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Abstract
The existence of ground state solutions for the quasi-linear elliptic equation

−div(|∇u|p−2
∇u) = ρ(x) f (u), in RN

under suitable conditions is proved. We modify the method developed in [Z. Yang,
Existence of positive entire solutions for singular and non-singular quasi-linear ellip-
tic equation, J. Comput. Appl. Math. 197 (2006) 355-364] and extend the results
of [A.Mohammed, Ground state solutions for singular semi-linear elliptic equations,
Nonlinear Analysis(in press) and Teodora-Liliana Dinu, Entire solutions of sublinear
elliptic equations in anisotropic media, J. Math. Anal. Appl. 322(2006), 382-392.]
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1 Introduction

In this paper, we are concerned with the existence of ground state solutions for the following
singular quasilinear elliptic equation

−div(|∇u|p−2∇u) = ρ(x) f (u), in RN,
u > l, in RN,
u(x)→ l, as |x| → ∞,

(1.1)
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where N ≥ 3 and l ≥ 0 is a real number.
When p = 2, these kinds of problems have been studied extensively by many authors

in which RN is replaced by a smooth bounded domain Ω with zero Dirichlet boundary
condition (see [1]- [4]). Recently, the study of ground state solutions has received a lot
of interest and numerous existence results have been established (see [5]- [16] and the
references therein). Equations of (1.1) are mathematical models occurring in studies of the
p-Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid theory [19],
non-Newtonian filtration [20] and the turbulent flow of a gas in porous medium [21]. In
the non-Newtonian fluid theory, the quantity p is characteristic of the medium. Media with
p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2,
they are Newtonian fluids.

Recently, in [5] the author proved the existence of a ground state solution for the semi-
linear elliptic equation 

−4u = f (x,u), in RN

u > 0, in RN,
u(x)→ 0, as |x| → ∞.

under suitable conditions on a locally Hölder continuous non-linearity f (x, t). The non-
linearity may exhibit a singularity as t → 0+.

In [17], Cirstea and Radulescu proved that the following problem
−4u = b(x)g(u), in RN

u > 0, in RN,
u(x)→ 0, as |x| → ∞,

(1.2)

admits a unique solution when g is bounded in a neighborhood of ∞, limt→0+ g(t)/t = ∞,
and g(t)/(t + c) is decreasing for some constant c > 0.

In [20], Goncalves and Santos established the existence of a solution to (1.2) under the
assumptions that g(t)/t is decreasing, limt→0+ g(t)/t = ∞ and limt→∞ g(t)/t = 0.

For p > 1, the existence and uniqueness of the positive solutions for quasilinear elliptic
equation 

div(|∇u|p−2∇u)+λ f (u) = 0, in Ω,
u > 0, in Ω,
u(x) = 0, on ∂Ω,

(1.3)

with λ > 0, p > 1,Ω ⊂ RN,N ≥ 2 have been studied by many authors. When f is strictly
increasing on R+, f (0) = 0, lims→0+ f (s)/sp−1 = 0 and f (s) ≤ α1 + α2sµ, 0 < µ < p−
1, α1,α2 > 0, it was shown in [22] that there exist at least two positive solutions for (1.3)
when λ is sufficiently large.

When f : (0,∞)→ (0,∞) and q : RN → (0,∞) are continuous functions, andZ
∞

1
(
Z u

0
f (s)ds )−1/pdu = ∞, (1.4)

it has been shown in [23] that there exist entire radially symmetric solutions of the problem

div(|∇u|p−2
∇u) = q(x) f (u), x ∈ RN. (1.5)
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It was shown in [24] that problem

div(|∇u|p−2
∇u)+ f (x,u) = 0, x ∈ RN, (1.6)

possesses infinitely many positive entire solutions. On the other hand, it was also shown in
[25] that if 1 < p < N, 0≤ γ < p−1, and q(x) ∈C(R+) satisfies some suitable conditions,
then problem

div(|∇u|p−2
∇u)+q(x)u−γ = 0, x ∈ RN, (1.7)

has a positive entire solution.
In [26], the authors considered the existence of solutions of the singular quasilinear

elliptic problem 
-div(|∇u|p−2∇u) = a(x)g(u)+b(x) f (u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.8)

where Ω ⊂ RN is a bounded domain with smooth boundary, a,b : Ω → [0,∞) are Hölder
continuous functions with exponent ν ∈ (0,1) and p > 1. The authors also assumed that
a+b > 0 a.e in Ω and f ,g : (0,∞)→ [0,∞) are locally Lipschitz continuous functions.

Motivated by the above results, we investigate the existence of positive solutions to
problem (1.1). We modify the method developed in [25]-[27] and extend the results of [25]
and [27] to singular quasilinear elliptic equation.

2 Main Results

Throughout the paper, we assume that the variable potential ρ(x) satisfies ρ∈C0,α

loc(RN)(0 <

α < 1), ρ > 0 and ρ 6= 0.
(ρ1) For ρ(x) ∈C0,α

loc(RN), and Φ(r) = max|x|=r ρ(x)

Z
∞

0
r1/(p−1)

Φ
1/(p−1)(r)dr < ∞, if 1 < p ≤ 2,

Z
∞

0
r

(p−2)N+1
p−1 Φ(r)dr < ∞, if 2 ≤ p < ∞.

The nonlinearity function f : (0,∞)→ (0,∞) satisfies f ∈C0,α

loc(0,∞)(0 < α < 1) and has
a sublinear growth, in the sense that

( f1) the mapping u → f (u)/up−1 is decreasing on (0,∞) and limu→∞ f (u)/up−1 = 0.
( f2) f is increasing in (0,∞) and limu→0

f (u)
up−1 = +∞.

We point that condition ( f1) does not require that f is smooth at the origin. The standard
example is f (u) = uq, where −∞ < q < 1/(p−1). A nonlinearity function satisfying both
( f1) and ( f2) is f (u) = uq where 0 < q < p−1.

Theorem 2.1. Assume that l > 0 and assumption (ρ1), ( f1) are fulfilled., then problem (1.1)
has a solution.
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Proof. For any positive integer k we consider the following problem
−div(|∇uk|p−2∇uk) = ρ(x) f (uk), if |x|< k,
uk > l, if |x|< k,
uk(x) = l, if |x|= k.

(2.1)

Equivalently, the above boundary value problem can be rewritten into{
−div(|∇vk|p−2∇vk) = ρ(x) f (vk + l), if |x|< k,
vk(x) = 0, if |x|= k.

(2.2)

Since f ∈C(0,∞) and l > 0, it follows that the mapping v→ ρ(x) f (v+ l) is continuous
in [0,∞). From

ρ(x)
f (v+ l)

vp−1 = ρ(x)
f (v+ l)

(v+ l)p−1
(v+ l)p−1

vp−1 ,

by the positivity of ρ and ( f1) we deduce that the function v→ ρ(x) f (v+l)
v1/(p−1) is decreasing on

(0,∞).
By limv→∞ f (v+ l)/(v+ l)p−1 = 0 and f ∈C(0,∞), we can get that there exists M > 0

such that f (v+ l)≤ M(v+ l)p−1 for all v ≥ 0. Then

ρ(x) f (v+ l)≤ ‖ρ‖L∞(B(0,k))M(v+ l)p−1

for all v ≥ 0.
We have

a0(x) = lim
v→0

ρ(x) f (v+ l)
vp−1 = ∞;

and

a∞(x) = lim
v→∞

ρ(x) f (v+ l)
vp−1 = lim

v→∞
ρ(x)

f (v+ l)
(v+ l)p−1

(v+ l)p−1

vp−1 = 0;

thus by [22], problem (2.2) has a solution vk which is positive in |x|< K. Then the maximum
principle implies that l ≤ uk ≤ uk+1 in RN.

Now, we prove the existence of a continuous function v : RN → R, v > l, such that
uk ≤ v in RN.

Firstly, we construct a positive radial symmetric function w such that

−div(|∇w|p−2
∇w) = Φ(r)(r = |x|), in RN,

and limr→∞ w(r) = 0. A straightforward computation shows that

w(r) = K−
Z r

0
[ξ1−N

Z
ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ,

where K =
R +∞

0 [ξ1−N R ξ

0 σN−1Φ(σ)dσ]1/(p−1)dξ. Then we prove that K is finite.



16 Z. Yang and C. Yu

Case I. 1 < p < 2, in this case, since 1 ≤ 1
p−1 < ∞, by the Hardy inequality, we have

Z +∞

0
[ξ1−N

Z
ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ

=
Z +∞

0
ξ
−N−1

p−1 [
Z

ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ

≤ [
1

p−1
(
N−1
p−1

)−1]1/(p−1)
Z +∞

0
ξ
−N−1

p−1 [ξξ
N−1

Φ(ξ)]1/(p−1)dξ

= (
1

N−1
)

1
p−1

Z +∞

0
ξ

1/(p−1)
Φ

1/(p−1)(ξ)dξ < ∞.

Case II. For 2 ≤ p < +∞, then 1 ≤ p−1, 0 < 1
p−1 ≤ 1.

Set Z
ξ

0
σ

N−1
Φ(σ)dσ ≤ 1, for ξ > 0,

or Z
ξ

0
σ

N−1
Φ(σ)dσ > 1, for ξ > 0.

In the first case, when

[
Z

ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1) ≤ 1,

we can get that

Z r

0
ξ

1−N
p−1 [

Z
ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ≤

Z r

0
ξ

1−N
p−1 dξ = lim

ε→0

p−1
p−N

ξ
p−N
p−1 |rε =

p−1
p−N

lim
ε→0

(r
p−N
p−1 −ε

p−N
p−1 )

is finite as r → ∞ and N > p.
In the second case,

[
Z

ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1) ≤

Z
ξ

0
σ

N−1
Φ(σ)dσ,

for ξ ≥ 0, then

Z r

0
ξ

1−N
p−1 [

Z
ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ ≤

Z r

0
ξ

1−N
p−1

Z
ξ

0
σ

N−1
Φ(σ)dσdξ.

Integration by parts shows that

Z r

0
ξ

1−N
p−1

Z
ξ

0
σ

N−1
Φ(σ)dσdξ

=− p−1
N− p

Z r

0

d
dξ

ξ
p−N
p−1

Z
ξ

0
σ

N−1
Φ(σ)dσdξ

=
p−1
N− p

(−r
p−N
p−1

Z r

0
σ

N−1
Φ(σ)dσ+

Z r

0
ξ

(p−2)N+1
p−1 Φ(ξ)dξ).
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Using L’Hopital’s rule, we have

lim
r→∞

[−r
p−N
p−1

Z r

0
σ

N−1
Φ(σ)dσ+

Z r

0
ξ

(p−2)N+1
p−1 Φ(ξ)dξ]

= lim
r→∞

−
R r

0 σN−1Φ(σ)dσ+ r
N−p
p−1

R r
0 ξ

(p−2)N+1
p−1 Φ(ξ)dξ

r
N−p
p−1

= lim
r→∞

Z r

0
ξ

(p−2)N+1
p−1 Φ(ξ)dξ

=
Z

∞

0
ξ

(p−2)N+1
p−1 Φ(ξ)dξ < ∞.

Moreover, w is decreasing and satisfies 0 < w(r) < k for all r > 0. Let v > l, we define the
following function

w(r) = m−1
Z v(r)−l

0
t/ f

1
p−1 (t + l)dt,

in which m > 0 is chosen such that

1 < m ≤
Z m

0

t

f
1

p−1 (t + l)
dt.

Next, by L’Hopital’s rule we have

lim
x→∞

R x
0

t

f
1

p−1 (t+l)
dt

x
= lim

x→∞

x

f
1

p−1 (x+ l)
= lim

x→∞

(x+ l)
1

p−1

f (x+ l)
(

x
x+ l

)
1

p−1 = ∞.

This means that there exists x1 > 0 such that
R x

0
t

f
1

p−1 (t)
dt ≥ Kx for all x≥ x1. It follows that

for any m ≥ x1 we have

Km ≤
Z m

0

t

f
1

p−1 (t)
dt.

Since w is decreasing, we can get that v is a decreasing function. ThenZ v(r)−l

0

t

f
1

p−1 (t + l)
dt ≤

Z v(0)−l

0

t

f
1

p−1 (t + l)
dt = mv(0) = mK ≤

Z m

0

t

f
1

p−1 (t + l)
dt.

It follows that v(r)≤ m+ l for all r > 0.
From w(r)→ 0 as r → 0, we deduce that v(r)→ l as r →∞. By the choice of v we have

∇w =
1
m

v− l

( f (v))
1

p−1
∇v, |∇w|p−2

∇w =
1

mp−1
(v− l)p−1

f (v)
|∇v|p−2

∇v

div(|∇w|p−2∇w) = 1
mp−1

(v−l)p−1

f (v) div(|∇v|p−2∇v)+ 1
mp−1 (

(v−l)p−1

f (v) )′|∇v|p

> ( v−l
m )p−1 1

f (v)div(|∇v|p−2∇v);

div(|∇v|p−2∇v) < mp−1 f (v)
(v−l)p−1 div(|∇w|p−2∇w)

= m
(v−l)p−1 f (v)Φ(r)≤− f (v)Φ(r).

(2.3)
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By (2.1), (2.3) and the hypothesis ( f1), we obtain that uk(x)≤ v(x) for each |x| ≤ k and
so, for all x ∈ RN.

In conclusion
u1 ≤ u2 ≤ ·· · ≤ uk ≤ uk+1 ≤ ·· · ≤ v,

with v(x)→ l as |x| → ∞. Thus, there exists a function u ≤ v such that uk → u pointwise in
RN. In particular, this shows that u > l in RN and u(x)→ l as |x| → ∞.

A standard bootstrap argument shows that u is a solution of problem (1.1).

When l = 0 our result is as following.

Theorem 2.2. Assume that l = 0 and assumption (ρ1), ( f1) and ( f2) are fulfilled. Then
problem (1.1) has a solution.

Proof. Since f is an increasing positive function on (0,∞), the limit limu→0 f (u) exists and
is finite, so f can be extended by continuity to the origin. Consider the Dirichlet problem{

−div(|∇uk|p−2∇uk) = ρ(x) f (uk), if |x|< k,
uk(x) = 0, if |x|= k.

(2.4)

Using the same arguments as in case l > 0 we deduce that ρ(x) f (u) is continuous in [0,∞).
and ρ(x) f (u)

up−1 is decreasing on (0,∞). On the other hand, we use both hypothesis ( f1)
and ( f2). Hence f (u) ≤ f (1) if u ≤ 1 and f (u)/up−1 ≤ f (1) if u ≥ 1. Therefore f (u) ≤
f (1)(up−1 + 1), for all u ≥ 0. The existence of a solution for (2.4) follows from [22].
These conditions are direct consequences of our assumptions limu→∞ f (u)/up−1 = 0 and
limu→0 f (u)/up−1 = +∞. Define uk(x) = 0 for |x| > K. Using the same arguments as the
case l > 0, we obtain uk ≤ uk+1 in RN.

Next, we prove the existence of a continuous function v : RN →R such that uk < v in RN.
Using the same arguments as in case l > 0, we first construct a positive radially symmetric
function w satisfying −div(|∇w|p−2∇w) = Φ(r) (r = |x|) in RN and limr→∞ w(r) = 0. We
obtain

w(r) = K−
Z r

0
[ξ1−N

Z
ξ

0
σ

N−1
Φ(σ)dσ]1/(p−1)dξ,

where K =
R +∞

0 [ξ1−N R ξ

0 σN−1Φ(σ)dσ]1/(p−1)dξ. Using the same arguments as in case l > 0,
we can prove that K is finite, and we have

w(r) <

{
( 1

N−1)
1

p−1
R +∞

0 ξ
1

p−1 Φ
1

p−1 (ξ)dξ, if 1 < p ≤ 2;R +∞

0 ξ
(p−2)N+1

p−1 Φ
1

p−1 (ξ)dξ, if 2 < p ≤+∞;

for all r > 0.
Let v be a positive function such that

w(r) = C−1
Z v(r)

0

t

f
1

p−1 (t)
dt,

where C is chosen such that

KC ≤
Z C

0

t

f
1

p−1 (t)
dt.



Ground State Solutions for Singular Quasilinear Elliptic Equations 19

We argue in what follows that we can find C > 0 with this property. Indeed, by L’Hopital’s
rule

lim
x→∞

R x
0

t

f
1

p−1 (t)
dt

x
= lim

x→∞
(
xp−1

f (x)
)

1
p−1 = +∞.

This means that there exists x1 > 0 such that
R x

0
t

f
1

p−1 (t)
dt ≥ Kx, for all x > x1. It follows

that for any C ≥ x1 we have

Kx ≤
Z C

0

t

f
1

p−1 (t)
dt.

On the other hand, since w is decreasing, we deduce that v is decreasing function, too.
Hence Z C

0

t

f
1

p−1 (t)
dt ≤

Z v(0)

0

t

f
1

p−1 (t)
dt = C ·w(0) = C ·K ≤

Z C

0

t

f
1

p−1 (t)
dt.

It follows that v(r)≤C for all r > 0.
From w(r) → 0 as r → ∞ we deduce that v(r) → 0 as r → ∞. By the choice of v we

have

∇w =
1
C

v

( f (v))
1

p−1
∇v, |∇w|p−2

∇w =
vp−1

Cp−1
1

f (v)
|∇v|p−2

∇v,

div(|∇w|p−2∇w) = ( v
c)

p−1 1
f (v)div(|∇v|p−2∇v)+(1

c )
p−1( vp−1

f (v) )
′|∇v|p; (2.5)

combining the fact that f (u)/up−1 is a decreasing function on (0,∞) with relation (2.5), we
deduce that

div(|∇v|p−2∇v) < Cp−1 f (v)
vp−1 div(|∇w|p−2

∇w)

=−Cp−1 f (v)
vp−1 Φ(r)

≤− f (v)Φ(r),

(2.6)

By (2.4) and (2.6) and using our hypothesis ( f2), we obtain that uk(x) ≤ v(x) for each
|x| ≤ K and so, for all x ∈ RN.

We have obtained a bounded increasing sequence

u1 ≤ u2 ≤ ·· · ≤ uk ≤ uk+1 ≤ ·· · ≤ v.

with v vanishing at infinity. Thus, there exists a function u ≤ v such that uk → u pointwise
in RN. A standard bootstrap arguments implies that u is a solution of problem (1.1).
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