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Abstract. Generalized “‘Coherent” States are the eigenstates of the lowering and
raising operators of non-compact groups. In particular the discrete series of representations
of SO (2, 1) are studied in detail: the resolution of the identity and the connection with the
Hilbert spaces of entire functions of growth (1, 1). Also discussed are the application to the
evaluation of matrix elements of finite group elements and the contraction to the usual
coherent states.

1. Introduction

The definition and use of coherent states associated with the Heisen-
berg algebra is well known (Section II). The purpose of this paper is
to generalize this notion to the Lie algebra of non compact groups.
In particular, we deal with the simplest semi-simple Lie algebra of
S0(2,1) isomorphic to the algebra of SU(1,1) and SL(2, R). We call
generalized “coherent” states the eigenstates of the ladder operators in
the discrete series of representations. Generalizations of these continuous
bases will be indicated. The new “coherent” states are useful mathemati-
cally, aside from their intrinsic interest, in the evaluation of matrix ele-
ments of the finite transformations of the group and will have physical
applications as the ordinary coherent states have.

II. Coherent States Associated with the Heisenberg Algebra

In this Section we review briefly, for reference purposes, some im-
portant properties of the usual coherent states! which are introduced
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AF-AFOSR-30-67.
** On leave from Istituto di Fisica dell’Universitd, Parma and Istituto Nazionale di
Fisica Nucleare, Sezione di Milano (Italy).
t For more details see, for example, Klauder, J. R.: Ann. Phys. (N. Y.) 11, 123 (1960);
Glauber, J.: Phys. Rev. 131, 2766 (1963), and Klauder, J., Sudarshan, E. C. G.: Quantum
Optics. New York: Benjamin {968.



42 A. O. Barut and L. Girardello:
as the eigenstates in an Hilbert space of the boson annihilation operator
alzy=z|z), [a,a"]=1, 2.1)

where z is a complex eigenvalue. In terms of the eigenstates |n) of a*a
(or the Hamiltonian of the linear harmonic oscillator) one obtains

ot v 2
I2>=e EO Yl n>. 2.2)

The factor in front of the sum is so chosen that the states are normalized
{z]z)=1. (2.3)

But they are not orthogonal to each other
(Zlzy=exp[—4 |2 4127 +2*2] 2.4)

so that they form an over-complete linearly dependeht set. The resolution
of the identity holds in the form

o0

%fdzz|z> (z]= ) |n)<n|=1;d*z=dRez)d(Imz). (2.5)
0

n=

It has been recently shown [1] under which conditions countable subsets
are complete. In particular one can take lattice points z,,,=y(m+ in),
mn=0,+1,+2, .... For 0<y<]/E the set of states {|z, >} is still
overcomplete; for y > 1/; it is not complete. For y= \}% one obtains
a complete set (von Neumann case).

An arbitrary vector f can be expanded

5= fdzlzy Gl f. 26)
The coefficients satisfy the equation
ISy = =2 <al?y <211 27)

so that <z|z'), Eq. (2.4), acts as a reproducing kernel.

The coherent states are special quantum states most closely approxi-
mating classical states in the sense that for them the uncertainty relation
ApAq=h/2 has its minimum value. This can be seen by comparing the
ground state wave function of the oscillator with the relation

p 2"

(zlny =e %I W
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III. Coherent States Associated with the Lie-Algebra of SU (1, 1)
SU(1, 1)~SO2, 1)~ SL(, R).
The Lie-algebra is defined by the commutation relations [2]
(LY, L ]=—Ly,,[Ly,, L¥]1=+ L*. (3.1
The Casimir operator is given by
Q=—L,(Li,—1)+2L"L"=—L;,(Lj,+1)+2L L*. (3.2

1

Note that L* = —2(L13 +iL,;). The fundamental spinor-representa-

tion of the algebra is

L,=%c +io 33
127203, 2 l/_ (04 2) (33)
The corresponding parametrization of the group is defined by the Euler

angles such that the group element is

__ ,ipLys ,i¢Las ,ivLya
W=e e e

cos( i) sm( E) |
NG 2 2 eivi?
N ( e*‘”) . ¢ ¢ ( e_ivﬂ)
Sin < —5) COS ( 7)
= (oﬁi g), o =e®tM2 cog ( ) =t 2 gin (s —%) (3.4

det W=1,e=ifor SU(1,1), e=1 for SO(3).

1. Discrete Representations D™ ()

The discrete class of unitary representations in the Hilbert space
with the basis vectors |®, m) can be defined by the following relations [2]

Ly, |®,mpy=(Eq+ m) |, m)
L |d,my= 715—[(<I>+E0+m+1)(E0—45+m)]% |®,m+1)
| (3.5)
L™ |®,m)= ‘72—[(¢+E0+m)(E0—¢+m—1)]% |6, m—1>
Q|®,m)=d(®+1)|d,m).

Here E, is an arbitrary invariant (coming from the universal coverin
0 . . . .
group). For discrete representations E, and the Casimir invariant are
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not independent
O+ E,=0. (3.6)
The spectrum of L, is discrete and bounded below:
L,—Ey=L,,+%=0,1,2,3.... (3.7)
For unitary representations

ImE,=0,0<0,{&,m| L L"|®,my=real >0

3.8
-20=1,2,3.... G8)

The representations with @ and — @ — 1 are equivalent. The inner product
in terms of the basis states is

<d§, mldja m/> = 5mm/ : (39)

2. Diagonalization of L™ in D* (¢): “Coherent” States

We introduce the generalized coherent states as the eigenvectors
of L™. From (3.5)

1 1
L |o,m)=—[(m(-20+m—-1)]* |®,m—1). 3.10
D, m) % [(m( )17 | > (3.10)
We define the eigenvectors |z) of L™ as linear combinations of the basis

vectors {|®, m>} which is a complete orthonormal set in the Hilbert
space:

L™ |z)=z|z), z=any complex number, (3.11)
= (Vr-2a)) ¥ V22 0y a1
o mID(=20+mn]F 77 '

The adjoint states are given by

=@ 225y
GA=Ir(-200 ¥ [nzr((l_fzzqs)ﬂ)]% @ (3.13)

Eq. (3.11) can directly be verified using (3.10).
The inner product of the new “coherent” states is

, < 2z 2y -
n=0 .
Hence the norm is given by
5 © Il/iz|2n .
NI =Lzlz) =T(=2®) ) ——=————=,F(-20;2z]*) (3.15)

w0 HIT(—2®+n)
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where

1 1 1 z2 1 z3

ofiC =1t T T s 20 T cernery 3 T G190

is a confluent hypergeometric function (entire function in z).
The norm can also be written in terms of the Bessel functions of integer
order (for 2@ = integer)

Glz2y =T(=29) ()20 01 2)/2ik)  (3.15)

because of the relation

Jv(z)=% Fiv+1; —2A). (3.17)

Again we see that the coherent states are overcomplete, and do not
form an orthonormal set. Two vectors |z’) and |z) are orthogonal if
the entire function, Fy(— 2®, 22z'*z) has a zero at the point 2z'*z. There
is only qualitative information about the location of such zeros. Clearly,
if z/*z is a positive number the entire function has no zeros. Also it is
not very useful to normalize the vectors |z) by dividing it with the square
root of the norm (3.15).

The connection to the Hilbert spaces of entire functions of the ex-
ponential type of growth (1, 1) will be treated in Section VI.

3. The Adjoint Operator L*
In the unitary discrete representation D* (&), we have immediately
from LT = (L)'
{z| LY = z%{z]. (3.18)
Hence
CZINLYL |2y =2%z2{|z). (3.19)

Consequently, we can directly verify that the Casimir operator acts
as

Qlzd =(=Ly(Ly,—D+2L"L7) |2y =d(P + 1) [2), (3.20)
as it should.

We also easily obtain the coefficients (@, m|z)>

_ 3 ]/5.2'"
@mi) = [M(201 £ e S o (3.21)
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4. Resolution of the Identity

The problem here consists in finding a weight function o(z) such that
fdo(z)|z) {2l =) |®,m) {m, & =1. (3.22)

m=0
Let |f> and |g) be two arbitrary vectors in "; then Eq. (3.22) means

that
flgy=[da(z){flz) zlg). (3.23)

We shall now determine o(z). Let

do(zy=0(r)rdrd0, r=|z|.

Then
{Sflgy
i & (/224(/22) T(-29)
= [rotar { 140 2 X G T 20t n (=20 +m)F W o
_ I'(=29) i i {flny <mlgy
Y2 2005 (minlT(=20+m)I(—20+m)t (3.24)
0 2m
x j‘ j (l/ir)m+n+1eio(n—m)o.(r)drdg
0 0
2 2 S nlgd % s o
=73 r 245)":20 T35+ gqﬁr) o(r)dr.
Hence we must have
Z”—Fl(ﬁzi) [ (/272" Ya(r)dr=T(n+1) (= 2®+n). (3.25)
Eq. (3.25) is a Mellin transform. We start from the formula [3]:
?Zx““’Ka_,,(?.x‘%) X tdx=TQoa+s)I'2B+s) (3.26)
0
where
_n L@-L0)
K@= Sy (3.27)
is the modified Bessel function of the third kind and
s} 1 \wv+2n
Lz)=Yn z2) (3.28)

o nll'v+n+1)
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is the modified Bessel function of the first kind. Substituting x* =]/§r,
a=141,28= —2® in (3.26) and rearranging terms we obtain

412 [ (/207227 Ky, o2)/21) (/212" Hdr=T(n+1) [ (—2&+n).
0
Thus, comparing with (3.25) we obtain finally the desired weight function

4 -20-1
m(l/i") 2 K%M(Z 1/5-"),

o@#)>0, r>0.

a(r)=

There is no problem of convergence of the integrals for r— 0. The change
of summation and integration in (3.24) may be rigorously justified by
taking finite limit on the integration and going to the limit.

5. Diagonalization of L* in D™ (®)

The unitary discrete series of representations D~ () are bounded
above. Instead of (3.6), (3.7), and (3.10) we have

D ($):0—E,=0
IME,=0,6<0 2d=—1,—2, ... (3.29)
Li,—Ey=0,—1,-2,...,

LY\, —my = %[m(—245+m—1)]’1’[¢, —mt 1y, m>0.
Consequently we can find eigenstates of L™ analogous to Section II
It is easy to verify that

L|z) =z|z)

g (/22
=[I'(—29)]= —|®, — 3.30
=200 3 e (30
and that these states have all the properties of the eigenstates of L~
in D* ().

6. Remark

Continuous basis for SO(2, 1)~ S U(1, 1) ~ S L(2, R) have been studied
before by a number of authors [4]. With the exception of Vilenkin, who
considered this problem in a different context, in all these studies a
non-compact, self-adjoint generator has been diagonalized. What we
did here amounts to a diagonalization of a non-compact, non self-
adjoint generator (lowering or raising operators). This was easy in the
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case of the discrete series D™ or D™. In the case of the principal or the
supplementary series, however, this cannot be done in the Hilbert space:
these representations are unbounded both below and above, hence the
corresponding eigenvectors of L™ and L* would have infinite norm.
In these cases appeal must be made to more general spaces, such as the
rigged Hilbert spaces. (This problem will be studied elsewhere.)

IV. Matrix Elements of Finite Group Transformations

1. First we calculate the matrix elements of L, in the coherent state
basis [L~ is diagonal in D*(®)]. We have immediately, using (3.21),

EILialzy = 3 (Lol (i)

- i( O+ n) (2@, n) (D, n|z)

e ) oy (4.1)
, mez *z
— bz |z>+l"(—2‘p)";0 WIT(—20+n)

&

I

LD F (=20, 27%2) — — L F(—2®+1; 27%2)

2. In this Section we evaluate the matrix elements of a general group
element (3.4) in the continuous “coherent™ basis |z). We can change
the parameters such that

We (1 b) (37 0_1) (1 O), a, b, c real. (SL(2R))

0 1 e 2/ \¢c 1
4.2)
— o ibL* paLiz p—icL™
det W =1 is satisfied.
Then
<Z/|e—ibL+ eaL1ze—icL‘IZ>
=D N (et @, my (D, m|z)
n=0
(b2 *—cz) — o 2z % z)"
=ez(bz cz)e adil" _2@ am ( .
( ) goe m! I'(=2d+m)
Or, with e* =672,
o 27'*
=(5)2q)ez(bz —cz)OF1 (_245;___2573)_ (43)
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V. Contraction to the Usual Coherent States
Referring to Eq. (3.1) we define (Ly =L, ,)
L' =)/eL*, L' =)/¢e ", Ly=¢Ly, £>0. (5.1)
Then
(LY, L= —L,, [Ly, L*']= +eL*". (5.2)
Hence in the limit ¢— 0,
(LY, L ]=-L;, [L, L*']=0. (5.3

This contracted algebra is isomorphic to the Heisenberg algebra: We
have the correspondence with the boson creation and annihilation

operators:

L'>a L"—>a*, L3—1 54
[a,a™]1=1,[I,a"]1=[1,a]=0. 4

Next we consider the matrix elements. From (3.5) for D (®):

{p,m'| Ly|®, my =(—DP+m)d,,

(D, m| L" |®,m) = 1—[(m+1)(—2‘13+m)]%mefH,m (5.5)
/2

1

/2

We evaluate the limit of these matrix elements as [5]

£—0,0—>—o0, but ed——1, (5.6)

(@, m| L™ |®, m) = [m(=20+m—11*0p 1 m-

i.e. through a sequence of representations, and obtain

<¢’ mll L,3l¢’ m> = 8(_ D+ m) 5m’m_’5m’m
1

/2

(@, L'\, my = 715—[em(—zmm—1)J%ﬁm%5mr+1,m.

(@,m| L@, my = —— (e(m+1) (=20 +m)t—(m+1F8,_, . (5.7)

These limits are precisely the matrix elements of the boson operators
<m/|1|m> = 5m',m; <m( I a+ |m> = (m + 1)%5m’——l,m’ (5 8)
(m'lalm)y =m* Sy sy - '

Now we can evaluate the limit of our coherent states. Because the
limit of an infinite linear combinations of states |®, m) is not defined,

4 Commun. math. Phys., Vol. 21



50 A. O. Barut and L. Girardello:

we evaluate the limit of the norm. The eigenstates of L™’ =[/EL’ are

N & (22 (I(-20)
2= L miT(— 2o tmp [P (9)
with the norm
>z Q2|z?) 2|z
v = —2¢ = —_
<Z |Z><D F( ),,;0 n!s"r(—2¢+n) OFI 2¢7 e .
Now because
i r-29 1
¢£}§ eT(—20+n) 2"
s@= 1 (5.10)
lim <{Z'|z2)g=) 2" =ell?
q}g-»_o ® n n!

which is exactly the square of the norm of the usual coherent states
(see Egs. (2.2) and (2.4)). Or in terms of the Bessel functions we have the
new relation

) 2 ) ] 2 20+1 2]/5 ]
11_{% 0F1<—2Q5,?|z| >— 11_{13 F(—Z(D)“/ ?l|zl] J_M_l(WllZ')

P> — D — 0

=el?” (5.11)

VI. The Connection with the Hilbert Spaces of Entire Functions
of the Exponential Type

1.

Let |f> denote an arbitrary vector of the Hilbert space and let us
consider the function?

_ B — ) (Z)n
Jo(D=Lf12)e=)/T(-29) ,.;o T 207 1P, m) (6.1)

with

5 1710, mof <o0.

2 In this section we prefer to write z instead of ]/iz for |z). Consequently the measure
changes slightly as indicated in (6.3). Furthermore we shall not write the label ¢ when no
confusion arises.
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As it can be easily seen, fi(z) is an entire analytic function of order 1
and type 1 (exponential type), i.e., growth (1,1). It is clear that fy(z)
uniquely determines | > and vice versa. It is obvious at this point that
we can state a connection between the eigenstates of L™ in D™ (P)
(or of L* in D™ (®)) and the Hilbert spaces of entire analytic functions
or growth (1, 1), in the same way as the usual coherent states are connected
to the Segal-Bargmann [6, 7] space of entire functions of growth (3, 2).

We introduce the countable set of Hilbert spaces 4, whose elements
are entire analytic functions. For each @, the inner product is defined
by?

(f:9o= [ [(2)g(z) doyl2), (6.2)

_ 4 -20-1
dog(z)= 2Rl (—2d) ¥ K, o(2r)rdOdr. 6.3)

f belongs to Z if and only if (f, f)e<oo; its norm is || flle=]/(f, fle-
Let f(z) be an entire function with the power series ) ¢,z". The norm

in terms of the expansion coefficients is given by  *

(s o= [F(—2<15)]"‘ilcnIZ'l!F(—Zq)Jrn)T. (6.4)
0

Every set of coefficients ¢, for which the sum in (6.4) converges defines an
entire function f'€ %, From the linearity we get the inner product of
two functions f, g:
(L Qo=[T(-20)]"1 Y ¢,byn! I'(—2P+n)
"0 (6.5)

9=} b,z".
n=0

An orthonormal set of vectors in Z is given by

Z"

)/ T(=20+n)

Uy, o(2) = [I'(-29)]* (6.6)

For any function fe %,

)/n T (—2® +n)
JT(—29)

(un’ f)(.D: Cy

4%
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Eq. (6.4) expresses the completeness of the system u,,(®, z). The Schwarz
inequality gives

fOP < (i |cnz"|)2 < (i le,/2n! [(~ 26 +n) [F(~2¢)]‘1)
n=0

n=0
© |Z|2
(; n! T(—2&+n) F(_M))’

If @ = 11113 oF1(—20: 121

from which

or
@I 1S lo(oFi(—20; 212 6.7

As a consequence, strong convergence in % implies pointwise conver-
gence, because

1f(@2) = 9@ = [Fi (=22 21 [ f —glo (6.8)

for any f, g€ #, and from (6.7) we see that the convergence is uniform
on any compact set.

2. The Principal Vector and the Reproducing Kernel

Following Bargmann [6] we can introduce the principal vectors and
the reproducing kernel for each &;. For a fixed complex number q, the
mapping f— f(a) defines a bounded linear functional. Because f is an
element of an Hilbert space %, the functional is of the form

f(@=(e; o> (6.9)

where e, is uniquely defined in %, The vectors e, are called the principal
vectors of %, and they behave like a continuous set of orthonormal
vectors. In particular

(/s 9o = J (£, €dal€s 9odo0(a) . (6.10)

This expression corresponds to the expression for the resolution of the
identity in terms of the eigenstates |a), of L™ in D* (&) (or L* in D™ (P))
(see (3.23)). Thus (f, e,), corresponds to < f|a), which is the functional
representative of the abstract vector |f). The vectors e, are complete:
i.e. their finite linear combinations are dense in %, because the only
vector orthogonal to all of them is f=0. This is due to the fact that
(e,, f)p is an entire function of a. In integral form, (6.10) reads

f@)= [ Wy(a,2) f(2) day(2) (6.11)
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and Wy(a, ) is the “reproducing kernel”. Because e,(z) = (e, e,), We have
W(a9 Z)(D = W(Z’ a)(b = (eaa ez)tb (612)

and W (a, z) is analytic in a and Z. It is the analog of the delta function
in the usual Hilbert space of quantum mechanics. In terms of any com-
plete orthonormal discrete set vy, v, ..., we have, by (6.9):

0 0
e= ), (Upe) = ) v,(a)v, (6.13)
n=0 n=0
and since strong convergence implies pointwise convergence, we have
el(2)= 3, v,(a)v,(2), (6.14)
n=0

irrespective of the choice of the system {v,}. Using the set u,, 4(z) (6), we find

e o)

e,(2)= ZO u,(a) u,(2)
" (6.15)

= F(—ZGD) ; n—'I,((_aZz)Tn) = OFl(_2¢;aZ)

or
W(a, z)p= oFi(—2®;az).

Likewise from (9) and (7) we find again
leallo= (oFy(—20; a@)? . (6.16)
We have thus the reproducing formula

fla)= j Wy(a, 2) f(2) doy(2)

= [ oFy(=2®;a2) f(2)doy(z), VfeF,. 6.17)

This could have been established also by looking at the corresponding
formula in terms of the “coherent” states:

fl@=<flay= [dog(2){flz)<zla), (6.18)

from which we have the formal equality between the reproducing kernel
and the inner product of two “coherent” states |a), and |z), Any
bounded linear operator may be represented by means of the principal
vectors as an integral transform. This may be adopted directly from
Bargmann’s case [6] and we shall not discuss here. Furthermore one can
also carry an analysis similar to the one used in Ref. [1] concerning the
problem of the ,characteristic” sets or, in other words, the problem of
the completeness of a countable subset of ,,coherent” states.
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3. Realization of the Algebra SO(2,1)~SU(1,1)~ SL(2, R) in the
Hilbert Spaces %4 of Entire Functions

In the last section we have equipped the class of entire functions of
growth (1,1) with a countable set of inner products (f, /), making them
into a countable set of Hilbert spaces. We want to study in this section
a realization of the generators of our algebra in these spaces. We consider
here the case D* (®). A similar analysis applies to the case D™ (P).

For each ¢, we introduce the linear operators, acting on Z:

d
‘gig):Z"d—Z _épa
1
gg?)E —ﬁz, (619)
PP = L(_z(pi +Z__d2 )
- ]/5. dz dz? )

They satisfy the required commutation rules. In each %, #9 is auto-
matically diagonal in the orthonormal basis (6.6)

u?(z)=1/T(—29) Y 2N

—20+n)

Furthermore, we have

L2u0(2) = %1/(% D)(= 26+ n)u?, ,(2)

{ (6.20)
L2ul(z)= W /(=20 +n—1)u,_(2).
It is easy to verify the unitarity of the realization:
(£, 2°90=(L219) VgeT,, (621)

ie. (Z2)t=22.
By inspection of the confluent hypergeometric differential equation

d? d
z e @(2)—29 e o(2)— ]/5/1 ¢(2)=0 (6.22)

we find the eigenvectors of £2, in Z,, to be
¢;(2)=oFi(—29, 1/5/12) (6.23)

with eigenvalues [/5/1 where A is any complex number.

We can understand now the meaning of e?(z) in #,: as it was to be
expected e, ;,(z) with eigenvalue 1/5/1 are just the eigenvectors of #?
or, in other words, they are the “coherent” states in %,
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