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Particle Localization in Field Theory
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Abstract. The localization properties of particles in field theory are studied with
the help of a convenient mathematical description of counters. It is shown that
field theory is capable of explaining the observed localization patterns. Apart from
the usual axioms of field theory we have to assume some smoothness properties of
the Green's functions in momentum space.

1. Introduction

Localizability is an essential ingredient of the intuitive notion of a
particle. According to this notion a particle is an entity with some sort
of stability, which is localized in a small region of space throughout its
history, and which moves roughly according to the laws of classical
mechanics, e.g., in a straight line if not subjected to external forces.
This behaviour is exemplified by the well-known pictures of high energy
events obtained in bubble chambers and similar instruments. These
pictures show patterns of straight lines (in the absence of magnetic
fields) joining in points, which can, most naturally, be explained as
follows. The lines are tracks of particles. The particles proceed in straight
lines until they meet another particle, whereupon they indulge in some
reactions of a mysterious nature resulting in a certain number of other
particles, which emerge from the region of interaction to proceed in
straight lines, etc. This region of interaction is reasonably well localized
in space (within the thickness of the tracks) and could presumably,
by some more refined techniques, be localized in time to a similar degree
of accuracy.

Field theory, on the other hand, is a theory of a continuum. Localized
events of the type described above seem at first sight to be foreign to it.
The definition of the term "particle" used in quantum field theory is
indeed not based on this localization in x space, but instead, on the
spectral properties of the energy momentum vector Pμ, i.e., a p space
property. Roughly speaking, a particle is defined to be an object with
a sharp value m of the mass, when the mass operator is M2 = P§ — P2.
The question arises naturally whether this particle notion has anything
to do with the more intuitive one discussed before. In other words:
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Can quantum field theory explain the qualitative features of a bubble
chamber picture ?

A result in this direction has been obtained by ARAKI and HAAG [1],
[2]. Starting from the usual assumptions of field theory they were able
to show that, asymptotically (for large negative or positive time), the
points of Minkowski space, where a particle of momentum p can rea-
sonably be expected to be found, lie in a direction (as seen from the
origin) parallel to p. In the present paper we want to show that the
particle behaviour at finite distances can be explained if some quite
natural assumptions about the smoothness of the Green's functions
are added to the familiar axioms of field theory. Namely, we shall
assume that the time-ordered products of quasilocal fields are, in p-space,
smooth functions of the momenta apart from the one-particle and
threshold singularities that are known to exist as a consequence of the
axioms. (For an exact formulation of these assumptions see the end of
Chapter 2.) We will not discuss the problem in full generality but will
only show in some simple examples that field theory yields the results
to be expected from a particle behaviour. It is, however, clear that the
methods used can be generalized to arbitrarily complex events.

In Chapter 2 the formalism used will be explained and the assump-
tions stated. In particular we shall introduce a convenient mathematical
description of a counter. In Chapter 3 we shall derive the propagation in
straight lines of individual particles. In Chapter 4 the scattering of two
particles will be discussed. Chapter 5 deals with the description of
unstable particles of sufficiently long life to produce tracks of measurable
length. Some mathematical results, in particular estimates of certain
integral expressions which will be used throughout the paper, are derived
in an Appendix.

Our considerations hold only for m > 0. They cannot be applied to
massless particles like the photon or the neutrino. This is hardly surprising
since, at least, the photon is known to be a particle of a somewhat dubious
character which it is hard to localize.

2. Description of Counters

We shall study our problem in the framework of the LSZ formalism
[3]. For the sake of convenience we shall consider the simplest case of
one Hermitian field A (x) describing a single type of particles of mass
m > 0. The generalization to more realistic cases is immediate. A (x)
is assumed to be local, i.e.,

[A{x),A{y)] = 0 for (x - yf < 0 . (1)
This assumption could actually be relaxed. It would suffice that the
commutator decrease sufficiently rapidly for x — y going to infinity
in a spacelike direction.
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The Hubert space J f of states is the familiar Hubert space of field
theory. In ^f there exists a unitary representation U (α) of the translation
group with

A {x + a) = ϋ{a) A (x) ?7* (a) . (2)

Relativistic invariance will not be used. Therefore we do not need
to make any assumptions about the transformation properties of A
under the homogeneous Lorentz group.

A (x) is assumed to satisfy the LSZ asymptotic condition

for Φ, Ψ in a dense set of Jf, and all sufficiently smooth positive fre-
quency solutions f(x) of the Klein-Gordon equation for mass m. Here:

(4)

We assume completeness of the asymptotic states:

Jf = 34? in = ^aut (5)

Λvhere Jί?ex is the Fock space of the free field Aex.
In order to define the localization of a particle we shall try to translate

the laboratory procedures used for that purpose into mathematical
terms. The experimentalist employs counters to localize particles, where
the word ''counter" is used in a broad sense which includes, for instance,
the bubbles of a bubble chamber (more exactly, the atoms whose
ionization by the particle gives rise to the bubbles). A counter may
roughly be described as an apparatus which is located in a certain region
of space, switched on during a certam interval of time, and which may
or may not be triggered, if subjected to the influence of the system under
investigation. If the counter is triggered we say that a particle was in
that region during that interval of time.

For describing this procedure in our formalism we will consider the
triggering of a counter not as a measurement in the usual quantum
mechanical sense, but as a pure filtering operation in the sense of HAAG
and KASTLER [4]. This means the following:

A state Φ is, physically speaking, an ensemble of identical systems
which has been prepared in a specified way, e.g., the particles of a beam
extracted from an accelerator and guided through a system of slits,
magnetic lenses, monitoring counters, etc. An operation is a procedure
which is applied to all systems of the ensemble, thereby changing the
properties of the ensemble. An operation is called a filter if it rejects
some of the elements of the original ensemble Φi} so that the new
ensemble Φf of the systems admitted by the operation (in our case:
the systems that have triggered the counter) contains fewer elements
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than Φ{. A pure operation is an operation that transforms pure states
into pure states. In our case this means that the interaction of the system
with the counter does not destroy more information than it creates.

We represent states, as usual, by vectors Φ, . . . in the Hubert space
f̂7, but use the normalization

|Φ| 2 = N (6)

where N is the number of systems in the ensemble represented by Φ.
The action of a counter on Φ can then be represented by a bounded
linear operator G in Jf, such that the triggering probability of a counter
subjected to a system from Φ is given by

pΦ=\CΦ\*l\Φ\*. (7)

The operator G will be required to have the following properties:
i. Boundedness. In order that the expression (7) can be interpreted

as a probability we have to demand that

\\G\\ £ 1 , (8)
where | |0| | is the norm of C.

ii. Annihilation of the vacuum. We want the counter to register
particles, but not to create or destroy them. In particular we assume

C | 0 > = (7* |0> = 0 (9)

where |0 > is the vacuum state. Note that G is not assumed to be
Hermitian.

iii. Localization in x space. We have somehow to formulate the fact
that the counter represented by G is located in a bounded set B of space-
time which we assume for the moment to contain the origin of our system
of co-ordinates. At first sight it would seem natural to assume that G is
an element of the von Neumann algebra 21 (B) generated by the field
operators in B [5]. This is, unfortunately, not possible because of the
Reeh-Schlieder theorem [6] which states that there exist no local
operators other than zero which annihilate the vacuum. We shall therefore
assume that C is a quasi-local operator and shall achieve localization
through the following considerations:

Any measurement can be performed only with a finite accuracy.
For any set of counters in a given experimental arrangement there exists
a small number η > 0 such that a triggering probability smaller than η
is experimentally indistinguishable from an exactly vanishing probability.
We shall therefore calculate probabilities only up to terms smaller than
η. The counter G will be said to be essentially localized in B, if there
exists a G' ζ 21 (B) with

\\G-G'\\<ocη (10)

where α < 1 is an appropriately chosen safety factor which insures that
the totality of terms that will be neglected in our estimates do not add
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up to a quantity exceeding η. We assume that C is essentially localized
in a bounded set B of a regular shape (spherical or cubical) of diameter dv

The region of essential localization of a counter is, of course, not
uniquely determined by this definition. We will just choose a convenient
region among the many possible ones.

iv. Localization in p space. Let U (x) be the unitary representation
of the translation group introduced in (2). The operator

C(x)= U{x)CU*(x) (11)
represents a counter identical to G which is essentially loca]ized in a
region Bx obtained from B by translation through the vector x.

We demand that the Fourier transform C(p) of C(x) be essentially
localized in a neighbourhood B of the origin in p space. More exactly:
there shall exist a bounded operator Gf such that the operator valued
distribution C (p), defined in analogy to C(p), has its support in B, and

\\fd*p[U(p)-C'(p)]l<^ccη. (12)
This condition is satisfied, in particular, if G(p) itself has its support
in B. More general O's are, however, admitted by (12).

The diameter d2 of B will be assumed to be small with respect to m:
d2<ζrn. (13)

This condition means that the momentum transferred from the particle
to the counter during their interaction is small.

The two diameter dv d2 of course cannot be chosen to be arbitrarily
small simultaneously, but they have to satisfy an inequality of the type
of the uncertainty relations. The minimal possible value of their product
depends on the choice of ocη.

This description of a counter is somewhat different from the one used
by ARAKI and HAAG [1] since we do not treat G as an observable in the

customary sense. The difference is merely a matter of convenience. The
usual formulation could be recovered by making the additional assump-
tion that G is a projection. This assumption is, however, neither necessary
nor (in the present context) useful. I t is important to note that, even if
we made this assumption, the so defined projection operators would not
satisfy the Newton-Wigner conditions [7].

The advantage of our interpretation lies in the fact that it allows us
to describe arrangements of several counters in a simple way, even if the
separations between the counters are not all space-like. Indeed, let
G(x1), C(x2) be two counters whose regions of essential localization B1

and B2 satisfy the condition
V2-VAV+ for all yx^Bl9 y2^B29 (14)

V+ the closed forward cone. Let Φ be defined as above. The ensemble
of systems that have triggered both counters is then represented by the
vector

Φl2=C(x1)C(x2)Φ (15)
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and the probability that both counters are triggered by a system in the
state Φ is

<pΦ{x1,x1)=\C{xι)C(xi)Φ\*\\Φ\*. (16)

The condition (14) can only be satisfied if, either x\ > x§? o r B\ a n ( i
B2 are totally space-like to each other. In the latter case the order of
factors in (15) is irrelevant since, then, || [C^a^), C(#2)]|| <η. We can
therefore replace (15) and (16) by

Φ12=TC(x1)C(x2)Φ (17)

PΦ(X1} X2) = | Φ | " 2 \TCfa) C(x2) Φ|» (18)

where T denotes time-ordering of the C operators.
The generalization to more than two operators is immediate. If

C(x1), . . ., C{xn) are n counters such that their localization regions B{

satisfy conditions of the form (14) pairwise, then the probability that all
counters are triggered is given by

Vφ{xv ...,xn) = | Φ | - 2 \TC(Xl). . . C(xn) Φ | 2 . (19)

This is the expression which we are going to use. The normalization
factor ]Φ|~2 is irrelevant for our purposes and will be omitted in the
sequel.

For the sake of convenience we shall only consider counter arrange-
ments C(x1), . . ., C{xn) such that for any pair xit xi of their locations one
of the two conditions

x\ = x? or |a# - xf\ > dx (20)

is satisfied. The time ordering in (19) can then be defined with smooth θ
functions:

TC(x1)...C(xn) = Σθ(xl - xl)...θ(xl^ - xl) C(xll)...C(xJ . (21)
Here, the sum on the right extends over all permutations of the indices
(1, . . .,n) and θ(x) is a C°° function with

θ(x)^l f o r x ^ ~

θ(0)-y (22)

θ{x)^0 for x^ - 4

The Fourier transform θ (p) of θ (x) is of the form

where we can choose φ £ S? to be essentially localized in B, i.e., such that
its values for |^| > d2 will give negligible contributions to the pΦ which
we are going to discuss.

This definition of θ has the advantage that the formation of the T
product conserves, to some extent, the localization in p space. Indeed,
the Fourier transform of TC(x^), . . ., C(xn) is obtained by convolution
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of 0(^1), . . ., C(pn) with θ functions of suitable arguments and is, under
our conditions, still essentially localized in a neighbourhood of the origin
of the same order of magnitude as B.

In order to get an analytic expression for pφ we write (19) (without
the factor |Φ|~2) in the form

pΦ(xv . . ., xn) = <Φ KTC, . . . Cn)* TO,... Cn\ Φ> , (24)

with Gi= Ufa).
Let {/α} be a complete orthonormal set of positive frequency solutions

of the Klein-Gordon equation. The vectors

\«1,...,«l)oni=c{Xi}A°]*...A«>*t\0) (25)

(C{α.j a normalization factor) form then a basis of M3. We insert these
vectors as intermediate states in (24) and obtain

pφ(x1} . . ., xn) = Σ Σ M 2 U<*i> . . ., α,| ΓCi . . . Cn |Φ>|2 . (26)

We shall consider states Φ of the form

Φ = J g . . . ̂ - |0> ̂  |?1) . . ., srm>in , (27)
where the g{ are positive frequency solutions of the Klein-Gordon equa-
tion which are not necessarily mutually orthogonal. Φ describes a system
of m incoming particles with wave functions g^

A typical individual term in the sum (26) is, if we omit the irrelevant
factor |c { α . } |

2 :

m ^ l 2 = Lt<*i> > oce\ TCX. . . Cn\9l, . . ., O i n l 2 (28)

This can be expressed with the help of the LSZ reduction formulae [3] as
(again up to irrelevant constant factors):

/ ΠffΛvj) r(xv...,xn;uv...,ue,v1}..., vj

f
x Π δ+ [vo) h (Pi) τ (ph - q* v,) -

The following notations have been used: z(x1} . . ., xn;yv . . ., t/fc) is the
vacuum expectation value of the time ordered product of the operators
Cv . . ., Cn, Λ(y1), . . ., A{yk), amputated (i.e., acted upon with Klein-
Gordon operators) with respect to the field variables yv . . ., yk. We
write the counter variables xi in front of a semicolon, the field variables
behind the semicolon. The T product is to be formed with the smooth
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θ functions (22)1. f (P 1 ? . . ., Pn; Qv . . ., Qk) is the Fourier transform
of τ(x1, . . .; yl9 . . .)• The wave functions /α (and analogously g3) are of
the form

Ux) = (2π)-2 / d*p er*" δ+(p) f(p), (30)
where

δ+(p) = θ(p0)δ(p*-mη. (31)

(Here θ stands of course for the ordinary sharp step function.)
Equation (29) is, strictly speaking, only correct if none of the in-

coming particle proceeds without, at any time, interacting with either
another particle or a counter. We will not consider such processes. Our
considerations can, of course, be easily extended to them.

We are now able to formulate the assumptions we need for drawing
physical conclusions from (29).

f(Pi'} Qj) is of the form

t(Pi', Qϋ = $HΣPi + ΣQS) *(P<; Qs) , (32)

where τ(P z ; Qo) is only defined on the manifold ΣPt -f ΣQό = 0, and
depends therefore on one vector variable less than f. We shall never-
theless exhibit all variables explicitly, including one redundant one.

We assume that the functions τ(P^; Qj) contain the singularities
that they can be expected to have from physical reasons [8], especially
the one-particle poles as discussed by ZIMMERMANN [9]. Outside these
singularities r shall be infinitely differentiable in all variables, and shall
not exhibit any strong oscillations. More exactly, the following inequali-
ties shall be satisfied sufficiently far away from the physical singularities:

(33)
d2 < c Max |τ| ,

where c is a constant of order of magnitude 1 and the maximum is over
a d2 neighbourhood of (P{; Qj). Similar inequalities shall hold for the
higher derivatives.

The existence of one-particle poles and of threshold singularities are
consequences of the usual axioms of field theory. I t is not known whether
the C°° character of τ outside these singularities follows from the axioms.
Estimates of the type (33) do certainly not follow from the axioms, but
constitute an additional assumption. Indeed, in Chapter 5 we shall discuss
a case in which they are not satisfied.

1 The θ functions originating in the reduction procedure, i.e., those containing
at least one field variable yjf could actually be chosen such that the function φ in
(23) has strict support in β. This choice would be of some advantage in the sequel.
For reasons of simplicity we shall, however,^stick to (22).
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The physical contents of (29) will be discussed with the help of the
following procedure: we shall consider the expression T^(λxv . . ., λxn)
for fixed initial and final states Φ and ]cq)0llt, and for fixed geometrical
arrangements of n counters. We shall determine the asymptotically
leading term in this expression if λ tends to OQ while everything else
remains fixed (i.e., the xi and thus the geometrical configuration of the
counters remain fixed, while the distances between the counters tend to
σo). This asymptotically leading term is, under our smoothness assump-
tions, a sufficient approximation for the exact T^ (i.e., within the η
accuracy) already for relatively small λ, let us say for distances between
the counters which are small multiples of dv

3. One-particle States

In this chapter we will consider the case ra = 1, i.e.,

Φ = Λg*|0> (34)
with

g(x) = (2τr)-2 / d*q er*** δ+(q) p(q) . (35)

As a first example we consider an incoming particle with a sharp
momentum, i.e., we put

g(q) - <33(q- p) (36)

for a fixed p. In order to be completely rigorous we should of course con-
sider a slightly smeared out g, e.g., an Lz function with support in a
small neighbourhood of p. The integrals in which we are interested do,
however, exist for the choice (36). This idealization is therefore harmless.

We place two counters in the space-time points λxv λx2, #J — x\ = dτ,
and want to show that they can be triggered simultaneously only if
their separation ξ — χ1 — x2 is approximately parallel to the four-
momentum p = (|/p2 -f- m2, p) of the incoming particle.

The function f(P 1 , P 2 ; -q1} . . ., — ql} p) is in the variables Pv P2

essentially concentrated in a small neighbourhood of the origin. Therefore,
only the terms with I = 1 contribute essentially to the sum (26). Let us
consider one of these terms, corresponding to a wave function f, which is
also assumed to be of the form (36). We have then to discuss the following
expression:

^ f J] f {P^P%\-q,p) (37)

with p2 = g2 = m2, p0 > 0, qo> 0. We fix our frame of reference such
that xλ = 0 and introduce the new variable ξ = xλ — x2. The P x integra-
tion can be carried out with the help of (32). We obtain

^ τ(-P + q-p, P; -q, p). (38)
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The integrand is essentially different from 0 only for P ~ 0, P — q +
-f p ~ 0 and, therefore, q ~ p. In this region τ has the pole structure [9]:

τ{ r+q p,r, q, p) -

t(PiP,-P -P)H-P p + q;-q,P + φ)

(φ + P ) 2 — m2 + £ε v ^ ^ ; v ;

Λvhere σ contains no more singularities and is assumed to satisfy (33).
The contribution of σ to (38) is then a strongly decreasing function of λ
which becomes negligibly small already for quite small values of λ. I t
can therefore be disregarded.

Let us consider the first pole term. The pole manifold (q — P) 2 = m2

consists of two sheets. Only the sheet in (q — P) ζ V+ is relevant because
the residue is negligibly small on the other one.

Let

r(x;y,z) = KyKz{θ(x-y)θ(y-z)(O\[[C(x),A(y)],A(z)]\O)+(y^z)}

(40)

a(x;y,z)^KyKz{θ(y-x)θ(z-y)(O\[[C(x),A(y)lA(z)]\O)+(y<->z)}

be the partially amputated retarded and advanced functions. Their
Fourier transforms are

f{P',p,q) = <54(P-f:p + q) r{~p~ q: p, q)
(41)

d(P; p, q) - (54(P -f P + g) ά ( - p - g; p, ί) .

In the region q2 — m2, qQ > 0, P ~ 0, we have2

ί ( P ; - ? , - P + g) = f (P; -g, - P + q)

τ ( - P - p + q;p,P~ q) = d{-P - p + q; p, P - q)
and

(̂  - P) 2 - m2 + iε = {q - P) 2 - m2 + iε(g0 - Po) . (43)

For large P, but fixed g, p, the difference between the two sides of (42)
is negligible.

The functions on the right-hand side of (42) are in P o boundary
values of regular functions, analytic in I m P 0 < 0, which increase for
increasing P o at most like exp^-JImPo!) multiplied with a polynomial
in P o . This exponential increase is a consequence of our use of smooth
θ functions.

The contribution of the first pole term to (38) is thus essentially:

Ti{λξ) = J _ fdP e-ixrS«r-.-9.-P + 4>*(7P-p + !;p.P-!).m ( 4 4 )

2 For a comprehensive discussion of the connections between time ordered and
retarded functions and their analyticity properties, see Ref. [10].
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The integrand is analytic in P o for I m P 0 < 0 and bounded (apart from
a polynomial) by exp (2d1\ϊm.P0\). T^λξ) has therefore its support in
λξ° ^ 2dv i.e., this term does not contribute to T | for λξ° > 2dλ.

The only remaining term is the second pole term in (39). As above it
can be shown that its contribution to (38) is in a sufficient approximation

(P + P) —m2 + tε
It can also be shown that

P-p + q;-q,P + q)f
J

vanishes for λξ° > 2dv For these values of λ we can therefore subtract
T' from T2 without changing the result:

T {λξ) = - ί - fdP e-ίλPξr{P; p, - P - p)

d(- P - p + q ; - q> p + q) δ+(p -f P) .

This is the simplest special case of the expressions discussed in the
Appendix. From there we obtain the following result: Tz(λξ) decreases
for increasing λ like λ~*12. The coefficient of this power, as well as the
coefficients multiplying the higher terms in the asymptotic development
of T2, are essentially different from zero only if ξ is parallel to p + P
for a value of P in which the functions r, a appearing in (46) are essen-
tially different from zero, i.e., for a P in a small neighbourhood of the
origin. T^(λξ) is thus negligibly small already for reasonably small λ,
unless ξ is almost parallel to p and therefore also to q. The probability
that both counters are triggered by the particle is appreciable only if
their separation is approximately parallel to the momentum of the
particle. This result corresponds with what one would expect from a
simple particle picture. The decrease of this probability like the inverse
third power of the four-dimensional distance between the counters cor-
responds also to expectations.

As a second example we study an arrangement of three counters in

λxl3 λx2, λx3, with x\ > #2 > xs πionitoring a one-particle state (34).

This time g is supposed to be a function in 5) with an arbitrarily large

support. Equation (37) of the first example has to be replaced by

Tfgiλ^λx&λxz) = / dpdqδ+{p)g(y) δ+{q)f{q)G{λx1,λx2ίλxs,p,q) (47)
with

G(λxv λx2, λx3,p,q) = / dPλ dP2 dP3 eiλΣP^ τ(P 1 ? P 2, P 3 ; - q,p). (48)

We put again xλ = 0 and write G as a function of ξ = xλ — x2, η = x2 — #3.

In analogy to (38) we obtain

η,p,q)

— j ar2arze τ{— r2 — rz -\- q — p, r2, r%, —q,P) .
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We assume ξ° > dv η° > d1 and study the asymptotic behaviour of
G for large positive λ. As in the first example one can show that the only
asymptotically relevant contribution to G comes from the following pole
term in τ :

i(P9;p,—<p — P 3 ) f ( P 2 ; p + PΆ,—p — P2 — PΆ) X

X H-V + q— P . — P 3; -g , V + Λ + P,)
[(P + P3)2 — w2 + ie] [(p + P 2 + P3)

2 — ma + ie] '
The numerator of this expression is only essentially different from zero if
P 2 , P 3 and — p + g — P 2 — P 3 are sufficiently close to 0. This yields in
particular the condition that p and q be almost equal.

The asymptotic behaviour of the contribution of (50) to G can be
found with the methods described in the Appendix, with the following
result: G(λξ, λη, p, q) is, for sufficiently large λ, essentially different from
zero only if the vectors ξ9η,p, q, are all approximately parallel (within an
accuracy determined by d2). In this case G decreases like λ~3. The p, q
integration in (47) gives the result: T£(λXi) is essentially different from
zero only if ξ and η are approximately parallel, in which case it decreases
like λ~z for increasing λ. Again this is already true for reasonably small λ.

This result means that all three counters can be triggered only if they
lie roughly in a straight line. This is what we expect from a particle
picture. The triggering of the first two counters selects obviously a
subensemble of Φ consisting solely of particles with a momentum approxi-
mately parallel to the separation between these counters. The λ~6

decrease of the probability that all three counters are triggered is also
what we expect.

4. Two-particle Scattering

We take Φ to be a two-particle state with particles of sharp momenta

Φ = Afn(Pl) Aitip,) \0) , (51)

with 2?1,2
2 = m2, p 1 > 2 ( F + . This mathematically somewhat dubious

choice of Φ will turn out to be harmless, as already happened in the first
example of Chapter 3. (Note that we are mainly interested in relative
probabilities.) For the sake of simplicity we assume that the energy of
Φ is in the elastic region

4m2 < (p1 + p2f < 9m 2 . (52)

For the moment we assume also that (pλ + P2)2 is n°£ close to either of the
limiting points of this interval. The influence of the threshold singularity
at 4m2 will be discussed later in this chapter.

The geometry of the process will be fixed with the help of three
counters placed in the points λx, λy, λz, with x° — y° = x° — z° = dv

y° = z°, |y - z| > dv



124 O. STEINMANN:

Under condition (52) we have to take into account only the I = 2
terms in (26). We consider an individual term of this type and use again
the simplification of choosing plane waves for the wave functions /α.

We have then to study the quantity

T$*J{λx9λy9λz) = - f dPdQdBea(Px + Qy + Rz> x
VίVzK υ ' qi0q2oPioP2o J * (53)

xτ(P, Q,R; -q19 -q^PuPz)

The factor in front of the integral is irrelevant and will be omitted in the
sequel. Also the indices pu q{ on the left-hand side will be omitted.

Because of the essential support of τ the integral (53) is only non-
negligible if q1

Jr q2 ~ ft + P2- This will be assumed to be the case. We
put x = 0 and introduce the relative separations ξ = x — y, η = x — z,
as new variables. Integration over P yields

T(λξ, λη) ^JdQdR e-««U+**> τ(P, Q,R;-ql9-q2, ft, p2) , (54)

where P stands for P = — Q — E + qx + q% — ft — p2-
We will only consider the contribution of the truncated part of f to

(54). The rest describes free propagation of the two particles without
scattering and can be reduced to the one-particle situation of Chapter 3.

The asymptotics of T is again governed by the one-particle poles of
τ. Among the various pole combinations which contribute to the asymp-
totically leading term (all of which have a simple physical interpretation)
we select the following typical one for further discussion:

-v σ)- *(p»—g»fc- f> ΠQ PH-Ά-Q)

The contribution of (55) to (54) is

F{λξ, λη) = f dQ dR e-ίλK«^) + (Λ^)] I(Q, R ft, . . ., q2) . (56)

The function τ( ; kv . . ., k^j contains exclusively field operators (no
counters) and is assumed to be slowly varying, i.e., to satisfy the first
inequality (33). The corresponding factor in / can then be drawn in
front of the integral because the other factors of / are concentrated in
P ~ ρ ~ JR ~ 0. Thus

F{λξ, λη)^ τ( ; ft, p2, -ql9 -q2) G(λξ, λη) , (57)
β(λξ,λη)

f d Q d R i χ W ξ + Rr» X

(58)
^ ( P ; — qί9— P + gi) τ(Q;p1>--Q--p1) r(i^; y2? — R — p2)

 K ]

(P — q1)
2 — m2 + iε (Q + p±)2 — m2 + iε (R + p2)

2 — m* + iε '
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This expression can be evaluated for large λ with the methods
developed in the Appendix, with the following result:

G(λξ, λη) is not negligible only if there exist constants μ, v, ρ > 0,
such that

ρqi (59)

Here qλ stands for qλ = — q% -j- px ~f ^ 2 = #i> a n < ^ = means equality up
to terms of an order of magnitude given by Max {μd2, vd2, ρd2). For these
values of ξ, η, G decreases like A~5/2.

The probability that all three counters are triggered is therefore not
negligible only if (59) holds and decreases like λ~5 for increasing λ. The
condition (59) describes the following geometrical situation: the two
rays drawn from the counters in λy, λz in the directions pλ and p2

respectively, meet approximately in a point. A ray drawn from this
point in direction qx (or q^ meets approximately the third counter in
λx. This has of course a simple interpretation in terms of particles. The
first two counters register the two incoming particles. From the counters
the particles proceed in direction of their momenta, then hit each other
and are scattered. One of the scattered particles then triggers the third
counter. The λ~5 decrease of the triggering probability is in accordance
with this description.

The dependence of the probability on the values of the momenta
pi9 qif is essentially determined by the factor τ( ; pv p2, ~q1} — ft) of
Eq. (57). This is exactly the familiar 8 matrix element for two particle
scattering.

It remains to discuss the influence of the threshold singularities. We
shall only consider the lower threshold at (p1 + p2)

2 = 4m2. In a neigh-
bourhood of this point the 4 point function is of the form [11]:

tiiPvP* -?i> -02) =
= <Vi> V2, a , ft) + UVi + Pz)2 - 4m 2 ] 1 / 2 6 (pv p2> qv q2) , (60)

where the functions a and b are assumed to be infinitely differentiable
and slowly varying. The square root (z — 4m2)1/a is defined in a plane cut
along 2 ^ 4w2 and is positive imaginary for negative real z. I t is in (60)
to be taken as boundary value form the upper half plane. The root factor
is of course not slowly varying in the region (px -f p2)

2 ~ 4m2.
Consider the function F(λξ, λη) defined in Eq. (56). For the moment

we still assume that the threshold (Q + B -f pλ -\- p2)
2 = 4 m2 is outside

the essential support of /, but possibly close to it. τ can then be developed
in a series of the form

f ( Q + pv R + p2, P - ql9 - q2) = (61)
N

= ϊ(>PvP* ~(lv ~ ft) + Σ Qi(Q> R) σi(Pi> Pz> 2i> ft) + higher terms.

9 Commun. math. Phys., Vol. 7
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Here N is an arbitrary integer, the ρ^Q, R) are polynomials of degree i,
the ϋi are derivatives of τ. They are small far away from the threshold,
but increase over all bounds when approaching threshold. The contri-
bution of the first term in (61) to F is the expression (57) which we have
already studied. The contributions of the higher terms can be evaluated
in the same way. The term of ith order gives a contribution which is not
negligible only if (59) is satisfied and which decreases like λ~(b + i)l2. The
first term is thus still dominant for sufficiently large λ. The higher terms
are, however, multiplied with coefficients which diverge at threshold and
become therefore more and more important for fixed finite values of λ,
if threshold is approached.

In order to see what happens on actually reaching the threshold (i.e.,
for zero energy scattering), let us consider the special case

Pi = P2 = ^i^P= (m> 0) , (62)

ξ = η = <*p . (63)

The factor α has to be introduced for dimensional reasons and will be
assumed to have the numerical value 1.

The a term in (60) is uninteresting and we shall only discuss the root
term. B is slowly varying and can be drawn in front of the integral. The
relevant integral is then:

F(λ>= / d Q d R e ~ a ^ > Q + R ) [{p + Qf - m2 + iε]~1[(p + W - ™24- iε]'1 x

x [{p + Q + R)2 - m2 + is]'1 [(2p + Q + R)2 - ±m*)-V*g(Q, R), (64)

where g is a G°° function with essential support in a small neighbourhood
of the origin.

This becomes, after introduction of the new variables u = Q + R and

F(λ) = j du dv e-
iλλ^ [(p + u - vf - m2 + iε]-1 [(p 4- v)2 - m2 + iε]-1 x

x l(P + ^ ) 2 ~ ™2 + ^ e ] ' 1 ί(2P + ^ ) 2 - 4m2]-V2 g(u, v) . (65)

The function

g(u) = / dv[(p + u — v)2 — m2 + iε]-1 [(p + v)2 — m2 + iε]~1g(u, v)

is continuous everywhere, G°° outside the manifold (2p + u)2 — 4cm2 and,
in general g (0) φ 0.

We use now the form p = (m, 0) and introduce u0 and t = u2 as new
variables of integration. The integral oίg(u) over the angular variables in
u will be denoted by g(u091). Then

F(λ) = fduoe-^ [dirt <•*?*> ^Γ'^'ΊίUo, I) • (66)
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By standard arguments it can be shown that the function F'(λ)9 ob-
tained from (66) by reversing the sign of ε, is negligible for large λ. Thus

F(λ) ~ F(λ) - F'(λ) = / du0 e-
ίλmu° J(u0) , (67)

m
Because of the support of g we are only interested in the behaviour of

J in a small neighbourhood of u0 = 0.

For - 2 m < w o < O w e have J(w0) = 0.

For u0 > 0 we obtain

4 m Wo + M 0

2

J K ) = 2 J ίί|/f (4m^0 + ul - 01/2 2muo + uJ>-tS ^ l)

o
1

= (4mu0 -j- i£0

2) / ίZs]/s J/1 — s <7(̂ o> 5 (4^w 0 -f ^0

2)) 5
0 1— s + 4 m + W Q

which tends to zero like 7i0 for ^ 0 -» 0.

From this result we obtain, with the methods of the Appendix, that
F(λ) ~ λ~~2. This is a slower decrease than the λ~5/2 decrease that we ob-
tained away from threshold. This result in itself is physically irrelevant. It
takes into account only the contribution of the truncated part of τ to
(56). In the situation (62), which is a special case of forward scattering,
the dominant contribution will come from the free propagation terms in
τ, which decrease only like A"3/2. Our result shows, however, that the
terms of higher order i ^ 1 in (61) do indeed become important in the
vicinity of the threshold. This means that, the closer we are to threshold
(i.e., the lower the scattering energy), the longer we have to wait with
the observation of the outgoing particles so as to be in the asymptotic
region where the 8 matrix describes the observations with sufficient
accuracy.

5. Unstable Particles

We consider the same case as in the beginning of Chapter 4, i.e., the
state Φ of Eqs. (51) and (52), away from threshold, monitored by the
same three counters in λ x, λ y, λ z. But this time the factor t ( Q -f pv . . .)
of (55) will not be assumed to be slowly varying. Instead it shall exhibit
a resonance peak of the Breit-Wigner form:

iMΓ '

4m2 < if2 < 9m2, Γ > 0 .
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The numerator a is assumed to be slowly varying. We assume that the
resonance is very narrow:

Γ < d 2 < m , (70)

and that the energy of Φ is exactly the resonance energy:

This latter assumption is not essential. It is made simply for convenience
of notation.

The factor a can be drawn in front of the integral and we obtain
instead of (57), (58) the expressions

F(λξ, λη) =-- a(pv p2, -qΊ, -q2) G(λξ, λη) , (72)

G(λξ,λη) =
{f — qtf — m' + iε (73)

The behaviour of G for large λ can again be discussed with the methods
of the Appendix, with the following result:

G{λξ, λη) is, for sufficiently large λ, essentially different from zero
only, if there exist positive constants μ, v, ρ, σ, with

The sign ^ has the same meaning as in (59).
G decreases under these conditions like λ~2e~V2λσΓM. The probability

that all three counters are triggered is therefore only observably different
from 0 if (74) is satisfied, and decreases with increasing λ like λ~4ie~λσΓM.
The exponential factor e~λσΓM is of course in the strict asymptotic sense
(for really large λ) strongly decreasing. Its decrease is, however, very
slow in the beginning, so that the factor is not small for the finite values
of λ in which we are interested.

The condition (74) allows the following geometrical interpretation:
the two straight lines drawn from the counter emplacements λy> λz, in
the directions pv p2, meet approximately in a point. From this point can
be drawn a segment of length λσM in direction p1 + p2> and a line drawn
from the end of this segment in direction qx will approximately meet λx.
This interpretation is not uniquely dictated by (74) but it could be made
unique by using more than three counters for monitoring the process. It
is the interpretation that agrees with the particle description of the
process: the two original particles trigger the first two counters, then
continue in direction of their momenta until they meet. On meeting they
form an unstable bound state, which proceeds for a certain finite time
roughly in direction of its momentum p1-\~ p2, then decays into two
particles with momenta qΎ and q2, one of which goes on to trigger the
third counter.
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The length τ of the segment in direction p1 -f- p2, i.e., the lifetime of
the unstable particle in its rest system is τ ==• λσM. The exponential
factor in the probability is thus e~Γτ, leading to the familiar decay law
for unstable particles with decay constant Γ. The factor A~4 agrees also
with expectations.

We obtain thus a strictly exponential decay law for unstable par-
ticles. The so-called "non-eponential terms" in the decay [12] are simply
the threshold terms discussed in the preceding chapter. They exist
independently of whether resonances are present or not 3. They have
therefore nothing to do with the decay of unstable particles, but are a
direct scattering effect, i.e., they are connected with scattering without
formation of an intermediate unstable particle. If an unstable particle
is defined as a particle with a measurable lifetime, or as a particle which
leaves a trace of a measurable length in a track chamber, then the ob-
servation of its decay law will yield an exactly exponential decay. For
resonances with a shorter half-time, i.e., larger Γ, our estimates are not
sufficiently accurate. In this case, however, the decay law is not accessible
to experiments, since a separation of scattering via formation of a bound
state and direct scattering is not possible.

6. Final Remarks

It Λvas the purpose of this paper to show that field theory is able to
explain the observed localization properties of particles. Actually we
have shown this only for some special examples dealing with low numbers
of counters and simple processes (propagation of free particles, two-
particle scattering). I t is clear, however, that the same procedures can
be applied to more complicated processes like the creation of particles,
monitored by an arbitrary number of counters and will also, in these
complex cases, yield results in accordance with a particle interpretation.
It is also possible to treat with our methods composite processes, i.e.,
processes involving multiple scatterings. We will not dwell upon this
point here, since we only want to establish the principle.

We mentioned already in the Introduction that the "counters"
treated here may very well be the bubbles of a bubble chamber. Now we
considered the counters to be localized in a small region of space-time,
whilst in a bubble chamber the temporal development of a process is not
observed. The exact time when the formation of a bubble is initiated is
not measured, at least not with an accuracy that would be comparable
to the accuracy of spatial localization (which is given by the diameter of
the bubbles). This, however, is a purely technical default which is open to
improvement. Our idealization is certainly permitted. I t is clear that the

3 This has, of course, already been noted by other authors, see e.g., Ref. [13].
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three-dimensional bubble chamber picture is obtained from our four-
dimensional track pattern simply by projection.

It is not clear to what extent our procedure can be reversed, i.e.,
whether it is possible to draw conclusions on the smoothness of Green's
functions of the "correct" theory from the observed particle behaviour.
In order to discuss this question we should need much more quantitative
estimates of triggering probabilities than the ones given here. Even then
it is doubtful whether any useful information could be derived from
present experimental data, since experimentalists have up to now not
been notably interested in the problem of establishing the spatio-
temporal evolution of particle processes, their attention being focused on
p space.

Appendix

In this Appendix we want to derive the asymptotic behaviour of
certain integral expressions occurring in the context of this paper. The
results are generalizations of RTJELLE'S work on the asymptotics of
solutions of the Klein-Gordon equation [14].

First, we want to study the behaviour for large λ of the following
expression:

O(λ, ξv . . ., ξn, pv . . ., pe, τl9 . . ., τe) = (A.I)

i = l 1 J f c = l i

Here
δ+(P,r) = θ(po)δ(ifi-τ). (A.2)

The pk are vectors in the forward cone, with p\ — ml > 0. g is a C°°
function with support in a compact set 8 of diameter d << mk, all k, and
which has no strong oscillatory behaviour, i.e., satisfies conditions of
the type (33). The ockί are constant coefficients. For each i, 1 ^ i < I,
there shall exist a k with ocki 4= 0.

Let

h=(Pic + Σ*kiqi)2 (A.3)
ΐ = 1

be the arguments of the δ functions appearing in the integrand. tk is for
fixed pk a function of the n four-vectors q{. Let γk be the gradient of tk in
q space, with the components

γίv = | | = 2*><(pk' + Σ «w2/) (A.4)

We assume that the pk are so chosen that the I gradients γv . . ., γe are
linearly independent everywhere in S. This implies in particular that
I < 4:71.

The arguments ξi9 pk, rk of G will not be exhibited explicitly in the
sequel.
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Let 3JI be the (4π — I) dimensional manifold in q space, defined by the
conditions tk = 0, all 7c. Let us assume for the moment that the vector
Ξ — (ξv . . . , f n ) } considered as a vector in the same i? 4 n, is nowhere in 8
orthogonal to 9ft. We can then introduce tv . . ,,tt and the exponent
α = Σξiq^ together with sufficiently many appropriately chosen func-
tions Uj of q, as new variables of integration such that the Jacobian

d(tk, oc.uj)

is, in S, regular (analytic and non-vanishing). Thus:

G(λ) = / da e-iλa f JJdUj g{rk, a, uό) J(τk, α, %) (A.5)

in obvious notation. The function

/(«) = / ΠdUj g(τk, oc, uό) J{τk, oc, uό)

is in Schwartz space © and has no strong oscillations. Its Fourier trans-
form (A.5) is therefore strongly decreasing and may be negligibly small
already for low values of λ, depending on the bounds for the derivatives
of g.

Let us then consider the case that Ξ is orthogonal to 921 in a point
P ζ_ S which we choose to be the point qi = 0, all i. This can always be
achieved through a suitable redefinition of the pk. This condition means
that there exist constants ak such that

ξ* = Σ <**<** tPk- ( A 6 )
k

We can again introduce tv . . ., tτ as new independent variables,
together with other variables uv . . ., uin^ι which parametrize 9ft, such
that the Jacobian

J(u3-,tk)= *fo; •••'?»> (A.7)

is regular in 8. The Uj are chosen such that P is the origin of the ni

system and that the line element on 9ft in P is given by

ds2 = Σ cj dUj2, Cj positive constants (A.8)
i

The tk integration in (A.I) can be carried out with the help of the δ
functions, with the result :

GW = / Πduό exp[-iλΣ h * ^ ( % ?

 τk)l g{u>i> rk) J(%, τk) , (A.9)
h

where g{uoi rk) — g[qi{u3 , τk)~\. The use of the same letter g for two
different functions will not lead to confusion since the functions can be
distinguished by their arguments. Similar liberties will be taken tacitly
in the future. The new g is again in §).

The functions qh (uj} τk) can, for τk fixed, be expanded into a Taylor
series in Uj:

<lh = °&(**) + 1(ϊh(uj> *k) + 29h{Uj, τk) + higher terms, (A.10)

where vqh{ujί rk) stands for the terms of order v in uό.
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The argument of the exponential in (A.9) is, if we take (A.6) into
account:

Σ (£*> ί*) = ΣΣ σ»«tft(2»». 2ft) = Σ
A fc

with Qk = Σ ^kh^h- (A.ll) can be expanded in powers of %. The linear
A

term of this expansion vanishes due to our choice of the u origin. Thus:

Σ(ξh, qh) = A0(τk) + A2(τk9 us) + R(rk, us) , (A.12)

where A2(rk, Uj) is quadratic in ŵ  , and R contains the terms of third and
higher degree.

The constant term is

(A. 13)
k

°Q {ΐjc) vanishes in τk = raf (all 4) and is analytic in a neighbourhood of
this point. For τk ~ mk we obtain

A0(τk) = Σσk{p°h(-Ί>t + [(P* + 0Q*) 2 + τ , ] 1 ^) - (Pfc, «Qfc)} ^

= ^ -Σ1 (Tfc (rfc — m|) -f higher terms in (τk — m|) .

For A 2 we obtain

po

This is for τk = mf:

Here the curly brackets are positive definite quadratic forms in xQfc. Due
to continuity the same is true for the corresponding brackets in (A. 15)
for τk sufficiently close to m|. We will only consider the case that
A2(m% Uj) is a non-degenerate quadratic form. This is true in particular
if all σk are different from zero. The u5 can then be chosen such that

μ in—I

Air*, %) = Σ V - Σ n? -
% — 1 j = f. i + 1

The % appearing in the second sum will be renamed vv . . ., v/in_ι_μ.
Thus

A2(rk,uj,vh) = Σ^2~ Σ ^ , μ + v = 4,n-l. (A.Γ7)
j ^ l A = 1

(A.9) becomes:

(9(A) = e~ U i l / d ^ dvhg(uj, vh, τk) J{uj} vh, τk) x

x exp{-iλ[A2(uj9 vh, τh) -f i ? K 5 V )]}
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We write this in the form

G(λ) = e~iXA« J dx e~ίλxF(x) (A.19)
with

F(x) = / dUjdvhg'δ(x - A2 - R), g' = gJ . (A.20)

The asymptotic behaviour of 6r is directly connected with the second
order zero of the exponent appearing in (A. 18), in % = vh = 0. It suffices
therefore to consider an arbitrarily small neighbourhood of the origin.
We restrict ourselves to the set

+ Σvh*^ r2, \x\ ̂  r , (A.21)

where r is chosen such that we have in Ur:

\B(ui9vhiτk)\<Σu^ + ΣvhK

We introduce spherical co-ordinates in both u and v space by

tta = 2 > , a , v* = £vh*9 (A.22)
1 1

the corresponding angular variables (suitably normalized) being denoted
Ωu, Ωv, respectively.

Let us consider the character of F (x) in Ur:
1st case: v = 0, μ = 4:?ι ~ I (or μ = 0, r = 4?i - i).

In this case:

F(x) - / i ί ί 2 c^βw ur-*g(u*, Ωu) δ{x - u2 - B) .

Because of the smallness of R we have

F(x) = 0 for - r < x < 0 . (A.23)

For r > x > 0 we can solve the equation

x~ul-B(uo,Ωu)=*O (A.24)
for u%, with the result

where h is infinitely diίferentiable in a;1/2. The derivative, with respect to
u% of the left-hand side of (A.24) is

D= -l + uoh'(uo,Ωu) (A.25)

where h' is again infinitely diίferentiable in its first argument. This
yields:

FΛvΛ — frJO 7 / t f-2 ^(^o)
J ° 1—uQh,'(uQ,Ωu)

This is infinitely diίferentiable in ίc for α; > 0, and behaves for x -> 0 like

A * - 2
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so that we obtain for x ^ 0:

F (x) = x~2~ / (j/α) (A.26)

f(t) is 0°° in t < r1/2, and /(0) - gr'(O).
2π^ case: μ Φ 0, vΦO, μ + ι> = 4w — Z.
In this case we have

F(x) = Jdu2dΩudv2dΩvu»-2vv-2 x
x p' (u, v, Ωu, Ωv) δ(x-u2 + v2~E). ( A < 2 7 )

In r > x > 0 the equation

x - ill + ^2 ~ R(tt0, ̂ > βW 5 ̂  = 0 (A.28)

can be solved for UQ :

w§ = x + i;2 + Λ( 5̂ v, Ωw, ί3v) (A.29)

with h = 0((x-\- vψ2).
The derivative of x — u2 + v2 — R with respect to u2 is, on the mani-

fold defined by (A.28):

D = - 1 -f- 0 {(x + vψ2) . (A.30)

The u2 integration in (A.27) can be carried out:
o

j aiέuaιiv j v v
Q ι + o((x + υ2)112) '

o
In the same way we obtain for — r < x < 0:

oo

F(x) = /dΩudΩvfdu* uP-*«5-2 ^ f f i / * (A.32)
0

with

For N < ^ — 1 exists lim ——iΐl. and is the same for approach
2 x->o dxN Γ

from positive or negative x. The Nth derivative of F is thus continuous in
\x\ < r.

If μ + v is even (i.e., I even), then the derivative of order

Λ7

0 = —•=— — 1 has in x = 0 a singularity of the type gr (0) log \x\ and

we obtain, apart from an irrelevant C°° function:

F(x) =- |a|*e{log|a;| f±{\x\V2) + ^ ( N 1 / 2 ) } for x | 0 . (A.33)

Here the functions f±Λ± are C°°, and/+ (0) = /_ (0) = eg' (0), c a numerical
constant depending on r.

For Z odd we obtain in the same way, again up to a 0°° function:

F(x) = |a?|̂ « f± (\x\V2) for a? ~ 0 (A.34)

with the same JV0 = — - x — — 1. /+ and /_ are 00 0, and f± (0) = eg' (0).
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With this information on F(x) we can evaluate G(λ) as given by
(A. 19). The asymptotic behaviour of G is determined by the singularity
of F at x = 0. We split the integral of (A. 19) into two parts:

{ 0 oo

/ dx e-iλ*F{x) + / dx e-
— oo 0

and insert the forms (A.23), (A.26), (A.33), (A.34) oίF(x). We shall only
oo

discuss the second integral f explicitly. The first integral has an asymp-
o

totic expansion of the same type. We will not study possible cancellations
of terms in the two contributions. Cancellations cannot occur in the case
which is most interesting to us, namely in the case v = 0, corresponding
to ak > 0 for all k. In this case the first integral vanishes identically.

For x ^ 0 we have
471—1—2 NF(x) = x 2 e-χ{aQ + ^x1/2 4- \- aNx*) + x 2 BN{χV2) ,

(A.35)

or the same expression multiplied with log x. B,χ is infinitely differentiable
and of strong decrease at infinity. a0 is different from zero if g' (0) φ 0,
i.e., g(uj} τ^.^o^O.

n

The remainder term x 2 RN (x)1/2 vanishes in x = 0 with its
derivatives up to order 0 = s , or 0 = s

(for I + N even or odd). Its contribution to G(λ) is thus bounded by
cλ~δ, c a constant. This is also true if an additional factor logo: is
present. N, and therefore δ, can be chosen arbitrarily large.

The other terms in (A.35) yield contributions of the form

or

Z'βW = J d x x β l o g o ; e~iλ*e-*, β > - l .
0

They can be calculated with the help of a suitable rotation of the inte-
gration path in the complex x plane. We obtain:

Zβ (λ) = (1 + iλ)-^1 Jdt tPe~* -
0

- i-P-iλ-P-ifdttPe-*,
0 00 (A.36)

Z'β(λ) - (1 + iλ)-?-1 f dt t?{\ogt - log(l + »λ)}e-* -
0
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The asymptotically leading term in G{λ) is then of the form

G(λ) ~ c(τk) A T-exp{-iλA0(τk)} , (A.37)
possibly multiplied with log A. c(τk) is a sloΛvly varying function of the rk.

_ 4 n l l

If g{O,rΊc) = 0, then c(τk) = 0, and 6? (A) decreases like A 2

with a coefficient depending on the first derivative of g in u3- = 0, and so
on. No logarithmic factors appear in the case v = 0.

We will now use these results for G(λ) to study the asymptotics of

H{λ, ξt, Pk) = fπ-—%hrrrG&>ξi' V' r* } ( A 3 8 )

Here ek may be either a fixed constant 0 < εk < d, or it may be under-
stood in the sense that the limit εk -> 0 has to be taken in the final result.
The latter is usually the case in our applications, the only exception
being Eq. (73), where one of the εk is finite.

If Ξ is nowhere in 8 orthogonal to any of the manifolds 971 (rk) we
have:

\G(λ)\ £ cm(τk)λ-™

for all m, where the cm have compact support. Thus:

dτk

- Γcw (TTV.) + Cw (2m? ~(τk — ml)2 + ε| L w V

(7W is small if cm is small. In these directions H decreases thus rapidly.
Let us then consider the case (A.6). G has compact support in rk.

The asymptotic behaviour of H can therefore be obtained by inserting
(A.37) into (A.38):

4:71 — 1 r 7

H(λ) ~ λ Γ - f Π- S~IΓC^) βxp[-ί^0(τ^] , (A.40)

or the same multiplied by log A.
If the resonance peaks in rk ~ m| are cut off smoothly so that what

remains is a function in £f with small derivatives, then we obtain rapid
decrease of H(λ) in view of (A. 14). The asymptotically important terms
in H(λ) are therefore due to the contribution from a small neighbourhood
of Tfc ~ m| with diameter <^d. c(τk) is slowly varying over distances of
that order of magnitude and can be drawn in front of the integral:

H(λ) ~ λ-^ψ-ciml) f Π-

This becomes after insertion of (A. 14):

X βxψ{-iλσk[pl(~pi + [(pfc
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The square roots z^2 in this expression are denned in planes cut along the
negative real axis, such that xjj2 > 0 for xk > 0. For xk < 0 we define x^2

to be in the upper half plane if σk < 0, in the lower half plane if σk > 0.
This yields an exponential decrease of the integrand for xk -> — oo.

Let us consider the kth factor Fk in the product ΓFk. For σk < 0 the
integrand is the boundary value of a function of xk which is analytic in
the upper half plane and decreases exponentially for xk -> oo in the upper
half plane. The path of integration can be closed by a half circle at
infinity so that the integral vanishes. If σk > 0, then the path of inte-
gration can be closed by an infinite semicircle in the lower half plane
and the inethod of residues gives

Fk(λ) = expί-ίλσjrft- j>2 + (p| + m\ - iek)V*]},

since °Q7, vanishes in xk = mf. With the assumption εk < mf this becomes

Fk(λ)9+e-V2λo*εK (A.42)

We arrive thus at the following result: H{λ) is in our approximation
only different from 0 if all ak > 0, in which case we have

In—I

H{λ) ~ c(mf) λ ~~2~ e~ll2λΣσkεK (A.43)

In the case of an infinitesimal εk the factor e 2 has, of course, to be
λ

replaced by 1. For strictly positive εk we obtain a factor e 2 which
is for large λ strongly decreasing, which behaves, however, for small and
medium values of λ sensibly like a constant.
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