C ommunications in $\mathbf{M}_{\text {athematical }} \boldsymbol{A}_{\text {nalysis }}$

Ground State Solutions for Singular Quasilinear Elliptic Equations

ZUODONG YANG ${ }^{a, b *}$
Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Jiangsu Nanjing 210046, China; and
School of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China
\section*{Chuanwei Yu ${ }^{\dagger}$}
Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Jiangsu Nanjing 210046, China

(Communicated by Ronghua Pan)

Abstract

The existence of ground state solutions for the quasi-linear elliptic equation $$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\rho(x) f(u), \text { in } \mathbf{R}^{\mathbf{N}}
$$ under suitable conditions is proved. We modify the method developed in [Z. Yang, Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, J. Comput. Appl. Math. 197 (2006) 355-364] and extend the results of [A.Mohammed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Analysis(in press) and Teodora-Liliana Dinu, Entire solutions of sublinear elliptic equations in anisotropic media, J. Math. Anal. Appl. 322(2006), 382-392.]

AMS Subject Classification: 35J05, 35J62
Keywords: Singular quasi-linear elliptic equation; Ground state solution; Maximum principle; L'Hopital's rule; Standard bootstrap argument

1 Introduction

In this paper, we are concerned with the existence of ground state solutions for the following singular quasilinear elliptic equation

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\rho(x) f(u), \text { in } \mathbf{R}^{\mathbf{N}}, \tag{1.1}\\
u>l, \\
u(x) \rightarrow l, \\
\text { in } \mathbf{R}^{\mathbf{N}}, \\
\text { as }|x| \rightarrow \infty,
\end{array}\right.
$$

[^0]where $N \geq 3$ and $l \geq 0$ is a real number.
When $p=2$, these kinds of problems have been studied extensively by many authors in which \mathbf{R}^{N} is replaced by a smooth bounded domain Ω with zero Dirichlet boundary condition (see [1]- [4]). Recently, the study of ground state solutions has received a lot of interest and numerous existence results have been established (see [5]- [16] and the references therein). Equations of (1.1) are mathematical models occurring in studies of the p-Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid theory [19], non-Newtonian filtration [20] and the turbulent flow of a gas in porous medium [21]. In the non-Newtonian fluid theory, the quantity p is characteristic of the medium. Media with $p>2$ are called dilatant fluids and those with $p<2$ are called pseudoplastics. If $p=2$, they are Newtonian fluids.

Recently, in [5] the author proved the existence of a ground state solution for the semilinear elliptic equation

$$
\begin{cases}-\triangle u=f(x, u), & \text { in } \mathbf{R}^{\mathbf{N}} \\ u>0, & \text { in } \mathbf{R}^{\mathbf{N}}, \\ u(x) \rightarrow 0, & \text { as }|x| \rightarrow \infty .\end{cases}
$$

under suitable conditions on a locally Hölder continuous non-linearity $f(x, t)$. The nonlinearity may exhibit a singularity as $t \rightarrow 0^{+}$.

In [17], Cirstea and Radulescu proved that the following problem

$$
\left\{\begin{array}{l}
-\triangle u=b(x) g(u), \quad \text { in } \mathbf{R}^{\mathbf{N}} \tag{1.2}\\
u>0, \\
u(x) \rightarrow 0,
\end{array} \quad \text { in } \mathbf{R}^{\mathbf{N}}, ~ \text { as }|x| \rightarrow \infty, ~ \$\right.
$$

admits a unique solution when g is bounded in a neighborhood of $\infty, \lim _{t \rightarrow 0^{+}} g(t) / t=\infty$, and $g(t) /(t+c)$ is decreasing for some constant $c>0$.

In [20], Goncalves and Santos established the existence of a solution to (1.2) under the assumptions that $g(t) / t$ is decreasing, $\lim _{t \rightarrow 0^{+}} g(t) / t=\infty$ and $\lim _{t \rightarrow \infty} g(t) / t=0$.

For $p>1$, the existence and uniqueness of the positive solutions for quasilinear elliptic equation

$$
\left\{\begin{array}{lc}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda f(u)=0, & \text { in } \Omega \tag{1.3}\\
u>0, & \text { in } \Omega \\
u(x)=0, & \text { on } \partial \Omega
\end{array}\right.
$$

with $\lambda>0, p>1, \Omega \subset \mathbf{R}^{\mathbf{N}}, N \geq 2$ have been studied by many authors. When f is strictly increasing on $\mathbf{R}^{+}, f(0)=0, \lim _{s \rightarrow 0^{+}} f(s) / s^{p-1}=0$ and $f(s) \leq \alpha_{1}+\alpha_{2} s^{\mu}, 0<\mu<p-$ $1, \alpha_{1}, \alpha_{2}>0$, it was shown in [22] that there exist at least two positive solutions for (1.3) when λ is sufficiently large.

When $f:(0, \infty) \rightarrow(0, \infty)$ and $q: \mathbf{R}^{\mathbf{N}} \rightarrow(0, \infty)$ are continuous functions, and

$$
\begin{equation*}
\int_{1}^{\infty}\left(\int_{0}^{u} f(s) d s\right)^{-1 / p} d u=\infty \tag{1.4}
\end{equation*}
$$

it has been shown in [23] that there exist entire radially symmetric solutions of the problem

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=q(x) f(u), \quad x \in \mathbf{R}^{\mathbf{N}} \tag{1.5}
\end{equation*}
$$

It was shown in [24] that problem

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f(x, u)=0, \quad x \in \mathbf{R}^{\mathbf{N}}, \tag{1.6}
\end{equation*}
$$

possesses infinitely many positive entire solutions. On the other hand, it was also shown in [25] that if $1<p<N, 0 \leq \gamma<p-1$, and $q(x) \in C\left(\mathbf{R}^{+}\right)$satisfies some suitable conditions, then problem

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+q(x) u^{-\gamma}=0, \quad x \in \mathbf{R}^{\mathbf{N}}, \tag{1.7}
\end{equation*}
$$

has a positive entire solution.
In [26], the authors considered the existence of solutions of the singular quasilinear elliptic problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=a(x) g(u)+b(x) f(u), & \text { in } \Omega, \tag{1.8}\\ u>0, & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbf{R}^{\mathbf{N}}$ is a bounded domain with smooth boundary, $a, b: \bar{\Omega} \rightarrow[0, \infty)$ are Hölder continuous functions with exponent $v \in(0,1)$ and $p>1$. The authors also assumed that $a+b>0$ a.e in Ω and $f, g:(0, \infty) \rightarrow[0, \infty)$ are locally Lipschitz continuous functions.

Motivated by the above results, we investigate the existence of positive solutions to problem (1.1). We modify the method developed in [25]-[27] and extend the results of [25] and [27] to singular quasilinear elliptic equation.

2 Main Results

Throughout the paper, we assume that the variable potential $\rho(x)$ satisfies $\rho \in C_{l o c}^{0, \alpha}\left(\mathbf{R}^{\mathbf{N}}\right)(0<$ $\alpha<1), \rho>0$ and $\rho \neq 0$.
$\left(\rho_{1}\right)$ For $\rho(x) \in C_{\operatorname{loc}}^{0, \alpha}\left(\mathbf{R}^{\mathbf{N}}\right)$, and $\Phi(r)=\max _{|x|=r} \rho(x)$

$$
\begin{gathered}
\int_{0}^{\infty} r^{1 /(p-1)} \Phi^{1 /(p-1)}(r) d r<\infty, \quad \text { if } \quad 1<p \leq 2, \\
\int_{0}^{\infty} r^{\frac{(p-2) N+1}{p-1}} \Phi(r) d r<\infty, \quad \text { if } \quad 2 \leq p<\infty
\end{gathered}
$$

The nonlinearity function $f:(0, \infty) \rightarrow(0, \infty)$ satisfies $f \in C_{{ }_{\text {loc }}}^{0, \alpha}(0, \infty)(0<\alpha<1)$ and has a sublinear growth, in the sense that
$\left(f_{1}\right)$ the mapping $u \rightarrow f(u) / u^{p-1}$ is decreasing on $(0, \infty)$ and $\lim _{u \rightarrow \infty} f(u) / u^{p-1}=0$.
$\left(f_{2}\right) f$ is increasing in $(0, \infty)$ and $\lim _{u \rightarrow 0} \frac{f(u)}{u^{p-1}}=+\infty$.
We point that condition $\left(f_{1}\right)$ does not require that f is smooth at the origin. The standard example is $f(u)=u^{q}$, where $-\infty<q<1 /(p-1)$. A nonlinearity function satisfying both $\left(f_{1}\right)$ and $\left(f_{2}\right)$ is $f(u)=u^{q}$ where $0<q<p-1$.

Theorem 2.1. Assume that $l>0$ and assumption $\left(\rho_{1}\right),\left(f_{1}\right)$ are fulfilled., then problem (1.1) has a solution.

Proof. For any positive integer k we consider the following problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}\right)=\rho(x) f\left(u_{k}\right), \quad \text { if } \quad|x|<k, \tag{2.1}\\
u_{k}>l, \quad \text { if } \quad|x|<k, \\
u_{k}(x)=l, \quad \text { if } \quad|x|=k
\end{array}\right.
$$

Equivalently, the above boundary value problem can be rewritten into

$$
\begin{cases}-\operatorname{div}\left(\left|\nabla v_{k}\right|^{p-2} \nabla v_{k}\right)=\rho(x) f\left(v_{k}+l\right), & \text { if } \quad|x|<k, \tag{2.2}\\ v_{k}(x)=0, & \text { if } \quad|x|=k\end{cases}
$$

Since $f \in C(0, \infty)$ and $l>0$, it follows that the mapping $v \rightarrow \rho(x) f(v+l)$ is continuous in $[0, \infty)$. From

$$
\rho(x) \frac{f(v+l)}{v^{p-1}}=\rho(x) \frac{f(v+l)}{(v+l)^{p-1}} \frac{(v+l)^{p-1}}{v^{p-1}}
$$

by the positivity of ρ and $\left(f_{1}\right)$ we deduce that the function $v \rightarrow \rho(x) \frac{f(v+l)}{v^{1 /(p-1)}}$ is decreasing on $(0, \infty)$.

By $\lim _{v \rightarrow \infty} f(v+l) /(v+l)^{p-1}=0$ and $f \in C(0, \infty)$, we can get that there exists $M>0$ such that $f(v+l) \leq M(v+l)^{p-1}$ for all $v \geq 0$. Then

$$
\rho(x) f(v+l) \leq\|\rho\|_{L^{\infty}(B(0, k))} M(v+l)^{p-1}
$$

for all $v \geq 0$.
We have

$$
a_{0}(x)=\lim _{v \rightarrow 0} \frac{\rho(x) f(v+l)}{v^{p-1}}=\infty
$$

and

$$
a_{\infty}(x)=\lim _{v \rightarrow \infty} \frac{\rho(x) f(v+l)}{v^{p-1}}=\lim _{v \rightarrow \infty} \rho(x) \frac{f(v+l)}{(v+l)^{p-1}} \frac{(v+l)^{p-1}}{v^{p-1}}=0
$$

thus by [22], problem (2.2) has a solution v_{k} which is positive in $|x|<K$. Then the maximum principle implies that $l \leq u_{k} \leq u_{k+1}$ in $\mathbf{R}^{\mathbf{N}}$.

Now, we prove the existence of a continuous function $v: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{R}, v>l$, such that $u_{k} \leq v$ in $\mathbf{R}^{\mathbf{N}}$.

Firstly, we construct a positive radial symmetric function w such that

$$
-\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=\Phi(r)(r=|x|), \quad \text { in } \quad \mathbf{R}^{\mathbf{N}},
$$

and $\lim _{r \rightarrow \infty} w(r)=0$. A straightforward computation shows that

$$
w(r)=K-\int_{0}^{r}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi
$$

where $K=\int_{0}^{+\infty}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi$. Then we prove that K is finite.

Case I. $1<p<2$, in this case, since $1 \leq \frac{1}{p-1}<\infty$, by the Hardy inequality, we have

$$
\begin{aligned}
& \int_{0}^{+\infty}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi \\
= & \int_{0}^{+\infty} \xi^{-\frac{N-1}{p-1}}\left[\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi \\
\leq & {\left[\frac{1}{p-1}\left(\frac{N-1}{p-1}\right)^{-1}\right]^{1 /(p-1)} \int_{0}^{+\infty} \xi^{-\frac{N-1}{p-1}}\left[\xi \xi^{N-1} \Phi(\xi)\right]^{1 /(p-1)} d \xi } \\
= & \left(\frac{1}{N-1}\right)^{\frac{1}{p-1}} \int_{0}^{+\infty} \xi^{1 /(p-1)} \Phi^{1 /(p-1)}(\xi) d \xi<\infty .
\end{aligned}
$$

Case II. For $2 \leq p<+\infty$, then $1 \leq p-1,0<\frac{1}{p-1} \leq 1$.
Set

$$
\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma \leq 1, \text { for } \xi>0
$$

or

$$
\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma>1, \text { for } \xi>0
$$

In the first case, when

$$
\left[\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} \leq 1
$$

we can get that
$\int_{0}^{r} \xi^{\frac{1-N}{p-1}}\left[\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi \leq \int_{0}^{r} \xi^{\frac{1-N}{p-1}} d \xi=\left.\lim _{\varepsilon \rightarrow 0} \frac{p-1}{p-N} \xi^{\frac{p-N}{p-1}}\right|_{\varepsilon} ^{r}=\frac{p-1}{p-N} \lim _{\varepsilon \rightarrow 0}\left(r^{\frac{p-N}{p-1}}-\varepsilon^{\frac{p-N}{p-1}}\right)$
is finite as $r \rightarrow \infty$ and $N>p$.
In the second case,

$$
\left[\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} \leq \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma,
$$

for $\xi \geq 0$, then

$$
\int_{0}^{r} \xi^{\frac{1-N}{p-1}}\left[\int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi \leq \int_{0}^{r} \xi^{\frac{1-N}{p-1}} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma d \xi .
$$

Integration by parts shows that

$$
\begin{aligned}
& \int_{0}^{r} \xi^{\frac{1-N}{p-1}} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma d \xi \\
= & -\frac{p-1}{N-p} \int_{0}^{r} \frac{d}{d \xi} \xi^{\frac{p-N}{p-1}} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma d \xi \\
= & \frac{p-1}{N-p}\left(-r^{\frac{p-N}{p-1}} \int_{0}^{r} \sigma^{N-1} \Phi(\sigma) d \sigma+\int_{0}^{r} \xi^{\frac{(p-2) N+1}{p-1}} \Phi(\xi) d \xi\right) .
\end{aligned}
$$

Using L'Hopital's rule, we have

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}\left[-r^{\frac{p-N}{p-1}} \int_{0}^{r} \sigma^{N-1} \Phi(\sigma) d \sigma+\int_{0}^{r} \xi^{\frac{(p-2) N+1}{p-1}} \Phi(\xi) d \xi\right] \\
= & \lim _{r \rightarrow \infty} \frac{-\int_{0}^{r} \sigma^{N-1} \Phi(\sigma) d \sigma+r^{\frac{N-p}{p-1}} \int_{0}^{r} \xi^{\frac{(p-2) N+1}{p-1}} \Phi(\xi) d \xi}{r^{\frac{N-p}{p-1}}} \\
= & \lim _{r \rightarrow \infty} \int_{0}^{r} \xi^{\frac{(p-2) N+1}{p-1}} \Phi(\xi) d \xi \\
= & \int_{0}^{\infty} \xi^{\frac{(p-2) N+1}{p-1}} \Phi(\xi) d \xi<\infty .
\end{aligned}
$$

Moreover, w is decreasing and satisfies $0<w(r)<k$ for all $r>0$. Let $v>l$, we define the following function

$$
w(r)=m^{-1} \int_{0}^{v(r)-l} t / f^{\frac{1}{p-1}}(t+l) d t
$$

in which $m>0$ is chosen such that

$$
1<m \leq \int_{0}^{m} \frac{t}{f^{\frac{1}{p-1}}(t+l)} d t
$$

Next, by L'Hopital's rule we have

$$
\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} \frac{t}{f^{\frac{1}{p-1}}(t+l)} d t}{x}=\lim _{x \rightarrow \infty} \frac{x}{f^{\frac{1}{p-1}}(x+l)}=\lim _{x \rightarrow \infty} \frac{(x+l)^{\frac{1}{p-1}}}{f(x+l)}\left(\frac{x}{x+l}\right)^{\frac{1}{p-1}}=\infty .
$$

This means that there exists $x_{1}>0$ such that $\int_{0}^{x} \frac{t}{f^{\frac{1}{p-1}}(t)} d t \geq K x$ for all $x \geq x_{1}$. It follows that for any $m \geq x_{1}$ we have

$$
K m \leq \int_{0}^{m} \frac{t}{f^{\frac{1}{p-1}}(t)} d t
$$

Since w is decreasing, we can get that v is a decreasing function. Then

$$
\int_{0}^{v(r)-l} \frac{t}{f^{\frac{1}{p-1}}(t+l)} d t \leq \int_{0}^{v(0)-l} \frac{t}{f^{\frac{1}{p-1}}(t+l)} d t=m v(0)=m K \leq \int_{0}^{m} \frac{t}{f^{\frac{1}{p-1}}(t+l)} d t
$$

It follows that $v(r) \leq m+l$ for all $r>0$.
From $w(r) \rightarrow 0$ as $r \rightarrow 0$, we deduce that $v(r) \rightarrow l$ as $r \rightarrow \infty$. By the choice of v we have

$$
\begin{gather*}
\nabla w=\frac{1}{m} \frac{v-l}{(f(v))^{\frac{1}{p-1}}} \nabla v,|\nabla w|^{p-2} \nabla w=\frac{1}{m^{p-1}} \frac{(v-l)^{p-1}}{f(v)}|\nabla v|^{p-2} \nabla v \\
\begin{aligned}
\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=\frac{1}{m^{p-1}} \frac{(v-l)^{p-1}}{f(v)} \operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+\frac{1}{m^{p-1}}\left(\frac{(v-l)^{p-1}}{f(v)}\right)^{\prime}|\nabla v|^{p} \\
>\left(\frac{v-l}{m}\right)^{p-1} \frac{1}{f(v)} \operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right) ;
\end{aligned} \\
\begin{aligned}
\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right) & <\frac{m^{p-1} f(v)}{(v-l)^{p-1}} \operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right) \\
& =\frac{m}{(v-l)^{p-1}} f(v) \Phi(r) \leq-f(v) \Phi(r)
\end{aligned}
\end{gather*}
$$

By (2.1), (2.3) and the hypothesis $\left(f_{1}\right)$, we obtain that $u_{k}(x) \leq v(x)$ for each $|x| \leq k$ and so, for all $x \in \mathbf{R}^{\mathbf{N}}$.

In conclusion

$$
u_{1} \leq u_{2} \leq \cdots \leq u_{k} \leq u_{k+1} \leq \cdots \leq v
$$

with $v(x) \rightarrow l$ as $|x| \rightarrow \infty$. Thus, there exists a function $u \leq v$ such that $u_{k} \rightarrow u$ pointwise in $\mathbf{R}^{\mathbf{N}}$. In particular, this shows that $u>l$ in $\mathbf{R}^{\mathbf{N}}$ and $u(x) \rightarrow l$ as $|x| \rightarrow \infty$.

A standard bootstrap argument shows that u is a solution of problem (1.1).
When $l=0$ our result is as following.
Theorem 2.2. Assume that $l=0$ and assumption $\left(\rho_{1}\right),\left(f_{1}\right)$ and $\left(f_{2}\right)$ are fulfilled. Then problem (1.1) has a solution.

Proof. Since f is an increasing positive function on $(0, \infty)$, the limit $\lim _{u \rightarrow 0} f(u)$ exists and is finite, so f can be extended by continuity to the origin. Consider the Dirichlet problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}\right)=\rho(x) f\left(u_{k}\right), \quad \text { if } \quad|x|<k, \tag{2.4}\\
u_{k}(x)=0, \quad \text { if } \quad|x|=k .
\end{array}\right.
$$

Using the same arguments as in case $l>0$ we deduce that $\rho(x) f(u)$ is continuous in $[0, \infty)$. and $\rho(x) \frac{f(u)}{u^{p-1}}$ is decreasing on $(0, \infty)$. On the other hand, we use both hypothesis $\left(f_{1}\right)$ and $\left(f_{2}\right)$. Hence $f(u) \leq f(1)$ if $u \leq 1$ and $f(u) / u^{p-1} \leq f(1)$ if $u \geq 1$. Therefore $f(u) \leq$ $f(1)\left(u^{p-1}+1\right)$, for all $u \geq 0$. The existence of a solution for (2.4) follows from [22]. These conditions are direct consequences of our assumptions $\lim _{u \rightarrow \infty} f(u) / u^{p-1}=0$ and $\lim _{u \rightarrow 0} f(u) / u^{p-1}=+\infty$. Define $u_{k}(x)=0$ for $|x|>K$. Using the same arguments as the case $l>0$, we obtain $u_{k} \leq u_{k+1}$ in $\mathbf{R}^{\mathbf{N}}$.

Next, we prove the existence of a continuous function $v: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{R}$ such that $u_{k}<v$ in $\mathbf{R}^{\mathbf{N}}$. Using the same arguments as in case $l>0$, we first construct a positive radially symmetric function w satisfying $-\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=\Phi(r)(r=|x|)$ in $\mathbf{R}^{\mathbf{N}}$ and $\lim _{r \rightarrow \infty} w(r)=0$. We obtain

$$
w(r)=K-\int_{0}^{r}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi,
$$

where $K=\int_{0}^{+\infty}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{1 /(p-1)} d \xi$. Using the same arguments as in case $l>0$, we can prove that K is finite, and we have

$$
w(r)< \begin{cases}\left(\frac{1}{N-1}\right)^{\frac{1}{p-1}} \int_{0}^{+\infty} \xi^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi, & \text { if } \quad 1<p \leq 2 \\ \int_{0}^{+\infty} \xi^{\frac{(p-2) N+1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi, & \text { if } 2<p \leq+\infty\end{cases}
$$

for all $r>0$.
Let v be a positive function such that

$$
w(r)=C^{-1} \int_{0}^{v(r)} \frac{t}{f^{\frac{1}{p-1}}(t)} d t
$$

where C is chosen such that

$$
K C \leq \int_{0}^{C} \frac{t}{f^{\frac{1}{p-1}}(t)} d t
$$

We argue in what follows that we can find $C>0$ with this property. Indeed, by L'Hopital's rule

$$
\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} \frac{t}{f^{\frac{1}{p-1}}(t)} d t}{x}=\lim _{x \rightarrow \infty}\left(\frac{x^{p-1}}{f(x)}\right)^{\frac{1}{p-1}}=+\infty
$$

This means that there exists $x_{1}>0$ such that $\int_{0}^{x} \frac{t}{f^{\frac{1}{p-1}(t)}} d t \geq K x$, for all $x>x_{1}$. It follows that for any $C \geq x_{1}$ we have

$$
K x \leq \int_{0}^{C} \frac{t}{f^{\frac{1}{p-1}}(t)} d t
$$

On the other hand, since w is decreasing, we deduce that v is decreasing function, too. Hence

$$
\int_{0}^{C} \frac{t}{f^{\frac{1}{p-1}}(t)} d t \leq \int_{0}^{v(0)} \frac{t}{f^{\frac{1}{p-1}}(t)} d t=C \cdot w(0)=C \cdot K \leq \int_{0}^{C} \frac{t}{f^{\frac{1}{p-1}}(t)} d t
$$

It follows that $v(r) \leq C$ for all $r>0$.
From $w(r) \rightarrow 0$ as $r \rightarrow \infty$ we deduce that $v(r) \rightarrow 0$ as $r \rightarrow \infty$. By the choice of v we have

$$
\begin{gather*}
\nabla w=\frac{1}{C} \frac{v}{(f(v))^{\frac{1}{p-1}}} \nabla v,|\nabla w|^{p-2} \nabla w=\frac{v^{p-1}}{C^{p-1}} \frac{1}{f(v)}|\nabla v|^{p-2} \nabla v, \\
\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=\left(\frac{v}{c}\right)^{p-1} \frac{1}{f(v)} \operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+\left(\frac{1}{c}\right)^{p-1}\left(\frac{v^{p-1}}{f(v)}\right)^{\prime}|\nabla v|^{p} \tag{2.5}
\end{gather*}
$$

combining the fact that $f(u) / u^{p-1}$ is a decreasing function on $(0, \infty)$ with relation (2.5), we deduce that

$$
\begin{align*}
\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right) & <C^{p-1} \frac{f(v)}{v^{p-1}} \operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right) \\
& =-C^{p-1} \frac{f(v)}{v^{p-1}} \Phi(r) \tag{2.6}\\
& \leq-f(v) \Phi(r)
\end{align*}
$$

By (2.4) and (2.6) and using our hypothesis $\left(f_{2}\right)$, we obtain that $u_{k}(x) \leq v(x)$ for each $|x| \leq K$ and so, for all $x \in \mathbf{R}^{\mathbf{N}}$.

We have obtained a bounded increasing sequence

$$
u_{1} \leq u_{2} \leq \cdots \leq u_{k} \leq u_{k+1} \leq \cdots \leq v
$$

with v vanishing at infinity. Thus, there exists a function $u \leq v$ such that $u_{k} \rightarrow u$ pointwise in $\mathbf{R}^{\mathbf{N}}$. A standard bootstrap arguments implies that u is a solution of problem (1.1).

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments. Project Supported by the National Natural Science Foundation of China(Grant No.10871060); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.08KJB110005)

References

[1] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal. 41 (2000) 149-176.
[2] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991) 721-730.
[3] H. Maagli, M. Zribi, Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 (2001) 522-542.
[4] J. Shi, M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Differential Equations (04) (2005) 11.
[5] A.Mohammed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Analysis, 71(2009), 1276-1280.
[6] H. Brezis, S. Kamin, Sublinear elliptic equations in \mathbf{R}^{N}, Manuscripta Math. 74 (1992) 87-106.
[7] R. Dalmasso, Solutions d' équations elliptiques semi-linéaires singulières, Ann. Mat. Pura Appl. 153 (1988) 191-201.
[8] A.L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. Appl. 139 (1989) 523-532.
[9] K. El Mabrouk, Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal. 58 (2004) 205-218.
[10] W. Feng, X. Liu, Existence of entire solutions of a singular semilinear elliptic problem, Acta Math. Sinica 20 (2004) 983-988.
[11] M. Ghergu, V.D. Răulescu, Ground state solutions for the singular Lane Emden Fowler equation with sublinear convection term, J. Math. Anal. Appl. 333 (2007) 265-273.
[12] T. Kusano, C.A. Swanson, Entire positive solutions of singular semilinear elliptic equations, Japan. J. Math. 11 (1985) 145-155.
[13] A.V. Lair, A.W. Shaker, Entire solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 200 (1996) 498-505.
[14] S. Wu, H. Yang, The existence theorems for a class of sublinear elliptic equations in RN , Acta Math. Sinica 13 (1997) 259-304.
[15] Z. Zhang, A remark on the existence of entire solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 215 (1997) 579-582.
[16] Z. Zhang, A remark on the existence of positive entire solutions of a sublinear elliptic problem, Nonlinear Anal. 67 (2007) 147-153.
[17] F. Cìstea, V.D. Rǎulescu, Existence and uniqueness of positive solutions to a semilinear elliptic problem in \mathbf{R}^{N}, J. Math. Anal. Appl. 229 (1999) 417-425.
[18] J.V. Goncalves, C.A. Santos, Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations, Nonlinear Anal. 65 (2006) 719-727.
[19] L. K. Martinson, K. B. Pavlov, Unsteady shear flows of a conducting fluid with a rheological power law, Magnitnaya Gidrodinamika 2 (1971) 50-58.
[20] A. S. Kalashnikov, On a nonlinear equation appearing in the theory of non-stationary filtration', Trud. Sem. I. G. Petrovski (1978)(in Russian).
[21] J. R. Esteban, J. L. Vazquez, On the equation of turbulent filteration in onedimensional porous media, Nonlinear Anal. 10 (1982) 1303-1325.
[22] Z. M. Guo, Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18 (1992) 957-971.
[23] Z. Yang, Non-existence of positive entire solutions for elliptic inequalities of pLaplace, Appl. Math.- JCU 12B (1997) 399-410.
[24] Z. Yang, H.S. Yang, A priori for a quasilinear elliptic P.D.E. non-positone problems, Nonlinear Anal. 43 (2001) 173-181.
[25] Z. Yang, Existence of positive entire solutions for singular and non-singular quasilinear elliptic equation, J. Comput. Appl. Math. 197 (2006) 355-364.
[26] Q. Miao, Z. Yang, Quasilinear elliptic equation involving singular non-linearities, International Journal of Computer Mathematics (in press).
[27] Teodora-Liliana Dinu, Entire solutions of sublinear elliptic equations in anisotropic media, J. Math. Anal. Appl. 322(2006), 382-392.

[^0]: *E-mail address: zdyang_jin@263.net
 †E-mail address: chuanweiyu@163.com

