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Abstract. The equilibrium states for an infinite system of classical mechanics
may be represented by states over Abelian 0* algebras. We consider here continuous
and lattice systems and define a mean entropy for their states. The properties of
this mean entropy are investigated: linearity, upper semi-continuity, integral
representations. In the lattice case, it is found that our mean entropy coincides
with the KOLMOGOROV-SINAI invariant of ergodic theory.

0. Introduction

A new approach to the description of the equilibrium states of
statistical mechanics has recently been intensively studied. In this
approach these states are identified with states on a B* algebra ^t. It is
assumed that the theory is invariant under a group G (for instance the
Euclidean or translation group) and the states considered are G invariant.
The algebra 01 is Abelian for classical systems and non-Abelian for
quantum systems. G invariant states on Abelian 0* algebras may be
identified with measures on a compact set which are invariant under
a group of homeomorphisms of this set, their study is thus naturally part
of ergodic theory. Many of the recent results have consisted in extending
ergodic theory to the case of a non-Abelian algebra 21. It would thus
be natural to obtain a non-Abelian extension of the mean entropy intro-
duced by KOLMOGOROV and SINAΪ (KOLMOGOROV-SINAΪ invariant).
Another reason for doing this is that a mean entropy should, on physical
grounds, be associated with the equilibrium states of statistical mechanics
(see [10]). In this paper we undertake the more modest project of giving
a natural physical definition of mean entropy for classical systems,
studying its properties and finding its relations with the KOLMOGOROV-

SINAΪ invariant1.

1. States of Classical Statistical Mechanics

The description of equilibrium states in statistical mechanics as

states on JB* algebras has been considered recently by several authors

1 Results similar to those described here have been obtained independently by
O. LAKFORD (unpublished).
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[3, 5, 6, 7, 10]. We summarize here briefly some facts pertaining to the
case of classical statistical mechanics [11]. For simplicity we shall ignore
the description of momenta of particles and assume that the one-particle
configuration space T is either Rv (continuous systems) or Zv (lattice
systems) where R (the reals) and Z (the integers) have the usual topol-
ogies. The in variance group of the theory is that of translations ( Ξ T).

The Cartesian product of n copies of T is noted Tn and the sum
Σ Tn of disjoint copies of all Tn is noted ZΓ. Let A C T be a bounded

open set (i. e., a finite set if T = Zv). We call $Cn

Λ the space of real contin-
uous functions on Tn with support in Λn, we call Jf'Λ the space of
sequences (/n)n-.o where fn ξ Jf7^ and fn = 0 for w large enough, and we
call Jf* the union of the Jf^ An element of C/f may thus be considered as a
function on 3~.

For every bounded open ΛcT, and integer n ^ 0, let ^ = ^ be a
measure on /ln, symmetric in its n arguments. We shall say that {μ\) isa
family of density distributions if the following conditions are satisfied.

(I) 1) Normalization. For all A

Σ μn

Λ(Λ")=l. (1.1)
n = 0

(D 2) Compatibility. Let AcΛ! and χ^/^ be the characteristic
function of A!\A where A\A is the complement of A in yl'. If fn ζ JΓ^5

then

/Kϋ (/") = f ( \ t J ) ! ^-+ m (/" ® χf-TU) (1.2)
m — 0

where

[/n <S) χf-Tli] (̂ x, . . ., xn+m) = fn{xλ, . . .,αn) ^ ' M f e + 1 ) . . . χΛΊA(xn+m) .

Notice that /I 0 is reduced to a point even iί A = φ is the empty set
and, as φn = ^ for ?ι > 0, (Dl) gives

/ 4 ( ^ ° ) = 1 . (1.3)

Inserting this formula in (D 2) yields again (Dl) .

If J f 3/ = (fn)n^ 0' a function Sf on 3Γ may be defined so that its
restriction to T n is

s/te,..., xj = z1 i: Σ ίpκ, •.., ^)
P ̂  0 ι\ = 1 ίp = 1

For any integer q ^ 0; fv . . ., /Q ζ JΓ and bounded continuous complex
function 99 on i?α, consider the function φ(Sfv . . ., Sfq) on ^~. With
respect to the usual operations on functions and the * operation given by
complex conjugation, such functions form a commutative * algebra Q[.
The closure 01 of 2ί with respect to the uniform norm is an Abelian B*
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algebra. Given a family of density distributions (μ^), a state ρ on 21 is
defined as follows. For each φ(Sfv . . ., Sfq) let A be such that fv . . ., fQ ξ
ζ J^Λ, then let

ρ(φ(8fv...,8fQ))

~ ΐ1 fdμ«i(xv . . .,xn)Σ
It can be checked that this definition is independent of the choice of
A and extends by continuity to a state on 21.

The mapping (μ%) -> ρ is injective, we call JF its image in the set E
of all states. The states ρ in ίF are characterized by the fact that for
every ε > 0 and / ζ JΓ one can find a continuous function φ on R with
values in [0, 1] and compact support such that

ρ(φ(Sf))>l-ε.

Given a function F on «̂ ~, a translation τ α by a ζ T is defined by

TaF(xv . . ., xn) - ί 7^! - α, . . ., a;Λ - α) .

In particular the ra yields a group of automorphisms of 21. We call J5f-1-
the subspace of the dual 21' of 21 consisting of the invariant forms
/ : f(τaA) = f(A). The set j£ r\ 3?L of invariant states is compact for
the w* topology of 2Γ. The set ^ r\ & -1 consists of the images of the
families of those density distributions which satisfy the requirement

(D 3) Invariance. lίaζT and fn ζ Jf% then

2. Entropy for Continuous Systems

In this Section we take T = Rv (continuous system). Let (/$) ^ e a

family of density distributions and assume that for every A, n the
measure μn

A is absolutely continuous with respect to the Lebesgue
measure. If V(Λ) is the Lebesgue measure (volume) of A, we write

e-V(Λ)
d μ n

Λ ( x v . . ., x n ) - nl f n

Λ ( x v . . ., x n ) d x τ . . . d x n . (2.1)

We shall also write fΛ — (/S)n^0

 a n ( ^ u s e ^ n e notation

/
e—V(Λ) r

dλ x ' = Y! — / dx-i . . . dxγ, . /o o\

Then
fdΛx=l (2.3)

and (D 1) becomes
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Let Λ'^Λ. If xV ζ Σ Λni and x&) ζ Σ {A'lΛ)n\ we can identify
ni ^ 0 no, I> 0

W) with a point of Σ (Λ')» by ((;#>, . . ., a%), (xψ, . . ., *«>)) ->

-> (z£\ . . ., a;^, xψ\ . . ., α;<2>). We define c^ 7 / 1 α;(2> by analogy with (2.2),
using then the symmetry of the f% the compatibility condition (D 2)
becomes

L (*(1)) = / dΛΊΛ a;W /„. (x*1), a W) . (2.5)

We define now an entropy S(Λ) by

-8(/l) = -/d i la:/ i l(a:)log/ i l(a;). (2.6)

Notice that we may have 8(A) = — σo and that (1.3) yields

8(φ) = 0. (2.7)

Proposition 1. The following inequalities hold

Negativity: S(Λ) < 0;

Decrease: Λ'Z) A =Φ /S0') - 8(Λ) ^ 0;

iSίrowgr sub-additivity: 8(Λ \J Λf) - 8{Λ) - 8{Λ') + >8(yl n yl') ^ 0.

The convexity of the function t -> ί logί (ί > 0) implies

- ί log t < 1 — t

and hence if Λ' cΛ we obtain, with the help of (2.5)

8(Λ') -S(A) = -fdΛ χVfdΛΊΛ xW /^(s«; a:W) log

where we have restricted the integrations to the region where jA> < 0.
This proves the decrease property of 8(Λ) and choosing A = φ, also the
negativity.

To prove strong sub-additivity we use variables x^\ x^\ x^ corre-
sponding respectively to A r\ A', Λ\Λf (==Λ\(Af r\ A)), Λ'jΛ {j==A'\
{A r\Λf)), then

8{Λ\JA') - 8{Λ) - 8{Λ') + 8{A n A')

f Λ κ j Λ ( , , ) X

\fΛ'VΛ(*P>,**,stP>)fΛr\Λ'(aP)]
I fΛ (XM, XW) fΛ' (XW, X(*)) J =

x

X / dΛΊΛ a W /

where we have restricted the integrations to the region where J
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Remark. If A and Λ' are disjoint we have by (2.7)

8(Λ \JΛ') rg 8(Λ) + 8(Λ')

i.e., sub-additivity. Notice also that if A and A differ by a set of Lebesgue
measure zero, then S(Λ) — 8(Λr).

If a = (α1, . . ., av) ζ T and α1 ̂  0, . . ., av ^ 0 we let

A (a) = {α; ζ I 7 : 0 < ^ < ai for i = 1, . . ., v} .

The translates of A {a) by vectors (n1 a1, . . ., nv av) where (n1, . . ., nv) ζ Zv

form a partition 0>a of T (up to sets of Lebesgue measure zero). Let
n\ (a) (resp. nj (a)) be the number of sets of this partition which have non-
void intersection with A (resp. which are contained in A) and let Γj[ (a)
(resp. Γ2 (a)) be the union of these sets.

Definition 1. We say that the (bounded open) sets A tend to infinity
in the sense of VAN HOVE and we ivrite Λ-+ oo if for every partition 0i

a

n-Λ{a)

Proposition 2. // the family (μ7^) satisfies the invariance condition (D 3),
then

s = i
Λ—>ooexists, s ζ [—σo, 0].

By the decrease and sub-additivity properties of S we have

8(Γ-Λ(a)) nM S(Λ(a))J 1
V(Λ) = V(Γ+

Λ{a)) = n+Λ(a) V(Λ(a)) '
We define

In particular if s = — oo, (2.8) follows from (2.9). Let thus s be finite,
given ε > 0 we can choose a0 such that

V(Λ(a0)) < S + ε

and (2.9) yields

""'"" (s+ε). (2.11)

We construct now / ^ (α0) by successively adding translates of A (a0)
in the lexicographic order of the vectors (n1,. . ., nv) defining these trans-
lates. Let Γn be the union of the first n translates, so that Γn+ = Γj[ (a0).
Let b = (m1 αj, . . ., mv av

Q) where m1, . . ., mv are positive integers, A (b)
is also a union of translates of A (a0) and can be constructed by adding
them successively in lexicographic order, let here Δn be the union of
the first n translates.

If we assume that

S(Γn+1) - 8(Γn) <(s-ε) V(Λ(a0)) (2.12)
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the strong sub-additivity of S implies that

8(ΔS+1) - 8{ΔS) <{s-e) V(Λ(a0)) (2.13)

for all N such that there exists a translation mapping Γn+1 into ΛN+1

with the property that the last translate of A (a0) in Γn+1 is mapped onto
the last translate of Λ(a0) in AN+1. If b is large enough, (2.13) will hold
for almost all N and, using the decrease property of s, we obtain

S(Λ(b)) = Σ(8(ΔN+1) - 8(ΔN)) < (« - y ) V(Λ(b)) (2.14)

in contradiction with (2.10), therefore

S(Γn+1)-S(Γn)^sV(Λ(a0)).

Hence, summing over n we find

a0)) ^ n^(a0) s V(Λ(a0))

s . (2.15)

and thus
S(Λ) ^ 8 Wo)) ^ n*Λ(a0)
V(Λ) - V(Γ-Λ(a0)) = τ ^

Comparison of (2.11) and (2.15) proves (2.8).
D e f i n i t i o n 2. A mean entropy s(ρ)ζ[— <χ>, 0J is defined for every

ii) θ(ρ) = —oo i/ ρ ζ ^ r\ J£^ but the measures μn

Λ associated with ρ
are not all absolutely continuous with respect to the Lebesgue measure;

iii) s(ρ) — s as defined in Proposition 2 otherwise.

3. Properties of the Mean Entropy of Continuous Systems

Proposi t ion 3. The functional s(-) is affine on E r\ 3?1-.
Let 0 < α < 1 and ρv ρ2ζ E r\ S£L. From the characterization of SF

in Section 1 it follows that if ρλ or ρ2 falls under i) or ii) in Definition 2,
then α ρx + (1 — α) ρ2 also falls under i) or ii). We may thus assume that
siρ-}) and s(ρ2) are defined by Proposition 2. We have then by the con-
vexity of t logt and the increase of log£

- / [α fiΛ logfiΛ + (1 - α) f2Λ logf2Λ] <

-< - / (« fiΛ + (1 ~ α) UΛ) log(α f1Λ + (1 - α) f2Λ) <

£ ~ / [« /M logα / M + (1 - α) /a/1 log(l - α) f2Λ] (3.1)

= - / [(*tiΛ1ίogflΛ + {I- (x)f2Λ\ogf2Λ}- oίlogK- ( l - α ) l o g ( l - α) ̂

^ - / [α / ^ \ogflΛ + [(1 - α) f2Λ logf2Λ] + Iog2 .

Dividing by V(Λ) and taking the limit A -> oo yields

«s(α ρx + (1 ~ α) ρ2) = ocs(ρi) + (1 - α) s(ρ2) .
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Proposition 4. The functional s(-) is the lower bound of a family of

concave continuous functionals on E r\ Sέ1- equipped with the w* topology.

Let (ψu) be a finite continuous partition of the unity on JJ Λn:

We have indeed by the convexity of t logt

fdΛxΨcι{x)fΛ(x)logfA(x)

Σ ΨaW] h (*) lθg/^ (X) .

Let now Ψx = φ^Sfj, . . ., Sfβ) with fv . . ., fQ ξ JfΛ, then / fΛ Ψx

= ρ(φx(Sfv • • •» Sfqϊ) and it is clear that for all ρ ζ E r\ i ? x

ή^fiL-^j>L (3.2)

where Φ is concave and continuous. We show now that for every
ρ ζ E r\ 3?1- we can choose Φ such that Φ(ρ) is arbitrary close to s(ρ).

i) If ρ { J π i f 1 there exist δ > 0 and / ζ JfΛ such that for any
continuous function φ on E with values in [0, 1] and compact support

ρ(φ(8f))<l-δ.

We choose a sequence φψ> of such functions such that if φ^ = 1 — φψ
we have

fdΛX 4">(8f (x)) -+0 ρ{φl(Sf)) -> ̂  > 0
then

log fφPtff)

)(«/)) log /

ϋ) If ρ ξ ̂ "ΓΛ f̂-1 but μ̂ ί is not absolutely continuous with respect
to the Lebesgue measure, the existence of a set with zero Lebesgue
measure and non-vanishing μΛ measure implies the existence of a
sequence φψ^ψfW) such that

fdΛx φ(2n\Sμn) (x)) -> 0

and the argument proceeds as in ϋ).
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iii) If ρ ζ J^ r\ oδP-1- and the measures μn

Λ are absolutely continuous
with respect to the Lebesgue measure, let again fΛ be the corresponding L1

functions. We takeΛ such that 8{Λ)jV(Λ) is close to s(ρ). We can choose
the partition of the unity (ΨΛ) such that the function

approaches fΛ in the L1 norm and we may assume that the ΨΛ are of the
form φΛ(8fl9 . . ., 8fq) with fv . . ., fq ζ XA.

If — f fΛ logfΛ = — σo it is already clear that / fΛ log/^ will approach
/ //i l°g//i We show now that this remains true if / fΛ logfΛ is finite.

Let λ > e and φλ be the function defined on the real line by

λ'1 if t ^ λ-1

φλ(t) = if

λ if λ ̂  t.
Given ε > 0 we may choose λ such that

/ UΛ log/Λ - 9>Λ(/Λ) logφΛ/Λ] < Φ (3-3)

and because of the inequalities

l + logλ<2[l + logλ-1| (3.4)

t logί - ί0 logί0 > (t - y (1 + logy (3.5)
we get
(1 + logλ) / \fΛ - φλ(fΛ)\ <2f(fA- φλ(fΛ)) (1 + log?*(/„)) < Φ • (3-6)

Using (3.3), (3.4), (3.5), (3.6) we obtain

= / QΛ logfΛ - <PX(IΛ) logψtUΛ)) + I (ΨMΛ) logΨλ(fΛ) - U logfΛ) <

< Φ + I (ψΛfA) - h) (1 + l o g ^ O <
<: ε / 4 + (1 + logλ) [/ \φλ(fΛ) -L\ + f \U - W < ε

where we have chosen the Ψx such that

(1 + logλ) f\fΛ-fΛ\<εl4.

The proof is concluded by the remark that — V(A)*1 J jA \ogJΛ > Φ(ρ),
so that Φ(ρ) is close to 8(Λ)jV(Λ) hence to s(ρ). By the convexity of
t \ogt we have indeed

-V(Λ)-iffΛlogfΛ

i JdΛx{Σ ΨΛ*) Ij^f) log (Σ Ψ,(X

1 Σ (/ L Ψ*) log Ijφ = Φ (e) •
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Proposition 5. The functional s is affine upper semi-continuous on
E r\ Sί?1-. If μρ is a measure on E r\ J ^ L with resultant ρ, then s(ρ) — μρ(s).

s is affine by Proposition 3, upper semi-continuous as the lower
bound of a family of continuous functions by Proposition 4. Thats(ρ)
= μρ(s) results from the proof of Lemma 10 in [2].

The formula s(ρ) — μρ(s) is especially interesting when μQ is the
(unique) maximal measure with resultant ρ. In particular, it is known
(see [11]) that if ρ ζ & r\ &1-, then μρ is carried by the set & r\ £{E r\
Γ\ £?-) where ${β Γ\ ̂ •L) is the set of extremal invariant states (or
ergodic states [12]). Therefore if ρζ^~ΓΛ J^?1, s(ρ) has an integral
representation on the set of extremal invariant states.

If further it is possible to obtain the equilibrium states as solutions
of a variational problem involving the entropy, the following points may
be important.

1. An upper semi-continuous function defined over a compact set
reaches its maximum.

2. An affine upper semi-continuous function defined over a convex
compact set reaches its maximum at an extremal point (corresponding
to a single thermodynamic phase).

4. Lattice Systems

In this Section we take T = Zv (lattice system). A bounded open set A
is now simply a finite subset of T\ A — {xl9 . . ., Xγ}. Consider a point
{xίχ, . . ., xin) of Λn and let nv . . ., nv be the number of indices ik equal
to 1, . . ., F. The measure μn

A is determined by the numbers /^({(a^,
. . ., xin)}) and, since μn

Λ is symmetric in its arguments, μ^({(Xil9 . ., χin)})
depends only on nv . . ., nv. We write

fΛ{n^ . . ., nv) = - ^ - ^ - - ^ ( { ( ^ . . ., xj}) . (4.1)

v
Notice that in this formula Σ nί = n a n c ^ t n a ^ ^ !/(^i nv] ) ™ t n e

number of points of Λn which correspond to the same nv . . ., nv.
With this notation (D 1) becomes

Σ ••• Σ } Λ ( n 1 , . . . , n 7 ) = l . (4.2)

If A' Z>Λ and A' contains V points, (D 2) becomes
CO CO

fΛ{nv . . ., nv) = Σ '" Σ // i 'K ' •> nv,nv+1). ..9nv+v>). (4.3)

With x = (nv . . ., nv) and

f d A x = Σ ••' Σ ( 4 4)
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we may rewrite (4.2) and (4.3) as (2.4) and (2.5). There is however an
important difference between the lattice and the continuous case, namely
that whilst dΛ x is normalized in the continuous case by (2.3), it is in the
lattice case a measure on a discrete space giving a mass 1 to each point.

We define now an entropy S(Λ) by

8(Λ) = -JdΛx fΛ(x) logfA(x) = - Σ • Σ L(nv ...,nr)χ
W l = 0 nv = 0 (4.5)

X log fΛ{nv . . ,,nv) .

Notice that we may have 8(Λ) = +σo and that (1.3) yields again

8{φ) = 0. (4.6)

Proposition 6. The following inequalities hold

Positivity: 8(Λ) ^ 0;
Increase: Λ'^Λ=ϊ S(Λ') - 8{Λ) ^ 0;
Strong sub-additivity: 8{Λv A) - 8{Λ) - 8{Λ') + 8{Λ r\ A) ^ 0.
From (4.2) one gets 0 g fΛ (nv . . ., ny) 5£ 1, hence

-fΛ(nv . . ., nv) logfΛ{nv . . ., nv) > 0

which proves the positivity of 8.
For the increase let Λ' ^>Λ9 then we obtain, using (4.3)

hence

S(Λ') -8(Λ) = -

The proof of strong sub-additivity of the continuous case holds again
here because it makes no use of the normalization of dΛ x.

Ίίa= (α1, . . ., av) ζ T and α1 ^ 0, . . ., av ^ 0 we let

Λ(a) = {x ζ T : 0 < xί < aί for i = 1, . . ., v} .

Convergence in the sense of Van Hove can be defined as in the continuous
case and we have

Proposition 7. // the family (μ7^) satisfies the invariance condition (D 3),

then

s — lim S(Λ)
V(Λ)

exists, s ζ [0, +σo].
We do not reproduce the proof which is analogous to that of Proposi-

tion 2, differing from it essentially only by the interchange of the super-
scripts zb in the formulas. We note however that to obtain (2.14) we use
instead of the decrease of 8 the inequality

- 8{Δa) £Ξ S(Λ(a0)) < V(Λ(a0)) (s + ε) .
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Remark. If, for some Λ=£φ, S(Λ)<J

Γoo then, by the increase
property of S, S(Λ(1)) < +00, where 1 = (1, . . ., 1), then

Definition 3. A mean entropy s(ρ) ζ [0, -}-oo] is defined for all ρζ

ζ 3F r\ ££λ- by Proposition 7.

Proposition 8. The functional s(-) is affine on ϊF r\ £?L.

The proof is again given by (3.1).
Now by the GeΓfand isomorphism, any ρ ζ E is identifiable with a

measure mQ on the spectrum $ (E) of 21. If ρ ζ έF, then mρ is carried by
& r\£(E) (see [10], Section 11) and conversely, &r\£(E) is a Gδ

(countable intersection of open sets). If ρ ζ £F r\ &1-, then the measure
mQ on ^ r\ <o(E) is invariant under the transformations τ'x of J^ r\ ${E)
associated with the automorphisms rx{x ζ T) of 2ί. Let B be the a field
on 3F r\ $ (E) induced by the σ field of Baire sets on <f (E) associated
with the w* topology.

The quadruple {SF r\ (o(E), B, mρ, T)) is a dynamical system in the
sense of ergodic theory (see [4], Section 10), it is therefore natural to
consider the concept of mean entropy introduced by KOLMOGOBOV and
SINAΪ in this framework. For details of this theory we refer the reader to
JACOBS [4], BILLINGSLEY [1], and ROKHLIN [9] and papers quoted

therein. The theory of the KOLMOGOROV-SINAΪ invariant is usually
developed for a group T = Z (or T = B), but many of the results extend
to T = Zv (see [8]) and will be used without further discussion.

Proposition 9. // ρ ζ SF r\ ^ L and s(ρ) < +σo, then the mean entropy
s(ρ) given by Definition 3 is identical with the Kolmogorov-Sinai invariant
h(mρ) of the dynamical system {βF r\ <o(E), B, mρ, T).

Let Bo be a subfield of B with finite entropy H(B0). If M is any
subset of T — Zv, we define a σ field

A mean entropy H(B0) is defined by

If C is an increasingly filtered family of subfields of B with finite entropy
such that

generates B up to equivalence we know (see [4], p, 279, 6)) that the
KOLMOGOROV- SINAI invariant is given by

h = supH(B0) .
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Let A (a) — {xv . . ., xv}, we define Ba to be the subfield of B generated
by the sets {ρ : Λ(ρ) > 0} where A is of the form φ{Sfv . . ., Sfq) and
fv . . ., fQ ζ ^Λ{a). The subsets of IF r\ ${E) obtained by specifying the
numbers nv . . ., nv are easily seen to be the atoms of Ba, hence

and more generally

H(Ba(Λ(b)))=8(Λ(a + b)).

The family C of all Ba is clearly such that

U Ba(Zv)

generates B, and if s(ρ) < -foo, the entropies H(Ba) are finite, therefore

h{mβ)= sup lim V{Λ{b))-^ H(Ba{Λ{b)))
Baζ0 Λφ)-*oo

lim F W a + 6 ) ) 8(Λ(a + 6)) _ , .

™ viΛQ») τ w τ ¥ - s { ρ )

concluding the proof.
Remark. h(mρ) = -foo implies s(ρ) = +co but we do not know if

the converse holds. The resulting ambiguity would however not seem
to be important in physical applications.

While one cannot expect the functional s(-) to be upper semi-
continuous as in the continuous case, integral representations of the type
given by Proposition 5 still hold. I t is indeed known that the Kolmogorov-
Sinaϊ invariant h (mρ) has an integral representation on ^ r\ <o(E)
(MacMillan's theorem, [4], 10.10) and an integral representation on
3P r\ £{E r\ Se^) (barycentric decomposition, [4], 10.11).

5. Spin Systems

We denote by spin system a lattice system such that the occupation
number nt of every lattice point xt is restricted to take the values 0,
1, . . ., N where N < +oo. This terminology originates from the fact

that -7Γ (2 Πi — N) may then be viewed as the value of a spin component

(see [13]).
It is easy to construct a function φiSfi) which takes the value 0

if rii g N and the value 1 if ni> N. Let ψ* be the w* closed linear
manifold defined by φ{Sfi) — 0 for all ί, the states of a spin system are
then the points of E r\ Ψ~ and we have E ΓλΨ" C ̂ - The theory of spin
systems is thus just a special case of the theory of lattice systems. We
note however that here

0 ^ S(A) g V(A) log(N + 1) (5.1)
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hence for all ρ ζ E r\ &1 r\ "Γ, s(ρ) ζ [0, log(JV + 1)]. The measure mρ

has its support in E r\ i^ and s (ρ) is always equal to the Kolmogorov-

Sinaϊ invariant h(mQ) of the dynamical system (^ r\ <o(E), B, mρ, T).

Let us now make a change of normalization in the formulas of

Section 4. By writing

fΛ(th, • , ny) = (N+ 1)VW fΛ(nv . . ., nv) (5.2)

JdΛx- = (N+i)~nΛ) Σ ••• Σ • (5.3)
»! = 0 nγ = 0

(4.2) and (4.3) become

fdΛxfΛ(x) = l (5.4)

^ ) (5-5)

but dΛ x is now normalized:

fdAx=l (5.6)

so that Λve are in the same situation as for continuous systems. It follows

that the entropy

S(Λ) = -JdΛx fΛ(x) logfa(s) = 8{Λ) - V(Λ)log(JV + 1) (5.7)

satisfies the inequalities of Proposition 1. Another consequence is that

the affine functional s(-) is upper semi-continuous, and the same holds

therefore for
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