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Classical Schwinger Terms

DAVID G. BOULWARE*

Physics Department, University of Washington, Seattle, Washington

S. DESER**

Physics Department, Brandeis University, Waltham, Massachusetts

Received July 3, 1970

Abstract. Schwinger terms must be present in equal time ground state Poisson brackets
among currents unless the latter are stationary in that state.

A general result in quantum mechanics is the necessary non-vanishing
of the equal time commutator of any operator with its time derivative.
Only the existence of a unique lowest energy state and the positivity of
the Hubert space metric enter into the derivation which uses the equation
of motion

Λ{t)=ilA(ή,H], (1)

ot

to evaluate the vacuum expectation value*

=-Kθ|[Λ(0,D4(t),H]]|θ>
= 2i(fi\A(t)HA(t)\θy (2)

The final summation is positive semi-definite since En is; it can vanish
only if the vacuum is an eigenstate of A. An immediate consequence
in local field theory is that the equal time commutator \j°(r),jk(r)~] of a
conserved current f(x) cannot vanish [1,2], since its divergence

<0| β > ) , W ) ] |0> = - <0| [ / » , So/V)] |0> (3)

must be non zero (and a non vanishing local current cannot annihilate
the vacuum) [3]. A more precise result is that, assuming the equal time

* Supported in part by U.S.A.E.C. Contract AT(45-1)1388B.
** Supported in part by U.S.A.F. OAR under OSR Grant 70-1864.
1 The zero of energy is chosen so that the vacuum lowest energy state has zero energy.

The vacuum state is denoted by |0>.
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commutator exists, then in the general expression

V Σ cn n~ V2fδ(r), (4)

the vanishing of c0 implies [4] that of the operator j°, irrespective of
conservation, provided only that relativistic invariance holds.

In this note we show that the necessity of Schwinger terms is not a
purely quantum phenomenon, but has a somewhat weaker classical
counterpart. That Schwinger terms can exist should not be surprising:
In the algebra of fields [5] for example, the current is linear in canonical
variables. The commutator of Eq. (4) is then just proportional to a
canonical commutation relation, and so should survive the transition 2

from commutator to Poisson bracket. However, because there is no
classical analogue to vacuum fluctuations it is possible for a local field
to "annihilate" the vacuum, hence it is possible for the commutator
to vanish. Furthermore, we will see that it is not necessary for c 0 to be
non vanishing even if j " is not extremal at vacuum; it is only necessary
that some cn be non zero (all must be ^0).

A stable classical ground state (vacuum state) is characterized in
terms of the Hamiltonian, by

dH

8χa

and

δ2H

δχ°δχb

= 0 (5)
o

(6)

where χa represents both the canonical variables and their conjugate
momenta, q(x)n = χ(χ)2n~ι, p(χ)n = χ(x)2n. The coordinate dependence
will, in general, be suppressed. The subscript zero on any quantity
indicates its value in the ground state and we translate the fields χ so
that χ = 0 there. The matrix {Jf)ab = ^ab\s positive definite by the ground
state stability assumption.

At vacuum, the equal time Poisson bracket

ηL i l ' " J - £ Sf δf df dcf ~ dχ η dχ ~ δχη δχ ( ? )

combined with the role of the Hamiltonian as the generator of time
translations

Λ = ^ A = IΛ,H-] (8)

We do not consider spinor fields.
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yields the result, at vacuum,

iA, A] |0 = [A, IA, H]] |0 = - U ψ- η

δΛ \
and the equality can hold only if —— = 0 3. But this is just the condi-

°X /o
tion that A be extremal at vacuum, the classical analogue to the vacuum
being an eigenstate of A 4 . However, there is not classical counterpart
to the necessary non vanishing of a local field, e.g., f*(x\ applied to the
vacuum; the Schwinger terms exist only if (δju/δχ)ή=O. In particular,
the ordinary bilinear boson currents, whose χ derivatives vanish at
vacuum, have vanishing Schwinger terms.

We will now derive from Lorentz convariance, irrespective of con-
servation, the more specific prediction, Eq. (4), that the equal time Poisson
bracket of j° with / must have a gradient of a delta function term. First,
we will establish that [/VXiίΌJo is proportional to Jf, then that 2tf
is proportional to — c: VVδ(r — r'). The latter fact is plausible, since a
general Lorentz covariant Hamiltonian is expected to involve terms
(Vq)2 for small excitations around vacuum. [Alternatively, such terms
are expected in order that χ = [[χ, H\ H\ contain the V2χ terms to
combine with χ to form DΆlembertian.]

Consider, at t = 0, the Poisson bracket

\jO(rlJOkl=-xkSof(r)jk(r) (10)

then take the Poisson bracket of this equation with j°(r'). The double
Poisson bracket on the left is evaluated using the Jacobi Identity and
Lorentz in variance of the vacuum which implies that [0, J μ v ] 0 = 0
for any quantity O5. The result of these operations, independent of whether
jμ is conserved, is, using A = \_A, W] and the invariance of the vacuum

3 The matrix η possesses an inverse; hence, ηδA/δχ cannot vanish unless δA/δχ
itself does. Note that the classical result requires the ground state to be a local extremum
only whereas the quantum vacuum had to be an absolute minimum. There is a further
analogue, for the second time derivative [A> A] must vanish in both the quantum and
classical cases.

4 One way to see this is to observe that if Aψ = aψ, then ψ+\_A,O~]ψ = 0 for all 0;
classically, [,4,0] = 0 implies δA/δχ = 0, hence we infer the correspondence.

5 This follows directly from the definition of "Lorentz invariance of the vacuum"
we mean that, in the vacuum no quantity changes under a Lorentz transformation, i.e.,

[0,^ = 0 = - ^ ^ or i ^ U o .
δχ δχ δχ
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under time translations,

If j° is the generator of some transformation, then δj°(r')/δχ(r")
must have a δ{r' — r") term; we assume that it does (if it does not, similar
arguments will apply to some cn in the general Poisson bracket or com-
mutator form, Eq. (4), for n > 0 6 . Then since H must be local, it is a
series of derivatives of delta functions:

H=[h + <x- V- V'C- V. ]<5(r-i-') (12)

and the factor (r — r')H becomes

α δ(r - rf) + 2c Fδ(i - i ') (13)

Furthermore H must be a symmetric matrix, hence α must be antisym-
metric and, comparing with Eq. (4), we find

ίf(r), /(»•')] = (η δf/δχf c • V(η δf/δχ)
')^0

where c0 can vanish only if δj°/δχ does or if c = 0. We now show that
c cannot be zero in a Lorentz covariant theory. The structure relations
of the Poincare group are

lJOk,Pι-\=-δk'P°~-δk'iχJfχ (15a)
and

Ok Vkχ (15b)

The Hamiltonian P° has been evaluated near vacuum and the
momentum Pk is exact. The fields χ must transform as some representa-
tion of the Lorentz group,

[J°*, χ(X)-] = (X0 dk _ JQO) χ{χ) + S0kχ{χ)

For t = 0 and near vacuum, this equation becomes

[J°\ χ(x)] = (x\η Jf) + SOk) χ(x). (17)

Now, assume that Jίf has no second or higher derivatives of a delta
function, i.e., that 2tf = h + α Γ buttheα Γterm is not positive definite7,
hence it must vanish and we can rewrite the structure relations, Eqs.(15),

6 In the classical, as in the quantum, theory all the cn's in Eq. (4) are nonnegative.
7 This conclusion is, of course, not valid for anticommuting variables; there the

matrix Jf must be antisymmetric rather than symmetric, forcing instead χ ^ f χ ~ χ α Vχ
with no V2 terms.
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near vacuum, as

VOk,Pι] = χη V'(xkηh + SOk)χ = -\bklχhχ (18a)
and

[_JOk,P°] = χh(xkηh + SOk)χ = -\m Vkχ. (18b)

Only the symmetric part of the matrix between the χ's contributes,
hence the first equation reads

$h = i\yιxkh-hx* V1- VιηS0k-S0kTη F1] (19)

or, since, by locality, [SOfc, F'] = 0,

ηSOk + SokTη = 0 (20)

and the second equation reads

or
Pk=[ηh,SOk]. (21)

The matrix η h is the direct product of a finite dimensional matrix
and the unit matrix <r 111 r'> = δ(r — r'\ thus, only the finite dimensional
factor can produce a non vanishing commutator and the trace over the
finite dimensional subspace must vanish on the right and does not on
the left. Hence, Eq. (21) is impossible; the only assumption (aside from
Lorentz covariance) which went into this was the vanishing of c and all
higher derivative terms, and we have proven that they cannot vanish.
Thus the Poisson bracket, Eq. (14), is established with a nonvanishing
c0 (or cn > 0).

In summary, we have shown that classical boson currents containing
terms linear in the canonical variable must have Schwinger terms in
their ground state Poisson brackets, just as do their commutator counter-
parts.
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