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Abstract. It is rigorously proved that the anisotropic Heisenberg spin model, in two
or more dimensions, exhibits a first order phase transition at low temperatures and for
large anisotropy (strong coupling of the third components of the spins).

1. Introduction

It is now universally believed that the usual formalism of equilibrium
statistical mechanics is structurally rich enough to both predict phase
transitions and give information concerning their nature. Unfortunately
it is difficult to justify this belief by rigorous mathematical arguments
and theoretical proofs of the existence of phase transitions are indeed
scarce. In classical statistical mechanics proofs exist for spin systems,
or lattice gases, under a variety of different conditions but the only
quantum mechanical system for which a transition has been established
is the non-interacting Bose gas in three or more dimensions. The purpose
of this note is to provide an existence proof for an interacting quantum
system, the anisotropic Heisenberg model in two or more dimensions.

The method we use is a variant of an argument devised by Peierls [1]
to prove the existence of a first order phase transition in the two di-
mensional Ising model. In the framework of classical spin systems this
method has been generalized and extended by several authors [2-4].
The first point of this note is to present this argument in a manner
applicable to quantum spin systems; this requires a slight reformulation
of the method in terms of operators but no essential change. Secondly
this reformulation is applied to the anisotropic Heisenberg model.
This part of our calculation involves estimates of the norms of certain
products of non-commuting operators and to establish these estimates
we consider the Heisenberg model as a perturbed form of the Ising model,
i.e. the corresponding classical system. It is this perturbation theoretic
calculation that restricts our results to a range of anisotropies for which
the third components of the spins are strongly coupled.
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2. General Formulation

Let Zv be a v-dimensional cubic lattice and associate with each point
x e Zv a spin σx = (σ(χ\ σ(*\ σ*.3)). The anisotropic Heisenberg Hamiltonian
of a system confined to a finite subset A C Zv is given by

#4 = 4- Σ Wiix-^M

Actually for our purposes it is convenient to avoid the above spin
formulation and adopt the equivalent lattice gas notation; we introduce
annihilation and creation operators ( 2 x 2 matrices) ax, a* by

and then note that in terms of these operators HA is equivalent to the
Hamiltonian KΛ = TΛ + VA — uNΛ where

^^y Σ Ji2(χ-y)<*ϊ<*y>
^ x,yeΛ

VΛ = ^T Σ J3(χ-y)axa

X

ayay>
Z x,yeΛ

NΛ= Σ«>* and A * = -
xeyl xeyl

[Actually HΛ and K^ differ by a term proportional to N(Λ)9 the number
of points in /I, and a surface term ]Γ ,̂ i.e. a term such that IE^||/(N(yl))->0

as yi->oo; both of these terms are irrelevant to the following discussion].
For simplicity we assume that the interaction potentials J12 and J3

couple nearest neighbours only, i.e. we take

if x and y are not nearest neighbours, and we adopt the notation

Jufr ~y) = Jii2, Jι(* -y) = J3, i = 1, 2, ... v

if x and y are nearest neighbours in the direction of the i-th coordinate
axis. We further introduce the notation

μ 3 | |=2Σl4| and ||J12|| =2 £ |J{2|
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The states of the finite system form a vector space 2?A in which one
may introduce a normalized basis, labeled by the subsets of Λ, in the
following manner. The vector |θ> is defined, up to a phase, by the condition

αjθ> = 0 for all xεΛ

and \Xy is defined by

\Xy=(Y\a+\\Qy forall XcΛ.
\xeX J

We now recall the following standard result.

Proposition. The following limit

exists and defines the thermodynamic pressure. The function (β,μ)
->P(β,μ) is convex, continuous, and satisfies the symmetry principle

Further, if the following condition

is satisfied then dP(β, μ)/dμ is discontinuous at μ = J3/2, i.e. the system
undergoes a first order phase transition.

In spin language the pressure corresponds to the free energy, the
symmetry principle states that this quantity is a symmetric functional
of the external field ft, and the condition given in the proposition is
one way of stating that the spontaneous magnetization is non-zero.

Let us consider the spin reversal symmetry a little more closely. If
for x e Zv we introduce the operator Rx by

then we find from the commutation rules axax + axax — l etc. that

RX = R+9R* = 1, RxaxRx = ax Rxax Rx = ax.

Corresponding to each finite subset A C Zv we can then introduce the
symmetry operator RΛ by

xeΛ
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the symmetry property of P(β, μ) follows from noting that

and then using the above transformation rules to calculate RΛKΛRΛ.
Next let us consider the reformulation of the Peierls technique which

is required to estimate the bond ρ0(β). We will not give a detailed de-
scription of this technique but rely upon the formulation, and notation,
presented in [4]. To each configuration XcΛ one associates a closed
polyhedra Γ(X) which splits into disconnected polyhedra { y ί 9 . 9yn}
which are called cycles. The prescription for obtaining these polyhedra
is such that knowledge of the set {y1 ?..., yn} determines the configuration
X. For a given cycle y we denote by |y|ί5 z = 1,..., v, the number of its
faces orthogonal to the i-th coordinate axis. One finds that for fixed
values of these parameters there are at most

V

N(Λ) Γf S'7'/"1

ί=l

cycles. Further if n(y) denotes the number of lattice points inside of
y then with Γ(X) = {γl9..., γn] we have

7=1

and
i

v-l

Now let the cycle y belong to Γ(X) and let X' be such that Γ(X')
= Γ(X) - {y}. Further let Iγ C A denote the set of lattice points inside y,
let Sγ C Λ denote the set of points x which are such that x $ Iy but there is a
nearest neighbour y of x such that y e /r and let S'y C x denotes the set of
points x e /y such that x has a nearest neighbour y φ Ir

We introduce, with a slight abuse of notation, the symmetry operator

X€/y

and the projection operator

xeSyuSy

It is immediately checked from the definition of the cycles y that
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Now we have

N(Λ) "- "*' £A N(Λ)

z Σ Σ
XCΛj=ί

Σ
X;Γ(X)3γ

2 Σ
X;Γ(X)3γ

Thus

βκΛ\\2

^ Σ Π "
| y | ι | y | v ί = ι

and to establish the existence of a phase transition it remains to obtain
a suitable bound on the norm occuring in the last expression at the sym-
metry point μ = | J3.

Before considering the full problem of the Heisenberg model, let
us briefly discuss the Ising case J12 = 0. One has then

RyKyR7\μ=±j3 = KΛ\μ=±j3 -Vy-Cy

where Vy and Cy are straightforwardly calculated to be given by

Vy= Σ
xeΛ/Iγ

Hence

= Σ J3(χ-
z xeA/Iv

βKΛ βKΛ\\2 || βKΛ βKΛ βVy_\\2

z 2 P R e 2 -1 = e2β€γ lie 2 P e 2 e 2
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Thus with \γ\ι = 2Lt

and if v^2, J^ <0, then ρ0(β) is strictly smaller than \ for sufficiently
large β, i.e. there exists a phase transition at very low temperature (i/β)
due to the above proposition.

3. The Anisotropic Heisenberg Model

The first step in the estimate required for the Heisenberg model is
again very easy. One calculates that

RγKARy\μ=±j3 = KΛ\μ=±j3 — Ty — Vy — C

where the definitions of Vy and Cy are the same as in the Ising case and
Tγ is given by

r, = -4 Σ Λ2(*-y) («:-«*) «-α,).
z xeΛ/Iγ

yelγ
Hence

βKΛ βKΛ\\2 II βKΛ _ β _ 112

e 2 PRe 2 IT =e2βcλ\e 2 P e 2

 l re ryι\yκ ||μ = i-J3 * || e; rγc IU=i-J3

Thus we immediately obtain the factor exp{2/?Cy} which appears in the
Ising calculation and which is essential in establishing that ρ0(β) is
small for large β. However we are still left with a complicated operator
whose norm must be estimated. In the Ising case this operator has norm 1
and we will estimate in the present case by using perturbation theory
about this point.

Let A, B, A', B' and C be matrices and consider the expression

Introduce the function / by the definition

fίfi — e(l-t)Aet(A + B)£e

and note that N = /(I). We have

t^
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and thus defining

B(t) = etABe~tA

9 B(t) = et(
A~A">Be~t(A~A'\

we find

f ( t ) = /(O) + ί at, {\β(\ -t,\ f(tj\ + f(tj X(ί -t,)}
o

where
X(t) = B(t)-B(t) + B'(t).

This integral equation can be iterated to give a formal series solution
for f(t) in terms of /(O). Thus we obtain

i
N = /(O) + J dί{[B(ί),/(0)] + f(0)X(t)} + •••

o

where we do not explicitly display the higher iterates. The form of these
iterates is however clear; at each order terms occur which are either
multiple commutators of operators 5^),B(t2),... with /(O), or the
multiple product of/(0) with operators X ( t 1 ) , X ( t 2 ) etc., or mixtures of
commutators and products.

Let us now consider the above formulae with the identification

A = —(VA-μNA)9 B = — TΛ,2 2

At r -rr jrj/ " rri
A - — V y , B =— Tγ,

C — P^ — Γγ>

We find immediately that

Thus ||/(0)|| = 1. We now proceed to estimate the norms of the higher
terms in the series expansion for N and investigate under which con-
ditions this series is convergent. Most of the qualitative features of
these estimates occur already with the first order term which we next
examine in detail.

We have

y,xeΛ
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Now the commutator occuring on the right hand side vanishes unless
xeSyVSy or yeSyuS"y and this fact together with the definition of Py

and the assumption J1

3 < 0 lead directly to the estimate

Note that this bound is independent of the size of Λ. Next consider
X(t). The definition of X(t) involves the difference of two operators
TA(t) and TA(t) both of which are dependent on the size of Λ. Clearly
the difference however depends only on the size of y, a property shared
by the third term fy(t) which enters in the definition of X(t). A straight-
forward but laborious calculation leads to the estimate

7 3 f l* M r I I

p (t)| |3i τ/ίμ1 2 |k2" V

This estimate is extremely crude but our principal interest is its quali-
tative form.

Combining the above calculations we have

: 3 ||J3|

Now consider the higher terms occuring in the series expansion
under consideration. Repetition of the above arguments gives

||[B(tl)[...[β(α/(0)]]]||g(2)Sμ12||re^tl + +ί")l |y3irΠ(Ny + 4vp),

i.e. each additional commutator introduces a factor

j8||J12 | |exp{j8i||J3 | |/2}

and the number of terms which are not indentically zero due to the
commutation relations is majorized by 2" times the Nγ dependent product.
Also

and it remains to consider the mixed terms occuring in the iteration.
The qualitative behaviour of these terms is very similar to the terms
discussed; the dependence on the size of Λ is suppressed by the com-
mutators; there occur n factors proportional to 2j8||J12|| and the worst
proportionality factor is 7/2; there occur factors of the form
exρ{α^||J3||ίί} and the largest possible value of a is 3/2; finally there
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occurs an Nγ dependent factor which is certainly majorized by (2Nγ

+ 4nv)n. At the rc-th order there are 2" terms in the iteration formula
and hence we find after integration that the norm of the n-th order term
is majorized by

28 ||Λ21| (¥-\\J*\\ ΛV (2Nv + 4vn)n

i „ z —1;'
3 ||J3|| v ~>) n\

There are two important features of this estimate. Firstly it follows
that for fixed β the iteration expansion is convergent if the anisotropy
parameter H Λ a l l / I I Λ I I *s sufficiently small. Secondly the radius of con-
vergence is independent of Nr These features alone are important in
establishing the existence of a phase transition and not the numerical
coefficients which we have crudely overestimated. Thus using the
inequality xn ̂  n I ex we deduce that there exist positive numbers a and b
such that

_

p 2 (

-L*-'

for all values of || J± 2 1| , || J3 1| , and β, such that the right hand side is positive.
Hence we have a bound of the term

[ v f oo 1 ΪΠ Γ II T n / 3/ϊ \Ί-2

π j ΣLττ32L-vtfW 1_ftJM(βτ-ιi' ιι_1) .
i = l U=l JJL l l J 3 l l J

If v ̂  2 and J\ < 0, we may conclude that there exists a set of values of β
and H Λ a l l / I I Λ I I such that ρ0(β) is strictly smaller than \, i.e. there exists a
phase transition due to the proposition of Section 2. We summarise the
information as follows.

Theorem. There exists an open subset P C R2 with non-zero Lebesgue
measure such that if 4<0 (i = l, ..., v ; v j £ 2 ) and (& ||J12||/||J3||)eP
then the anisotropic Heisenberg model exhibits two phases; P is convex

in β, and convex in ί2 for fixed J1

3.

Quantitative estimates of the size of P can be obtained by the above
methods. Note that our result has one seemingly unphysical feature.
For small non-zero values of H J ^ I I / I I Λ I I we can establish that a phase
transition takes place for some large value βc of β, i.e. the spontaneous
magnetization is non-zero. However our estimates do not allow us to
conclude that there is a non-zero magnetization for all β > βc. It would be
interesting to study whether βc is necessarily a single-valued increasing
function of the anisotropy parameter.

15 Commun. math. Phys., Vol. 14
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4. Concluding Remarks

In the above we have actually considered a partially anisotropic
spin coupling. However our methods straightforwardly extend to the
fully anisotropic Hamiltonian

HΛ = Σ tt(* - y) 4X' + MX - y) 42)<2) + J3(χ - y) <43)<f >}
O x,yeΛ

+ hΣ°?
xeΛ

and similar results can be stated; with nearest neighbour couplings
of Ji9 J2, and J3, phase transitions take place if H Λ I I / I I Λ I I and I I Λ I I / P a l l
are both small.

Recently Dobrushin [5] has extended the Peierls argument to
establish that there exists a region, in the (/?, μ) plane, of two phases
for the repulsive Ising model (J\ > 0). Dobrushin's arguments can be
generalized in a manner similar to the preceding to conclude that the
same property is shared by the strongly anisotropic Heisenberg model.
In the repulsive case an estimation of the magnetization of a sub-lattice
has to be made and this is again done by establishing an upper bound in
terms of a series summed over cycles. However one then uses an estimate
of the form

II MA βκΛ\\2
Σ <X\e-'κ*\Xyz\\e 2 UΛPyRye

 2 \\ Tr^(<Γ^)
X;Γ(X)3γ

This is valid for any unitary operator UΛ on 2tfA and a suitable choice
has to be made.
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