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Abstract, Three degenerate principal series of irreducible unitary representations
of an arbitrary non-compact unitary group U(p, q) are derived. These series are
determined by the eigenvalues of the first and second-order invariant operators, the
former having a discrete spectrum and the latter a continuous one. The explicit
form of the corresponding harmonic functions is derived and the properties of the
continuous representations are discussed.

1. Introduction

In our previous paper [1] we obtained two degenerate principal
series, DJ; (X2:9) and DY (X2.9), of irreducible unitary representations of
an arbitrary non-compact unitary group U (p, ¢). These series have been
realized in the Hilbert spaces of functions defined in the domains

X7t=U(p,q)/U(p—1,q) and X22=U(p,q)/U(p,qg—1) (L1)

respectively, which are homogeneous with respect to the action of the
U (p, q) group (see [2]). The representation labels M and L determine the
eigenvalues, M and 4, of the first and second-order invariant operators
M and A (X%:9) respectively and both possess a discrete spectrum.

In the present paper we investigate the properties of the continuous
series of degenerate representations of the U(p, q) groups which are
characterized by continuous values of A1 and discrete values of M. We
derive three such series of representations, the first two being related to
the manifolds X#:? and X?:.¢ given by (1.1) and the third being related to
the manifold

Xp1— U, /T~ U(p - Lg~1). (12)

Here, T?+2~2js the group of translations in the (p + ¢ — 2)-dimensional
complex space C?+¢~2 and [s] means the semidirect product. As will be
shown later, the homogeneous spaces X%:? and X2:¢ can be represented
as certain hypersurfaces in the 2(p + g)-dimensional Minkowski space
M?r,2q,
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Degenerate Representations of Non-Compact Groups 9

The method is analogous to that used in our first paper [1]. We choose
the biharmonic coordinate system on the manifold considered and then
we solve the eigenvalue problem for the invariant operators J and A

WPy — MW,

1.3
A (X2 Py = 1Py o)
where
p+a
=3z (1.4)
i=1
and A (X% is the Laplace-Beltrami operator on the manifold X%:¢:
1 =
A (X70) = T 9.9%P (X7:9) /]3] 9 . (1.5)

Here, Z¢ are the generators of a Cartan subgroup of the U (p, q) group,
9.5 (X%:9) is the metric tensor on X%:2and §= det{g,5(X%9}. In the case
of the manifold X%:7 the second-order invariant operator is defined in a
different way (see Section 3).

In Section 2 we derive two sets of harmonic functions, one related to
the manifold X%:2and the other related to the manifold X?:¢. The harmonic
functions having the manifold X#-2as their domain are derived inSection 3.
Section 4 is devoted to the construction of three continuous degenerate
series of representations related to these three sets of harmonic functions.
In Section 5 we discuss the structure of the Hilbert spaces corresponding
to the series of representations obtained. Finally, in the Appendix, we
show that the series of representations obtained are irreducible.

2. Harmonic functions for the non-compact unitary groups defined on the
manifolds X%'? and X?¢

As it was explained in [1], the homogeneous spaces X%:¢ and X?:¢
defined by (1.1) can be represented with the help of certain manifolds
having the same dimension and the same stability group and embedded
into the (p -+ ¢)-dimensional complex space C?+¢:

PZLp oo b gPEP — 2P HIZDHL o pptazpia— 1]
2.1
ke (0?9, k=1,2,...,p+4q, @D
where the right-hand side is 41 for X?%:%. These manifolds, which in the
following will be denoted also by X?%:, can be considered as certain
hypersurfaces (namely, hyperboloids) in the 2(p + ¢)-dimensional
Minkowski space M2724,

To obtain diagonal metric tensors on X?%:? and X?:¢ we introduce the

biharmonic coordinate system (see [1]) by choosing a set of 2(p + q)
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parameters r, 0, w, @,

w={¢, ..., ¢" 9 ..., 97

N vy o 5 (2.2)
d={¢", ..., ¢%, 9, ..., 9%

0=r<oco, 0Z¢gt=2y, 0§ <2m, 0=d=3

0P =G, k=01,2...p; I1=1,2...¢ i=23,...p;
ij=2,3,...q

and by parametrizing (in a recursive manner) the C?+? space in the
following way:

2k = reé g (0) sind? . . . sin P+ cos P*
Bl= P+l — et () sinde . . . sinF+1 cos P 2.3)
k=1,2....p, 1=1,2,...q, =0, =0
The manifolds X#:2 and X?:¢ are then obtained simply by putting
0=<6<oo, o(f)=chl, 7(0)=shh, r=1 (2.4)
0=<0<o, o(f)=sh0, 7(0)=chh, r=1 (2.5)

respectively.

Using now the same procedure as in [1], we obtain the following
expression for the Laplace-Beltrami operator on the manifold X?.2:

1

A(X20) = — ~prrmrg g o7

ch?=10 sh2a-10 0 +

AX?)  A(X9
ch26 sh26

where 4 (X?) and A(X9) are the Laplace-Beltrami operators of the

compact unitary groups U (p) and U (q) respectively, X¢ being an ab-
breviation for X%9.

The invariant first-order operator M = I (X%:?) has the form
M=M,+ i B 2.7

where M, = —i Z’ a —— and M =—1 Z 5 are the invariant first-order

operators of the U( ) and U () group respectively. The explicit form of
the eigenfunctions of the operators A(X?) and I, is given in the
Appendix of [1].
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Representing the simultaneous eigenfunctions of the operators
A(X?9 and M (X9 in the form of a product of eigenfunctions of

A(X?) and I, times eigenfunctions of A(X9) and i , times an unknown

function g4 5 (0) we obtain thefollowing differential equationtor 5 7,(0):
1

|- =0 4 7 ch®r18shta-10 7 —

- Jop+2p—2) Jo(Jo +29—2)

(2.8)
29 T g 1] vh,.5,00) =0

where —J,(J, + 2p — 2) and —J,(J, + 2¢ — 2) are eigenvalues of the
operators A (X?) and A(X9) for p > 1 and ¢ > 1 respectively, J, and J,
being non-negative integers. For p=1 or ¢ =1 the eigenvalues of
A(XY) and A (X*) turn out to be equal to — J2 or — J3 respectively, J, and
J, being arbitrary integers.
The solution of (2.8) which is regular at 0 = 0 is given by (see [1])
Wit (0) = thiel 0 ch—*0 x
o ~ . (2.9)
X 5Py (—“M'I A o SV AR th6)

where a=p+q—1+ ]/(p+ g — 1)2 — 4. Whereas in [1] we were
interested in the square-integrable solutions of (2.8), now we are con-
sidering the continuous part of the spectrum of A. As it will be shown in
Part ITI of our work, the continuous spectrum of 4 is given by

Az (p+qg—-1)2. (2.10)
Thus, we represent o in the form
a=ad)=p+qg—1+4+id (2.11)

where /1 is an arbitrary non-negative number.

The set of orthogonal functions related to definite values of invariant
numbers /A and M (M being an arbitrary integer) is given by the following
formula

y -3, Joreverdps A (0 0, g)

M, My .., Mp, B, ..

—&(4) Jyenod, J. (2.12)
=V 500 Yag (@ Y5 s e (@)
where V- “(A)(O) is defined by
...a(/l) Z(oc)
VJp 7, 0) = VN ¥y, 5 6) . (2.13)
The normalization constant N turns out to be (see [3])

l I3 W=7+ @) —p + 1] [ (00 + 1] + ]
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The functions Y}{}’l ;jj::’ﬁlp(Q) are simultaneous eigenfunctions of the
invariant operators A (X?) and M, and their form is given in the Appen-
dix of [1], where, also, properties of the corresponding unitary represen-
tations of the U (p) group are discussed in detail. We recall here only the
conditions which are imposed on the numbers labelling the eigen-
functions (2.12):

M,=J,
1
|My — M| + |My| = Jy— 20y m3=0,1,.. -7'2“(J2 — [M,])
1
[ Mg — Mol +Jy=J5—2n3  n3=0,1,...,5 (J; — [My])(2.15)
1
My~ M, | +Jp1=d,—2n, n,=0,1,...,5(J, — |M,)]).

2
Analogous relations hold also among M, ..., M, J,, ..., J, Finally,
M, + 8, = M. (2.16)

Note that the numbers My, ..., M, I,, ..., M, and M have the same
parity as the numbers J,, ... J,, Jy ... J, and J, 4+ J, respectively.

For reasons explained in [1] we have replaced in (2.12) the sets w, @
of variables by new sets

Q={f, ... ¢, " ... 0 2.17)
G= (... g & ... 5%

respectively, where ¢!, ... 7, @', ... §7 are connected with ¢, ... ¢?
¢, ... ¢ by a certain linear transformation (see equation (2.25) of [1]).

The set of harmonic functions (2.12) is orthogonal with respect to the
left-invariant Riemannian measure du(X%9 given by the metric
tensor expressed in the biharmonic coordinates 0, 2, o

d p(X29) = d pu(X7) d ji(X7) ch2?—10 sh2a-10 40 (2.18)
with
v »
du(X?) = Isin?i -394 cosddd [1d "
j k=1

j=2

7 N Y A

d @(X9) = I[sin?i-39i cos§id i Ilad* .
j=2 k=1

In a similar way, the set of harmonic functions related to the homo-

geneous space X?:? defined by (1.1) is obtained. The expression for the

harmonic functions differs from (2.12) only by replacing V;&§A)(B) by
»va
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V}a;A) (6). Correspondingly, the role of the numbers J,,p and J,, ¢ is
oY
interchanged in the formulae (2.9), (2.14) and (2.18).

The two sets of harmonic functions related to the homogeneous
spaces X?:? and X?:? can be used for construction of degenerate irreduc-
ible unitary representations of the U (p, q) groups. These representations
will be constructed in Section 4.

3. Harmonic functions for the non-compaet unitary groups defined on the
manifold X}

The set of harmonic functions defined on the manifold X%¢ (see (1.2))
can be obtained in a similar way. As a model of this manifold we choose
the subspace of the C?+¢ space defined by the equation

PIZL v oo o gPEP P HIEPHL . ppHaEpia = (), (3.1)

As we see from equation (3.1), the model of X%-? can also be considered
as a (2(p + ¢) — 1)-dimensional cone embedded in the 2(p + ¢)-dimen-
sional Minkowski space M?P,24,

Equation (3.1) can be automatically satisfied if we parametrize the
coordinates 2¢, 1 =1, ... p + ¢, according to the prescription (2.3) and
then put

6(0) =cos, T(6)=sinf, 6="7, 0=r<oo. (3.2)

The first-order invariant operator J has on the manifold X%¢ the
same form as on X%, i.e., it is given by (2.7). On the other hand, the
construction of the second-order invariant operator meets here two
difficulties. First, as the metric tensor g,5(X%:?) on X%? is singular, (see
[3]), the second-order invariant operator cannot be calculated by using for-
mula (1.5). Second, due to the fact that the group U (p,q)is not semi-simple,
the Cartan metric tensor g, is singular so that we cannot use the standard
formula @, =)} ¢**Z,Z, to determine the second-order invariant
operator. To construct it, we note that the operator

R P p+a
12=( >y )(L;;2+L;-2>+
1<j=1 p<i<j=p+1

(3.3)
pta poovda s
+ X L3 X (BfiP+ BjY)
i=1 i=1lj=p+1
commutes with the whole algebra R, ,!. Representing the basis of the
R, , algebra by the Lie algebra of operators of differentiation with

1 The basis of the R»¢ algebra is chosen in the same form as in [1], where the
commutation relations are explicitly given.
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respect to 2%, ... 2P+ 2l ZPte?,
0 2 _, 0 -, 0
Liy=dgq—Zou+ o —F oz
- s d 0 _, 0 9
Lkl:’(zkﬁ+zlﬁ"zkﬁ“zlﬁ)
By =t og+d o+ B+ P

9 0 0 9
= g2k — 2l (R B
Bua=1 (Z I P P 85")

and expressing them through », w and & by using (2.3) and (3.2), we
obtain the following expression for the operator I, on the manifold X2:2:

a2 d rda g \2

I=—r—5-(2 2—1—(V—),
2 r or? ( p+ q )T or + k‘:l a(pk (35)

ePrl=¢g', 1=1,2,...¢q
where the last term is obviously equal to — JI2 on X%,
The set of differential equations

LYYy = (A — M) P}

: M (3.6)

M, — MW,

can now be solved, again by the method of separation of variables. We
obtain

d ?
[r27i7;+(2p+2q— 1)r—a~r—+A2+(p+q—l)2]R(r)=0
Pt 5
(—@ Z 'a—k—M)@((pl,...(pp"'q):O
r=1 %%

where the form A%+ (p + ¢ — 1) of the spectrum is chosen in analogy
with the spectrum of A in the preceding section. In Part ITI of this work
we shall show that the spectrum is complete in this form.

The solution of the system (3.6) of equations can be written in the
form

(3.7)

»+q o .
7% exp (i D) my lpk) F 92, ...,907, 9% ...,99 (3.8)
2 The harmonic functions are not analytic in the variables 2%, 22, . . ., 22%¢ but

they can be considered as differentiable functions of 2(p + ¢) independent real
variables % = Rez*, y* = Imz* k = 1,2, ..., p + ¢. The set of relations

2=k ik B = gk — gk
has the meaning of a regular linear transformation, implying
o _1(e L) o _1(o .0
37 2\ PogF) a3 \awk TV agE)
a’k
Note that, according to this definition, the derivatives a—z,; exist in every point and

are equal to zero.
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where ¢ = p + ¢— 1+ }/(p + ¢ — 1) — A . As the invariant operators I,
and T are independent of 92, . . ., 97, 92, . . ., J4, the function F in (3.8)
can be chosen in an arbitrary way. We spemfy the form of the function F
by requiring it to be the common eigenfunction of the maximal set of
commuting operators in the enveloping algebra of the U (p, q) group (see
[1] Section 5). We obtain (by the index 0 we denote the eigenfunctions
defined on the manifold X%.9)

Yo m D Todmucinda O B) — pmu g Ta (0) YJz e L (@D 39

M, M. M,,M1 ’VI

where the Y functions on the right-hand side are identical with those
occurring in (2.12) and are defined in the Appenchx of [1].

The harmonic functions OY;I“;IA) J“M{:} o J"(r Q, O) constitute an
Db

orthogonal set of functions with respect to the left invariant Riemannian
measure d u(X%:9) given by

dp(XB9) = d p(X?) d ji(X?) r20+24-3 4y (3.10)
where d u and d ji are defined by (2.18).

4. Continuous degenerate representations of non-compact unitary groups

In the two preceding sections we derived three sets of harmonic
functions defined on three different manifolds, X%:4, X?.¢ and X%:¢, and
orthogonal on these manifolds with respect to the left-invariant measures
d p(X%9), dp (X219 and d u (X% 9) respectively. In this section we shall
construct Hilbert spaces in which the continuous degenerate representa-
tions of arbitrary non-compact unitary groups corresponding to these
sets of harmonic functions are realized.

Let us start with the representations related to the homogeneous
space X2:2. We define a set of functions f(0, 2, ) having the form

6,2, )= exp( P z’z’) L,2PreZL ) (41)
i=1
where P(2%,...,2?+% 2, ..., 2P+9) is an arbitrary polynomial in the

variables 2!, ...,2P+9 2!, .. ., 2P+9 restricted by the condition (2.1) to
the manifold X2 *¢ and expressed in terms of the biharmonic coordinates
(2.3), (2.4)3.

As the harmonic functions (2.12) are not square integrable, they
cannot create a Hilbert space. Nevertheless, we can use them to con-
struct the Hilbert space in an indirect way, by defining the generalized
Fourier transforms y of the functions f (6, 2, ) (see [3] and [5]). We define

8 As is shown in [4], the considered set of functions f(6, 2, £) creates a dense
set of functions in L2(X%?, u).
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them as follows:

Ao gy Tayee . YE@ T
XMM, ;IJ,M, aM,,—( M, M,,.. M,, Ml,...,M,, ’f>
“a 4.2)
= JYy T A - 0,9, 9) 10, Q,D) dp(X79).
The set of all such generalized Fourier transforms
o MTse e Tp ey,
A= {XMMlMpﬁlqilq}
fulfilling the condition
gl = p) fpfeolpucode s e coo (43)

Tareworpifaneendg
My, My, My,..., My

spans the Hilbert space 4 (X?:9) of vectors, the scalar product being
defined by
A4 .4 A,J,. Jp Jan. A, 5 T2 dg
(3 ndn) = Y M gy (44)
B AN S0 AR
Mav.ro My B Mg

The sum in (4.3) and in (4.4) is taken over all possible values of the labels
admitted by relations (2.15) and (2.16).

Each Hilbert space #°4;(X?:9) can be represented as a direct sum of
the form

=5} © 5q Jp
Al
PO Y S ¥ oo¥ e
Je=0Jp=0 Ly =—J, My=—Jp
(Jp+Jg+ Meven) (Mg+ Jgeven) (Mp+ Jp even) (4.5)

® 47T (K29 S, 4,

where Jf AJ)’ To_ (XP’ %) is a ﬁnite-dlmensmnal subspace of #4;(X7:9) in

which the ureduclble unitary representation of the maximal compact
subgroup U (p) x U (g) determined by the invariants J,, M, J, and 7,
is realized. Note that in the special cases p > ¢ =1 and p=¢q =1 the
three-dimensional sum in (4.5) reduces to a two-dimensional and to a
one-dimensional sum respectively.

It is easy now to determine the action of the generators of the U (p, q)

group on the vectors {XA - "’M’“ b M} = y4r of the Hilbert space
p> iy,

4 (X7:9). Using the representa’olon (3 4) of the algebra of U (p, q) and
expressing 2%, Z¥, % and aizk in terms of the biharmonic coordinates

(2.3), (2.4) we determine the form of the generators on X?:2. Then the
action of an arbitrary generator Z; on a vector yf; of 4 (X?:9) is defined
as follows:

Bl T T Ly = (U T T ST ) (46)
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In this way, we have obtained a series of continuous degenerate
representations for an arbitrary non-compact unitary group U (p, g).
These representations are determined by two numbers A and M, A
being an arbitrary non-negative number (see (2.11)) and M being an
arbitrary integer. The irreducibility of these representations is proved in
the Appendix and the proof of unitarity will be given in Part III of our
work. We shall denote this series of representations by the symbol

2 (X2:9).

In an analogous way, also the series C4;(X?:9) and C#(X%9) of
continuous degenerate representations related to the homogeneous
spaces X?:¢ and X% are obtained. We can repeat everything that has
been said in this section, replacing only X%:? by X2 or X% ¢ respectively
and using the corresponding set of harmonic functions.

5. Discussion

Let us discuss briefly the structure of the Hilbert spaces corresponding
to the different representation series obtained. The structure of the
Hilbert spaces 54 (X?:9) is given by (4.5) and can be represented with
the help of “net” diagrams each point of which represents a subspace

H :I‘;I”J;I (X?:9) of 54, (X2:9). These net diagrams are constructed in the

same way as the analogous diagrams for the representations D} (X2:9)
discussed in [1], the only difference being that the numbers A4, J, and
J, are not restricted by any condition.

If p=g>1, we have a three-dimensional net of points with the
coordinates J,, J, and M, say (M,~ M — M,). Figures 1 and 2 re-
present sections through this net with J, = const and J, = const,
respectively. For different values of A the structure is the same.

Mp

Fig. 1. A .I,, cons{ section through the three-dimensional net representing admissible values of J,,
and Mj in a given representation C' _M(X” 9), p =¢q > 1. The same diagram represents the full net in
thecasep > ¢g=1

2 Commun. math. Phys., Vol. 4
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In the case p > q =1, the net is two-dimensional and can be re-
presented by Fig.1. (Note that J,= M, = M — M, in this case.)
Finally, for p = ¢ =1 the structure of the Hilbert spaces can be re-
presented by an infinite string of points M + M, = M (J,= M,,J,= IL,).

Fig. 2. A Jp = const section through the three-dimensional net representing admissible values of .7q
and M, in a given representation Cj} (X%, p=zg¢>1

Let us remark that for the definite 4 the number M can be an
arbitrary integer.

The Hilbert spaces 54 (X?:9) and 547 (X% ?) have the same structure
as the Hilbert spaces 54 (X?:9).

The parity operator P, defined by

Pat=—z¢, k=1,2,...,p+¢q

commutes with all generators of the U (p, ¢) group. Thus, for a given
irreducible representation the parity is determined and is equal to
(— 1)1,

The maximal set of commuting operators in the given representation
space is

A(X%9), M, C,, C, (5.1)
in the case of the manifolds X% and
I,,m,o,C0C, (5.2)

in the case of the manifold X% (see (3.5)). The symbols C, and 0, denote
the maximal sets of commuting operators of the compact subgroups
respectively:

Cp={A(X?), M,, A(X?-Y), M, _,, ... A(X?), I, I}

0, = {A(X9), M, A(Xe-Y), B, ,, ... A(X?), 0, 00} .
The number of operators of the set (5.1) or (5.2) is strongly reduced in

comparison with the case of the principal non-degenerate series, being
equal to 2(p +¢q) — 1.



Degenerate Representations of Non-Compact Groups 19

Acknowledgements. The authors would like to thank Professors ABDUS SALAM and
P. Bupint and the IAEA for the hospitality kindly extended to them at the Inter-
national Centre for Theoretical Physics, Trieste.

They are also grateful to Drs. N. Lmui6, O. NacarMaNN and J. N1EDERLE for
many helpful discussions.

Appendix

In this Appendix we shall prove the irreducibility of the representa-
tions O (X2:9), C4(X?9 and C4(X%9 which we have derived in
Section 4. The proof can be performed by the method used in [1] for
proving irreducibility of the representations DY (X%:9) and D% (X?:9)
(see also [3]).

We shall denote by R?-¢ the Lie algebra of the U (p, ¢) group. By the
symbols R2:¢, R?:? and R%'¢ we shall denote the representations of R?:¢
given by (3.4), (2.3) with the condition that the coordinate parameters
are chosen according to (2.4), (2.5) and (3.2) respectively.

Let us start with the C4; (X?:9) representation. We have to show that
the Hilbert space #4; (X?%:9) contains no subspace invariant with respect
to the action of the Lie algebra R?:2. The structure of the space 4, (X2:9)
is given by (4.5).

In the Appendix of [1] it has been shown that our representation of
the algebra of the maximal compact subgroup U (p) x U (g) is irreducible
A,Jp,Jq
M, My, My
in Section 4 of [1], it is now sufficient to find some operators B; € R%:¢
and one vector of the type (4.2) such that the operators B; can perform

in the space S Thus, in complete analogy with the proof given

the transition into all nearest neighbouring Hilbert spaces & z‘;‘l’lj‘iﬂ,

» q
with J; = J, +1,J;=J, 4+ 1and M; = M, + 1. (Let us mention that
the maximal number of the nearest neighbours is 8, 4 and 2 in the cases

p=gqg>1,p>q=1and p=q=1 respectively).

By an explicit calculation we can see that the operators

R ; ot 5, 0
B, =B}, + 1By, = eEtor—e0 [cosf}” cos Y 55 —

. &, a 7: a
-— ¥y q —_— e} —
cth0 cos ¥ (smﬁ 35 + —7 a*«) (A1)

&y (e 0 7 9
- th0 o050 (sin 535 F 5557 5,5
have the desired properties if acting on

A, Jp,Jq 4,0,...,0,J5,0,...,0,J7

A, M, 00, = {XM,O,...,O,M,,O,...,O,Mq} : (A.2)

o%
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The calculation in the case p = ¢ > 1 leads to the following result:

AJpde i . oot ATyt 1L, +1
B+%M,Mp,ﬂ,, =—J+J+1+idlalaZ Xar a1, +1,510-1

_ . +oam AT+ 1,Jp—1
+|J=J+1+idlataz XM at, + 1, M1

7 A, Tp—1,Tg+1 (A-3)
— = J = 1+idlaTa 5 e T
T 1 id|egaz g
where
+o ot , W EM)J LM £ 2)
Oy = 0% (J> -Z‘I-’r! M~) 21/3@‘}—15“
at(J, My, M )=a%(J,-M_, — M) (A.4)
di = i (j5 M—{-: M—)
and
J=Jy+p—1, My=M,+(p—1
» TP + » = (P ) (A5)

J=Jo+q=1, Hy=H,+(q-1).

The action of the B_ operator can be obtained from (A.3) by per-
forming the following changes:

4,05,J% 4,035,794

4 1
~ — ~ =
M, My +1,80q—1 " X, My—1, 51 +1 for Jp=J,+1

Jo=Jet1  (ag
aE - a* (A9
at —»ax.

If p > ¢ =1, the formula (A.3) has to be replaced by
i o )
B+Xz/zi,Jfff,,ﬂ, == |J = M, + 1+ id|aF Xﬁi}ﬁjﬁl,ﬂl—l =+
IMIIN (A 7)
33 N C - '
+ U‘Nfl| |J + B, — 1+ iA| a3 238, b1 it—1
1

the action of B_ being obtained, again, by changing the symbols according
to (A.6) and M, — — J,.
Finally, for p = ¢ = 1 we obtain:
i,
||
By a successive application of the operators B , . , + 1B, , ., each
admissible value of the numbers J,, J,, M, and M, can be reached
starting from any other admissible value. Moreover, we see from (A.3),(A.4)
and (A.7) that the factors J F M., J T M, stop the raising or the
lowering process at the points lying on the boundary of the corresponding
diagram (see Figs. 1 and 2). For instance, J + M _ vanishes at the point
M, = —J,, in which J, and M, cannot be simultaneously lowered.

B, Z?M,MI,AZ =+ | £(M; — Ml) + 1+ 7:/1[ lell,Mlj;l,ﬂﬁr-l . (A8
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The irreducibility of the representation C¢;(X?.9) is proved by the
same method. The corresponding formulae are obtained by exchanging
the twiddled and “‘untwiddled” quantities.

In the same way, the proof of irreducibility of the C4; (X?%-9) represen-
tation is also performed. The formulae (A.1), (A.3), (A.7) and (A.8) are
to be replaced, respectively, by
B, = B;:,,Hl +iBy 1= PEMCER) [cosﬁp cos r:—r—

3 . - . (A1)
- cosﬁp(sinﬁq—a—-l- v 9 )— cosﬁq(sim‘/‘p%$ L2 )]

8¢ = cosde 9P° cosd? P

B, oxﬁjfﬁfm =—(J+J+1-id)atar oﬁ/i&: f{’;};il h
—J=J+1—idyataz oxf\l/zf}:;fﬂ:l—l A3
+—=J —1+id)azat oZﬁ/{}:i{q;?rql—l -
+(J+J -1+ id)azaZ olz/;J;}:ii;ﬂtlal—l

B, on/llifzﬁP,ﬂx =—WJ =M +1-id)a 0X?f:]ﬂj;l:—4}l,ﬂq—-1 + (A7)

+ A+ My~ 1+ i) o oxsi k1t
By ot = (EJy — M) — 1+ id) i ar, s ts1- (AS)
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