectively. As ωab and σab

are spacelike tensors, ω = Qoωab — 0 and σ = Qoσab = 0.
The fluid energy momentum tensor Tab can be decomposed with

respect to ua in the form

Tab = μuaub + phab + 2q(aub) + πab (1.3)

where μ is the energy density of the fluid, p the (kinetic) pressure, qa

the heat flux vector (qau
a = Q), and πab is the shear viscosity term

(πabu
b = 0, na

a = 0). Following Eckart ([4]) the temperature T^O and
entropy S are assumed to obey the Gibbs equation

(1.4)
QJ

where pt is the thermodynamic pressure, ρ is the effective rest mass
density measured in the rest-frame of ua, and the internal energy density u
is defined by μ = ρ(l + u).

Contracting the Bianchi identities Tab.b = 0 with ua and using
Eqs. (1.2) and (1.3) one finds 3

μ + (μ + p)θ + πabσab + qa

;a + ύaq
a = 0 (1.5)

which is the equation of conservation of thermal energy. Using (1.4)
and the equation of conservation of matter, which is ρ + ρθ = 0, it can
be rewritten:

πabσ
ab-(Ta+Tύa)qa. (1.6)

Defining the entropy flux vector

-L^, (1.7)

2 For any function f,f = f^au
a; similarly for any tensor

3 See previous footnote (page 2).
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this yields the co variant second law of thermodynamics Sa.a ̂  0, provided
a suitable choice is made of transport relations for the pressure difference,
viscosity and heat flux. Such a choice, vindicated by kinetic theory, is

p-pt=-ζθ,πab=-λσab,qa=-κha

b(Tb+Tύb) (1.8)

where ζ, λ, K are the coefficients of bulk viscosity, shear viscosity and
thermal conductivity respectively, and ζ ̂  0, λ ̂  0, K ̂  0. In general, ζ, λ
and K are functions of the thermodynamic variables. To complete the
description, some equation of state must be given determining pt from
the thermodynamic variables.

The perfect fluid approximation is usually introduced as the specializa-
tion λ = κ = 0; then

(1.9)

and the contracted Bianchi identities Tab.b = Q take the form

Q, (1.10)

b = Q. (1.11)

However Eqs. (1.6)-(1.8) show that if ζ Φθ and the gas is expanding, it
will still exhibit a dissipative effect and the flow will be irreversible. The
recognition that this will be generally true is relatively new, and follows
from kinetic theory studies by Ehlers ([2]) and Tauber and Weinberg ([5]),
who showed that an expanding relativistic monatomic gas whose
particles have non-zero rest mass could not be in equilibrium, and
from work by Israel ([6]) who showed that such a gas generally possesses
a bulk viscosity in contrast to the classical case where this phenomenon
is essentially found only in polyatomic gases. If the particles have zero
rest mass, the bulk viscosity vanishes and equilibrium is possible when
expansion takes place.

In kinetic theory (see e.g. [7-8]) the gas is regarded as a distribution
of particles, described by a distribution function f(xa,pa\ of proper
mass m and 4-momentum pa (so papa = — m2). The number of particles
in the volume element dxa at xa, with 4-momenta in the range dpa about pα,
is then f(x\ pa) \dxbdpb\ so f(xa, pa) ^ 0 for all xa and all pa. Along each
particle world line xα(τ), / obeys the relativistic Boltzmann equation

Paf\a = C (1-12)

where the derivative paf\a is

V dP° _-«M/ r*^/
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since the particles are assumed to move on geodesies between collisions.
C is the collision term; restricting our attention to binary collisions4,
C has the form ([9])

C(xa,pa) = ϊ J J J (/'"/"-/'/) W(p,p' p\p'"}π'u"π'" (1.13)
p> p" p>n

where for example /' = /(xα, pa'), P' is the mass shell p'ap'a = — m2, and π'
is the Lorentz invariant measure on that part of P' with future directed
normal p'a. W is a measure of the probability with which a collision
(P,P'H(P",P'") occurs; one assumes W(p,p';p",p"') = Wtf,p;pm,pr)
= W(p",p"f;p,pf).

The particle proper number density n and average 4-velocity ua are
usually defined by

nua=$pafπ, uaua=-l. (1.14)
p

(n is, up to a constant, the conserved density ρ.) The energy-momentum
tensor of the gas is given by

Tab=$paPbfπ. (1.15)
p

Then the Einstein-Boltzmann Eqs.(l.l), (1.12), (1.13), (1.15) furnish a
complete description of the system5.

The entropy flux vector is defined by

S"=-ί//log/π.
P

Ehlers ([2]) and Tauber and Weinberg ([5]) have shown from this that
Sα

;fl^0, and that the equilibrium case Sa.a = Q implies that C = Q and
that / has the form

f(x»,p°) = e«(χa)+βb(χa)Pb (1.16)

where βa is a timelike Killing vector if m > 0, and a conformal Killing
vector if ra = 0. Substituting into (1.15) shows that Tab has the perfect

fluid form with βa = — ua\ since βa is a Killing vector when m > 0, this

then implies that σab = θ = 0, so no expanding reversible flows are
possible in this case. An examination of small deviations from equilibrium
using the Chapman-Enskog ([6]) or Grad methods ([10-12]) enables
one to justify Eqs. (1.7) and (1.8).

4 This would not be adequate at very high densities.
5 If C = 0, Eq. (1.12) becomes pafla = 0, and is called the Liouville equation.
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The equilibrium solution (1.16) is a particular instance of an isotropic
distribution function, i.e. there exists a vector field ua such that / has
the form

), E=-uap
a. (1.17)

For such distribution functions it follows that ua obeys (1.14) and that
Tab has the perfect fluid form (1.9). Two problems naturally arise:

(1) What solutions of the Einstein-Boltzmann equations are possible
when the distribution function is isotropic?

(2) What further solutions are there in which the energy-momentum
tensor has the perfect fluid form ((1.9), (1.14) and (1.15) are satisfied)
but / is not isotropic about uaΊ

EGS [1] have partially answered (1) by showing that in a solution
of the Einstein-Boltzmann equations in which (a) / is isotropic, (b) C = 0,
(c) ω = 0 when m = 0, space-time is either stationary or a Robertson-
Walker space-time. We shall give an extension of their results by showing
that conditions (b) and (c) are largely inessential. More precisely, we
shall prove

Theorem I. In a solution of the Einstein-Boltzmann equations with an
isotropic distribution function, the velocity ua obeys the conditions (ί) σ = 0,
(w)ωθ = 0.

While this result puts very strong restrictions on space-time, it does
not give a complete extension of the results of EGS because it does not
necessarily imply that ua is a conformal Killing vector; however this
extra condition does follow when m = 0. Various authors have indepen-
dently proved statement (i) of the theorem (see e.g. Stewart [11]).

We prove this theorem, except for two special cases, in Section 2;
the two special cases are examined in the remaining sections. A special
coordinate system is introduced in Theorem 2 of Section 3, and in
Section 4 the field equations are reduced to a fairly simple form by use
of these coordinates. The proof is completed in Theorem 3 of Section 5.
We discuss our results in Section 6, briefly commenting on the implica-
tions for cosmological models, and on problem (2). Theorems 2 and 3
are phrased as results about general relativistic perfect fluids, independent
of any kinetic assumptions, which are of some interest in their own right.

2. Isotropic Solutions of the Boltzmann Equation

Consider a collision-dominated one-component gas obeying the
Einstein-Boltzmann equations, and with an isotropic distribution function.
Then equations (1.1), (1.9)-(1.15) and (1.17) hold. Eqs.(1.13) and (1.17)
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imply the collision term has the form C(xΩ, E)6. Using the method of
EGS, we assume δ|/ φ 0 7 on some open interval of E (this holds in a
physical situation except in the case of dust, which is collision free), and
invert / on this interval to obtain E = E(xa,f). Then along any particle
world line xfl(τ),

dE
by (1.12). But we also have — - ( - ubpb\ap

a = - papbub;a since pb.ap
a = 0.

Therefore _ u^papb = padfE + cd*E (2.1)

for all particle momenta pa. Decomposing pa as pa = Eua + (E2 — m2)^ea

where eaua = Q, eaea = 1, and substituting this and (1.2) into (2.1), one
obtains

(E2 - m2)σabe
aeb + (E2 - m2)^ (Eύa + d{E)ea + EE + ^Θ(E2 - m2)

where E = uad{E. This is valid for all directions ea, so

aua, (2.3)

EE + ̂ Θ(E2 - m2) + Cdx

fE = 0 , (2.4)

where α is some function α(xα, pa\ Eq. (2.2) simply states that the solutions
are shear- free; (2.3) and (2.4) may be combined to give the equivalent
single equation

- 2 (2.5)

Differentiating (2.5) with respect to / shows

(2.6)

• T, * * f ' *The general case is when ox

f< -
 J—-^ - > is not zero; we then

I 3E J

te it as and put dx

flogE = H(xa,f). Then (2.6) is
^"pc ι J )

(2.7)
6 The results of this section hold for any other form of collision term as well as (1.13),

provided only C = C(xa, E).
7 d^f is partial differentiation with respect to E, keeping xα constant, and so on.
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Differentiating along a particle world line,

ua.,bPb = (PbS{G + Cdx

fG) df

aH + G{pbd{df

aH + Cdx

f(d{H) - pbΓn

abd
f

nH} .

However, differentiating (2.7) with respect to / shows

So
ua;bp

b = [dζGdζH + G(d{d{H - Γ»abd{H)} pb

holds for all particle 4-momenta pb. Combined with (2.7), this shows
u[a ,buc] = 0> i e these solutions are irrotational :

ωab = Q. (2.8)

Continuing for the moment in the manner of EGS, we note ([2]) that
(2.8) implies the local existence of a function t(xa) such that tua= — ta.
Substituting into (2.7) gives Htίa = id{H, which shows that H = dx

flogE
= H(f,t). Integrating,

(2.9)

where log j = J Hdf, and r is an arbitrary function of the xα, so

With this form of/, (1.9), (1.13) and (1.15) imply that μ, p and C have
the form μ = μ(t9r),p = p(t,r) and C = C(t,r,f). Substituting (2.9) into
(2.3), (2.4), one obtains

ώ β =-ΛΛlogr) t >, (2.10)

r 1 / m2 \ C
-SJlogj = 0. (2.11)

By virtue of (2.8) and (2.10) one can choose comoving coordinates
{x°, xα} with ί = x° and a metric of the form (3.5). Further by (2.2) and
(2.8) the (0,v) field equations (see [2] or [3]) reduce to habθίb = Q, i.e.
θ — θ(x°) in these coordinates. Eq. (2.11) then shows that r 0 is a function
of x0 and r, and therefore r = r(x°, β) where β = r(0, xα), i.e. r depends
only on time and the initial conditions β. Finally using (2.2), we see that
the Boltzmann equation together with the results of § 3 implies that
there are coordinates such that the metric has the form (3.4), (3.8) where

Lβ=f«β(xσlθ(x°)=-3r — > and r is determined by (2.11). For

further information we must use the field equations. When C = 0, the
right hand side of (2.5) is necessarily a gradient (EGS); then ua is a
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conformal Killing vector and the space-time is a Robertson-Walker
space-time (see EGS for details of the solutions). However when C Φ 0
this does not necessarily follow, since there exist solutions of Einstein's
equations for a perfect fluid satisfying all these conditions (except (2.11)
which is replaced by some equation of state), but with non-zero accelera-
tion and ua not a conformal Killing vector (see e.g. [13]).

The special cases are when d x

f \ ^—^ > = 0. Then (2.6)
I 3E J

implies δjδ{log£ = 0. Integrating,

E = j ( f ) r ( x ° ) (2.12)

where j and r are arbitrary functions, and so

Now μ and p have the form μ = μ(r\ p = p(r) and hence there exists a
relation p = p(μ) even though dissipative effects may be present. From
(1.10), the functional form of//, p implies

£• (2 13)

Substituting (2.12) into (2.3) and (2.4), one obtains (2.10) again and

J2r2(logr)' +^θ(j2r2 - m2) + Cjrdflogj = Q . (2.14)

C has the form C(r,/). Combining (2.13) and (2.14),

1 r2 dμ\ m2 d

The yϊrsί special case is when the large bracket is not zero. Then r is a
function of r, say r = β(r).

The second special case is when the large bracket is zero. Then the
functional dependence implies we must have separately

m = 0,

whence also C = 0. Therefore the particles of the gas have zero rest mass.
Now (1.15) implies Ta

a = 0 or, by (1.9), p = ?μ. Substituting this in (2.15)
shows μ = μ0r

4 where μ0 is a constant.
Both the special cases, considered macroscopically, are therefore

shearfree perfect fluids with equations of state p = p(μ). In one case the
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acceleration potential r obeys a relation r = β(r\ in the other case the
equation of state is that of thermal radiation: p = ̂ μ. In Section 5 we
show that both of these cases lead to the result θω = 0.

3. Coordinates

In this section we show how to derive the local comoving coordinate
system developed by Ehlers ([14]), Taub ([15]) and others for any
perfect fluid with an acceleration potential r. To do so, consider the
integral curves of the 4-velocity vector field ua which intersect some
surface S once in some open neighbourhood. Label the integral curves
by arbitrary coordinates {xα} assigned to them in this surface, and
measure some arbitrary parameter x° from S along these curves. Then
{x°, xα} are local comoving coordinates; in these coordinates the integral
curves are the curves {xα = constant}, so xα

 αwα = wα = 0. Thus there is
some function v(xa) such that

dxa 1 dxa'
Under a coordinate transformation xa' = xa' (xa), ua' = — ~γ ub= -- -—5-.

The transformations preserving the comoving form are therefore (a)
gauge transformations x°' = x°'(xa), xα' = xα, corresponding to the freedom

/ dx°'
of choice of the surface {x° = constant} then v' = v 0 and (b) the

/ o x
freedom to relabel the integral curves by choosing new coordinates in
an initial surface; then x°' = χ°, xα/ = x*'(xβ).

Since hab = gab + uaub,

ds2 = gabdxadxb = habdxadxb - (uadxa)2 . (3.1)

As habu
b = Q, in the comoving coordinates ha0 = 0. Further ua = gabu

b

a = - = = -2, so uaua= - I=>g00 = -v2, and u0=
V V

As there is an acceleration potential r(xa\ (2.10) holds. (If there is an
equation of state p = p(μ\ the conservation Eq. (1.11) shows there
necessarily is an acceleration potential

Λ« \
(3.2)

where μ0 is a constant and p0 = p(μ0) Since μ is a function of position,
r is a function r(xa) in space-time.) Choose a gauge transformation so
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that ι/ = — then (3.1) can be written

ds2 = h^Wdxfdx' - -^—- (dx° + αβ(x*)dx«)2 (3.3)

in these coordinates, where αα = — rwα. In the special case when the
pressure vanishes, this definition sets r= 1.

In these coordinates, ua = rOQ and ua= I , — 1. Computing

γt γ

ύa = ua,bu
b - Γc

abucu
b one obtains ά0 = 0, ιiα = - αα>0 + -^- αα .̂ How-

ever the conservations Eqs. (2.10) are zi0 = 0, ιiα = —— αα —. Therefore

the conservation equations are equivalent to aΛtQ = Q and may be
integrated to give

The vorticity tensor is ωab = u[aίb] + ύ[aub]9 and so has components ωa0 = 0,

ωΛβ = -- a[Λ,β} m these coordinates. We make a gauge transformation

x°' = x° + /(xα), xα' = xα, so that dx° = rfx0' - — ̂ - rfxα (which preserves

(3.3)) and determine / as follows.
If ω = 0, d[Λ:β \ = 0 which implies there is a function g(xa) such that

αα = g a. Choose / = g to obtain the metric

(3.4)

The surfaces {x° = constant} are then orthogonal to wα, and the remaining
coordinate freedom is x°' = x° + C, xα/ = xΛ'(xβ), where C is a constant.

If ωφQ, one cannot set αα = 0. Instead we choose / so that at each
point in some hypersurface {x° = constant}, the vector ωa lies in that
surface, i.e. ω° =?η°Λβ7aΛaβty = 0. With this choice of/, ea/^aafl^y = 0,
which shows there exist functions y(xa\ z(x") such that aΛ = yztΛ. These
functions must be independent, as otherwise ωxβ = 0. Use the freedom of

dx2

initial labelling to choose x3 = z and x2 = x2(v, z) where — — φ 0; then
dy

(cf. [16])
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and the vorticity propagation equation (see [2, 3]), which takes the form

/ f \
ω\bu

b-u\bω
b=-ωa\θ+—\- ua(\og r\ bω

b

because of (2.10), is identically satisfied, as is the divergence relation
ωa.a = 2ωaύa.

With this form of αα, the metric (3.3) in fact includes the case ω = 0
as the special case y = 0. A more determinate system of coordinates can
be obtained (cf. [14]) when ω φ O by choosing x2 =y 9 then

ds2 = hΛβ(xa)dx°ίdxβ - -2 -̂ (dx° + x2dx3)2 . (3.5)
T \X )

In these coordinates, ωab = — δfaδl} φ 0. The remaining coordinate free-

dom preserving this form is x0' = x° + /c(x2,x3), x1' = x1'(x1,x2,x3),
x2' = x2'(x2, x3), x3/ = x3'(x2,x3), where the functions fc, x2', x3' must
satisfy the relations

dk ~, dx3' Λ dk ~, dx3' 9

-ττ-+Λ; -F-r=0' ιrr+x ΊΓΓ= X » 3 6

dx2 dx2 dxά δx 3

Bx2' dx3' dx2' dx3'
which imply the integrability conditions „ 9 — — ̂  --- -— ̂ - ^ 9 = 1.

dx2 dxό dxό dx2

If k is chosen as an arbitrary C2 function of x2, x3, then (see e.g. [17]),
Chap. 2) functions x2', x3' can always be found to satisfy (3.6).

Finally, if one computes the expansion tensor θab = u(a)b} — Γ^buc + ύ(aub}

r r
for these metrics, one obtains θa0 = Q,θ(xβ= -τ-hΛβfθ9 so 0= -r-gΛβhΛβf0.

Defining R2 =exp(^gρσhρσ j0dx°), where the integral is taken along
the integral curves of ua from x° = 0, one can re-express hΛβ in the form
h^ = R2(xa)f^(xb); this relation defines fΛβ, and implies ^/«/ϊ,o = 0

D

Then θ = 3r — — and the shear σab = θab - ^θhab has components σa0 = 0,
R

r
σ^β= — R2f0[βί0. To express R in terms of fluid variables, define w by

(If the fluid does not obey an equation of state p = p(μ\ this integral
should be taken along the integral curves of ua.) Then the conservation
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Eq. (1.10) becomes — — H -- — = 0, so R = — for some function λ(x*}.
w .R w

2Relabelling λ2faβ as /αj8, one has

where C«β(xa) is the inverse of fΛβ, i.e. C«βfβy = δ*r Then θ=-3r-
w

Summing up, we have

Theorem 2. Given a perfect fluid with equation of state p = p(μ\
functions r(xa) and w(xa) are defined from μ(xa) by (3.2), (3.7). Then local
comoving coordinates can be found such that the space-time metric has
the form (3.4) if ω = 0 and (3.5) if ω φ 0; the conservation Eqs. (1.11) are
then identically fulfilled. If hΛβ is written in the form (3.8), the conservation
Eq. (1.10) is identically fulfilled, and θ = Qow = w(xα), σ - Qofaβ = faβ(xσ).

In fact the proof has shown one can find such coordinates even when
there is no relation p = p(μ\ as long as there is an acceleration potential r.

In these coordinates, the metric components are g00 = -- j~>

#ov= -- r α v> 9βv=—rfμv -- rV*v> and 9°°= -r2 + w2C«βaocaβ,

gθv=-w2Cvμaμ9g
μv = Cμvw2 where C«βfβy = δ«y and αv = 0 if ω = 0,

αv = χ2 δ y if ω φ 0. The determinants g = dQt(gab\ f = det(/μ v) are related by

g= -- 2~6~ The fluid 4- velocity has components ua = rδa

Q,

1 w3

Mα = -- (δa+°aa*) ϊn the case ωφO, ωa= - 7=-δJ, and the
2r|//

magnitude ω of the vorticity is given by ω2 — 2 (so /n φ 0). Finally

we remark that the definitions of r and w imply (μ + p) = (μo +Po)rM;3

4. Field Equations

If follows from the previous section that for a shear-free perfect fluid
with an equation of state p = p(μ) and with non-zero vorticity (i.e. σ = 0,
ω Φ 0), local comoving coordinates can be chosen so that the space-time
metric is

ds2 = -— {f^(x«) dx«dχP - v2(x«) (dx° + x2dx*)2} (4.1)
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W
where v= — , the functions w, r being defined by (3.2), (3.7). Their

w4

definitions imply (μ + p) = (μ0 + p0) - .

In this metric, the time dependence occurs only through the functions
w(xα), v(xa). It is the purpose of this section to establish the field equations
with the time (i.e. x°) and 3-space (i.e. f(xβ(xσ)) dependence exhibited
explicitly. In doing so we shall take w as the basic time-dependent
variable, regarding r (i.e. v) as a function of w.

The field Eqs. (1.1), (1.9) may be written in the form

Rab = (μ + P) uaub + (Λ+%μ- ^p)gab .

It is convenient to perform the reduction of these equations in two stages.

First, we write gab = — γ9a^ 9ab = w2gab, and re-express the Ricci tensor
w

Rab in terms of the Christoffel symbols Γξc9 Ricci tensor Rab and Ricci
scalar R defined by the metric gab, g

ab. From the expression for
w2

Rab H -- 2Γgab
Roo and ^e field equations, one finds

2 2
+ ~ ™,a,b + ~^ W,0,θ9ab

(4.2)

Also from the expression for v2gabRab + 6w2K0 0, one finds

υ2 ~ 2 2 - v2

Rov+^R+—™,o,o-—Γs

00WίS+-^gnsw^s
D W W W

2 (43)

Second, one reduces the equations further by expressing gab in terms of
faβ and w, so obtaining the field equations for (4.1) in terms of these
quantities.

To express the results of this lengthy calculation, we define auxiliary
variables from /μv(xσ), av(xσ) = x2δ*, w(xα) and v(w)9 as follows. The time-
varying quantities are w(xα), v(w)9 and
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dv
The expansion Θ vanishes if and only if W = Q. We write —— as ι/,

and so on. The purely spatial quantities are defined from the metric
/μv(O and its inverse Cμv(xσ)(fμvC

vσ = δ°). Firstly, there are the
Christoffel symbols Γ*α

/?y, Ricci tensor #*α/? and Ricci scalar R* defined
from/ μ v :

Γ *βγ(Xσ) — 2^σ(fσβ,y ~ fβγ,σ + Jγσ,β) •>

P* (\-σ\=Γ*a Γ*α _ι_ r*« Γ *v p*α r *vΛ βδ\x ) — L βδ,a 1 βoLtδ^~ L vα1 βδ~1 vδ1 βaτ

Secondly, there are the further quantities

Jίl Jll

2/ 2det(/βί)

A) (Ύ°\ = _ /^αff/jr*ιc „ _ r*κ \
φv^Λ )— ^ (1 α i f c j c v σ ^ α κ ε l v σ /

Eq. (4.2) and (4.3) can be used to obtain the field equations for the
metric (4.1) in terms of these quantities. The result is:

(0,0)

2 2 ι 4 2 2irw , 3v w v
(44)
^ '

4

ίf\ \ Λ V v T/Γ7 V i 2 JL i rr ^ i ~ ~ " " I v V //1^\

M ^-.,. (4.6)
t)" # 2 n
v

where

t,2 w2Θ = t;2(μ + p) - t;4w2α - w2ϋ {ιfC'tX,Xβ

,-aaC*lXβt0-C ι>Γ* .βXβ)} (4.7)

H/2-2w30l^.
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In this form, the ten field equations, written with one complicated
auxiliary function Θ, have the 'time' and 'space' dependence explicitly
apparent in a convenient way.

5. The Special Cases

We now complete Theorem 1 by dealing with the two special cases
of Section 2. More precisely, we prove

Theorem 3. Consider a perfect fluid with μ φ O and for which either
(1) p = 0, (2) p = ̂ μ, or (3) p = p(μ) and r = β(r) for some function β, where
r is the acceleration potential (3.2). Then

If $ΦO, the space-time is a Robertson-Walker space-time in cases (1)
and (2).

The first case, p = 0, has been proved previously (see [16]). We
consider now the second case: p = ̂ μ. We assume σ = 0, μωθΦO, and
obtain a contradiction; the discussion is analogous to that of ([16]).

Since we assume ωφO, one can use the coordinates and field
equations of § 4. Substituting the equation of state p = ̂ μ into (3.2), (3.7)
shows μ = μ0 w

4, r = w. Therefore v = 1 and (4.1) shows that the solutions
for which σ = 0, ω φ 0 are conformal to a stationary space-time. Elimin-
ating Θ from (4.4)-(4.7), the field equations for these solutions reduce to:

(0,0) 2wd0W=W2-C«eχxXβ + μ0w
4-^(R* + la)-~,

(0,v) d0Xv=

w
(μ, v) dμXv = Γ*'μvXf + aμψJ>Xt - — (R*μv + afμv

The (0, 0) equation determines the propagation of W. The remaining field
equations, after substitution for d0W from (0,0), are considered as
constraints on W in a surface {x° = constant}. These constraints must
be satisfied during the entire time development of the system. The
conditions for this are obtained by repeatedly differentiating the
constraints with respect to x° and, at each stage, substituting for δ0 W
from (0, 0), thereby obtaining new constraints on W. Each constraint is
simplified using the previous constraints, for example substituting for
d0 XΆ from (0, α); it may reduce to an identity, but not all the constraints
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do so. It will be shown that four of the restrictions obtained in this way
are inconsistent with the assumption PFΦO, which is equivalent to
assuming θ φ 0.

To effect this programme we need the first time derivative of (0,0).
After substitution from (0, α) and using XΛXβC

ΛVψv

β = 0, this is found
to be:

(0,0), o d0

Next, differentiating (2, 3) with respect to x° and substituting from (0, α),
(2, α) and (0,0)>0, one obtains

1 , ™ 1
(2,3)>0 f23C*i>φ, + Γ* 23ψJ'-φ3δ>2- 52C

2"- ~C2«r**X
2

Wfγ _ * ! _ , -^ -r^
^ 23

Finally, differentiating (0, v) with respect to x°, substituting from (0,0),
(0, v)and(v, α),andusίng Jfe^(C^
one obtains

(0, v).0 {C"Λ*,.-4V/V.'- [— + —}%\X,

— μ0w
2Xv = w\dv(

These equations have the form:

(2,3),0 VXv = b*w +

(0, v)0 d/AΓ + -
J

where the fev, b4,55, d/ and βv are functions of xα only. We regard these
as algebraic equations for Xa. Now assuming θ, or equivalently W, is
non-zero, we have the following lemma: if a polynomial P in w of the
form

m
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vanishes, then each coefficient an must be zero. (The proof is by differen-
tiating m times with respect to x°, and cancelling W after each differen-
tiation. This shows am = Q. The same procedure is applied to each
coefficient in turn.) Considering (0, 1)>0, (0, 2) Oand(0, 3) 0, the determinant
A of the left hand sides cannot be zero, as the lemma would then imply
in particular that the leading coefficient of w, namely (f μ0)

3, was zero.
Therefore we can solve these equations for Xx in the form

X.= ^- (5.1)

where the AΛ are polynomials of the form P and degree 5 in w, and A
is of degree 6 in w.

Substitute (5.1) in (2, 3) 0:

- - 5 j g . (5.2)

where B is a polynomial of form P and of degree 9 in w. Now multiplying
(0, 0) by (b5)2 and substituting from (5.1) and (5.2),

2wB(ABf - BΔ'} - B2A

6

where ' denotes differentiation with respect to w. The whole expression
is a polynomial of form P, so in particular its leading coefficient, namely
that of 2wB(AB' — BA') — B2A, must vanish; however this is

5 ί-^-j ί— ̂ -) , and so we have the desired contradiction. When 0 Φ O

the space-time is conformal to a static space- time and must be a Robertson-
Walker space time (see [1], Section 4).

Finally we outline the proof of the third case: the equation of state
p(μ) is not known, but there is a relation r = β(r\ or equivalently w = A(w),
for some functions /?, λ. In our coordinates, this equation is

Assuming w 0 Φ θ , this implies there exists a function v(w)= ί - dwJ vλ

such that — — Φ 0 and v 0 = 1. Hence v = x° + k(x") where k is an arbi-
αw

trary function. Inverting one obtains

w = w(x0 + k)

2 Commun. math. Phys., Vol. 23
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It is now convenient to consider two possibilities:
(i) k is independent of x1.

Then one can use the coordinate freedom x0' = x° -j-/c(x2, x3) (see
Section 3) to set w = w(x°), and therefore v = v(x°) and Xv = — avW. The
(0,1) field equation shows that φί =0<=>εα/?y/lα/1/?,y = 0, so there exist
functions σ(xα), ρ(xα) such that /lα = σρ>α. Now ρ cannot be independent
of x1, as otherwise fίί =0 which implies ω = 0 (see Section 3); so one
can set x l = ρ. Then Λ 2 = /i 3 = 0, the field equations simplify considerably,
and it can be shown they imply 0 = 0.

(ii) k depends on x1.
We can set x1 — fc, and again it can be shown that the field equations

imply 0 = 0.
This concludes our treatment of the special cases.

6. Discussion

We have seen that where there is a distribution function isotropic
about some 4-velocity field wα, and the Boltzmann equation is satisfied,
then the motion is distortion-free (σ = 0). If further the Einstein equations
are satisfied with the energy-momentum tensor determining the space-
time curvature being that given by the distribution function, then either
the motion is non-expanding (θ = 0) or non-rotating (ω = 0).

These results are of some interest at two different stages in the
evolution of a cosmological model. If the early stages of evolution of
the universe were highly collision dominated, one might suppose ([!])
that to a first approximation, (i) the matter and radiation mixture was
an ultrarelativistic gas, i.e. could be regarded as a perfect fluid with
equation of state p = ̂ μ, and (ii) the collision dominance implied the
distribution function was isotropic.

The space-time would be a Robertson-Walker space-time (by
theorems 1, 3) if these conditions were exactly fulfilled. However diffi-
culties arise with galaxy formation in such a universe, cf. [3], so these
conditions cannot be exactly fulfilled. If σ φ 0 the collisions would tend
to isotropize / and could be expected to lead to a distribution function
which was nearly, but not exactly, isotropic. The question of the stability
of our result then arises: if an isotropic / implies isotropic expansion,
does an almost isotropic / imply that the expansion anisotropy is small?
We believe that this is not so; i.e. that consistent Einstein-Boltzmann
solutions can be obtained with arbitrarily large anisotropy of expansion,
even if the anisotropy of/is small. Nevertheless one might expect that the
particle collisions would tend to isotropize not only / but also the
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expansion (cf. Misner [18]) and so the solution would tend towards a
Robertson-Walker solution even if it were very anisotropic initially.

At late stages corresponding to the present epoch in the universe, one
can regard the cosmic background radiation as effectively non-inter-
acting, and so as obeying the Liouville equation. The very high degree of
isotropy of the background radiation which is observed suggests one can
represent this radiation by a distribution function / which is isotropic
about the average velocity ua of the matter, which can be reasonably repre-
sented as 'dust' (i.e. a pressure-free perfect fluid). Then the results of Sec-
tion 2 show that the shear of ua vanishes and since w = 0 for a non-inter-
acting pressure-free perfect fluid by (1.11), Eq. (2.3) shows ω = 0. Therefore
the universe would be a Robertson-Walker universe (cf. [1,19]). In fact/
cannot be exactly isotropic, so the question of stability of the result
again arises: if radiation propagates with a distribution function which
is almost isotropic about the 4-velocity of matter, which is represented
as dust, is the universe approximately a Robertson-Walker universe?
Studies of perturbed Robertson-Walker models (e.g. [20]) and .of
anisotropic universe models (e.g. [18,21,22]) seem to indicate that this
is so; that in fact, therefore, the high isotropy of the background radiation
is a very good indication that the present day universe is very like a
Robertson-Walker universe.

If one accepts a Robertson-Walker model of the universe, the
discussion of Section 1 shows that although the energy momentum
tensor is that of a 'perfect fluid', kinetic theory indicates that the motion
will in general (i.e. when m φ 0 and C Φ 0) be irreversible, corresponding
to a non-zero bulk viscosity. To see what effect this has, we consider a
Robertson-Walker universe with flat spatial sections, in which the
equation of state is p = (y— l}μ — ζθ, where y and the coefficient ζ of
bulk viscosity are constants (ζ ̂  0,1 < y < f). When ζ Φ 0 the field
equations can be solved to give

for A ή= 0, and
3 y

for Λ = Q, where R(t) is the Robertson-Walker radius function. When
ζ = 0, the solutions are
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for A =t= 0, and 3?
(R(t))2 =ί

for A = 0. The effect of bulk viscosity is to increase the expansion rate
O D

0 = at any given value of .R. Although in reality ζ would not be a
.R

constant, these solutions still indicate the qualitative effect of a non-
zero bulk viscosity. In particular if we consider oscillating models where

3C2

A* = - A > -V, then
4γz

^-
(R(t)Γ - 4 / \|/ 4 16

This shows that the effect of the bulk viscosity is to increase the radius
attained in one cycle and to increase the cycle period, (cf. [23], Section 175).
In a more realistic calculation one would need at least a 2-component
model for the gas; the bulk viscosity would be appreciable only at
about 1010°K. The quantitative effect would not be large ([10]) but the
qualitative effect would be the same.

Our results show that the requirement that the distribution function
be everywhere isotropic, is a very strong restriction. The second question
we posed in Section 1 was: how strong a restriction is it to assume that
the energy momentum tensor (1.15) has exactly the perfect fluid form
(1.9) where ua is given by (1.14)? An indication is given by (1.8) which
shows that if K and λ are φ 0, Tab has the perfect fluid form at all times
only if σ = Q and ύa= — ha

b(\ogT) b. The values of λ and K depend on
the collision term. However calculations when / is near equilibrium
show ([6,11]) that λ>0 and κ>0 for reasonable collision terms.
Further in Misner's calculations ([18]) for collision free radiation in a
Bianchi I universe the radiation energy-momentum tensor Tab only has
a perfect fluid form at all times if the shear vanishes, (cf vanishes identi-
cally because of the space- time geometry.) These results suggest that an
exact Einstein-Boltzmann solution can have a perfect fluid energy-
momentum tensor only under very restricted circumstances.

One might speculate that Tab could have a perfect fluid form at all
points only if / was isotropic. However this is not so, for consider a
Robertson-Walker universe filled with zero-rest mass particles having a
distribution function

= αexp + - - + ap° Q - - ubp» +
\ κι i i \ L L

where ξa is any killing vector, T is the temperature (proportional to the
inverse Robertson- Walker radius), and a, b are constants, b being chosen
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small enough to make / positive. Then Tab has the form (1.9) with p = ^μ
and / obeys the Liouville equation but is clearly not isotropic. One has
an exact Einstein-Liouville solution when R(t) obeys the Friedmann
equation for p = ̂ μ (one constant in the solution is determined by α;
but the space-time is independent of the value of b).

We conjecture that a solution of the Einstein-Liouville equations can
have an energy-momentum tensor Tαb with the perfect fluid form (1.9)
at all points, and with uα given by (1.14), only if σ = 0 and there is an
acceleration potential r for uα (i.e. ΰα= — hα

b(\ogr) &)8; and further, that
this will also be true for Einstein-Boltzmann solutions with reasonable
collision cross-sections. If true, this would mean that the perfect fluid
description was strictly applicable only under very restricted conditions.
The statement would not merely be that a realistic fluid would have a
small but finite viscosity and heat conduction, but9 rather that one
could not, for almost all fluid flows, have any self-consistent kinetic
description leading to a perfect fluid form of Tab; in particular, the fluid
shear would have to vanish. While this would not imply the resulting
physical effects were large, it nevertheless seems an interesting question
of principle.

Whether or not this is true, a further question of interest is the
determination of all perfect fluid solutions of Einstein's equations with
σ = 0. Theorem 3 shows that ωθ = 0 for three distinct sets of conditions;
one would like to know precisely what the general conditions are for
which this result is true. (It is conceivably true for all perfect fluid
solutions, or for all perfect solutions with an equation of state of the
form p = p(μ).) If it does not hold for all perfect fluids it would be inter-
esting to obtain exact solutions with σ = 0, θω φ 0.

Finally, we note that the Newtonian situation corresponding to the
EGS theorem, i.e. the case of an isotropic solution of the Poisson and
Liouville equations, has been solved by Ehlers and Rienstra ([24]). The
Newtonian solutions are less restricted than the corresponding relativistic
ones, for while they are also shear-free, the result ωθ = 0 does not obtain
in the Newtonian theory. Further the restriction to vanishing shear
does not imply restrictions on space-time, as it does in the relativistic
theory. No serious difficulty should arise in extending the Newtonian
results to include a collision term.
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8 Then one would introduce the coordinates and use the field equations given in
Section 4.

9 Just as one cannot have a reversible fluid flow in most space-times.
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