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Abstract

We establish some Filippov type existence theorems for solutions of certain nonconvex
fractional hyperbolic differential inclusions involving Caputo’s fractional derivative.
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1 Introduction

Differential equations with fractional order have recently proved to be strong tools in the
modelling of many physical phenomena. As a consequence there was an intensive de-
velopment of the theory of differential equations of fractional order ([4, 16, 17, 20] etc.).
The study of fractional differential inclusions was initiated by El-Sayed and Ibrahim ([12]).
Very recently several qualitative results for fractional differential inclusions were obtained
in [3, 5, 9, 10, 14, 15, 18] etc.. Applied problems require definitions of fractional derivative
allowing the utilization of physically interpretable initial conditions. Caputo’s fractional
derivative, originally introduced in [3] and afterwards adopted in the theory of linear visco
elasticity, satisfies this demand. For a consistent bibliography on this topic, historical re-
marks and examples we refer to [3]. At the same time, since fractional differential inclu-
sions represent a special class of integral inclusions, other related results may be found in
[19].

In this paper we study fractional hyperbolic differential inclusions of the form

Dr
cu(x,y) ∈ F(x,y,u(x,y)) a.e. (x,y) ∈ Π, (1.1)

∗E-mail address: acernea@fmi.unibuc.ro
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u(x,0) = ϕ(x), u(0,y) = ψ(y) (x,y) ∈ Π, (1.2)

where Π = [0,T1]× [0,T2], ϕ(.) : [0,T1]→Rn, ψ(.) : [0,T2]→Rn with ϕ(0) = ψ(0), F(., .) :
Π×Rn → P (Rn) is a set-valued map and Dr

c is the Caputo fractional derivative of order
r = (r1,r2) ∈ (0,1]× (0,1].

Very recently in [1,2] problem (1.1)-(1.2) with F(., .) single valued is studied and sev-
eral existence results are obtained using fixed point techniques.

The aim of the present paper is twofold. On one hand, we show that Filippov’s ideas
([13]) can be suitably adapted in order to obtain the existence of a solution of problem
(1.1)-(1.2). We recall that for a first order differential inclusion defined by a lipschitzian
set-valued map with nonconvex values Filippov’s theorem ([13]) consists in proving the ex-
istence of o solution starting from a given ”almost” solution. Moreover, the result provides
an estimate between the starting ”quasi” solution and the solution of the differential inclu-
sion. On the other hand, we prove the existence of solutions continuously depending on a
parameter for problem (1.1)-(1.2). This result may be interpreted as a continuous variant
of Filippov’s theorem for problem (1.1)-(1.2). The key tool in the proof of this theorem
is a result of Bressan and Colombo ([7]) concerning the existence of continuous selections
of lower semicontinuous multifunctions with decomposable values. This result allows to
obtain a continuous selection of the solution set of the problem considered.

Our results may be interpreted as extensions of previous results of Staicu ([22]) and
Tuan ([23,24]) obtained for ”classical” hyperbolic differential inclusions. In fact, in the
proof of our theorems we essentially use several technical results due to Staicu ([22]) and
Tuan ([23,24]).

The paper is organized as follows: in Section 2 we briefly recall some preliminary
results that we will use in the sequel and in Section 3 we prove the main results of the
paper.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X ,d) be a metric space. The Pompeiu-Hausdorff distance of the closed subsets

A,B⊂X is defined by dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B); a∈A},
where d(x,B) = inf{d(x,y);y ∈ B}. With cl(A) we denote the closure of the set A ⊂ X .

Consider I1 = [0,T1], I2 = [0,T2] and Π = [0,T1]× [0,T2]. Denote by L(Π) the σ- algebra
of the Lebesgue measurable subsets of Π and by B(Rn) the family of all Borel subsets of
Rn.

Let C(Π,Rn) be the Banach space of all continuous functions from Π to Rn with the
norm ||u||C = sup{‖u(x,y)‖; (x,y) ∈ Π} where ‖ · ‖ is the Euclidean norm on Rn, and
L1(Π,Rn) be the Banach space of functions u(·, ·) : Π → Rn which are integrable, normed
by ‖u‖L1 =

R T1
0

R T2
0 ‖u(x,y)‖dxdy.

Recall that a subset D ⊂ L1(Π,Rn) is said to be decomposable if for any u(·),v(·) ∈ D
and any subset A ∈ L(Π) one has uχA + vχB ∈ D, where B = I\A. We denote by D the
family of all decomposable closed subsets of L1(Π,Rn).

Let F(., .) : Π×Rn → P (Rn) be a set-valued map. Recall that F(., .) is called L(Π)⊗
B(Rn) measurable if for any closed subset C ⊂ Rn we have {(x,y,z) ∈ Π×Rn;F(x,y,z)∩
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C} 6= /0} ∈ L(Π)⊗B(Rn).

Definition 2.1. ([21]) a) The left-sided mixed Riemann-Liouville integral of order r =
(r1,r2) ∈ (0,1]× (0,1] of f (., .) ∈ L1(Π,Rn) is defined by

(Ir
0 f )(x,y) =

1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 f (s, t)dsdt,

where Γ(.) is the (Euler’s) Gamma function defined by Γ(α) =
R

∞

0 tα−1e−tdt, α > 0.
b) The Caputo fractional-order derivative of order r of f (., .) ∈ L1(Π,Rn) is defined by

(Dr
c f )(x,y) = (I1−r

0
∂2 f
∂x∂y

)(x,y).

In the definition above by 1− r we mean (1− r1,1− r2) ∈ (0,1]× (0,1].

Definition 2.2. A function u(., .) ∈C(Π,Rn) is said to be a solution of problem (1.1)-(1.2)
if there exists f (., .) ∈ L1(Π,Rn) such that

f (x,y) ∈ F(x,y,u(x,y)) a.e. (Π), (2.1)

Dr
cu(x,y) = f (x,y,u(x,y)) (x,y) ∈ Π, (2.2)

u(x,0) = ϕ(x), u(0,y) = ψ(y) (x,y) ∈ Π, (2.3)

The pair (u(., .), f (., .) is called a trajectory-selection pair of problem (1.1)-(1.2).

Lemma 2.3. ([1]) u(., .) ∈C(Π,Rn) is a solution of problem (2.2)-(2.3) if and only if u(., .)
satisfies

u(x,y) = µ(x,y)+(Ir
0 f )(x,y), (x,y) ∈ Π,

where µ(x,y) = ϕ(x)+ψ(y)−ϕ(0).

Consider the Banach space S := {(ϕ,ψ)∈C(I1,Rn)×C(I2,Rn);ϕ(0) = ψ(0)} endowed
with the norm ||(ϕ,ψ)|| = ||ϕ||C + ||ψ||C and for (ϕ,ψ) ∈ S denote S(ϕ,ψ) the set of all
solutions of problem (1.1)-(1.2).

We recall now some results that we are going to use in the next section.

Lemma 2.4. ([23]) Let H(·, ·) : Π→ P (Rn) be a compact valued measurable multifunction
and v(·, ·) : Π → Rn a measurable function.

Then there exists a measurable selection h(·, ·) of H(·, ·) such that

‖v(x,y)−h(x,y)‖= d(v(x,y),H(x,y)), a.e. (Π).

Next (S,d) is a separable metric space and X is a Banach space. We recall that a multi-
function G(·) : S→ P (X) is said to be lower semicontinuous (l.s.c.) if for any closed subset
C ⊂ X , the subset {s ∈ S;G(s)⊂C} is closed in S.
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Lemma 2.5. ([22]) Let F∗(., .) : Π×S → P (Rn) be a closed valued L(Π)⊗B(S) measur-
able multifunction such that F∗((x,y), .) is l.s.c. for any (x,y) ∈ Π.

Then the set-valued map G(.) defined by

G(s) = {v ∈ L1(Π,Rn); v(x,y) ∈ F∗(x,y,s) a.e. (Π)}

is l.s.c. with nonempty decomposable closed values if and only if there exists a continuous
mapping p(.) : S → L1(Π,Rn) such that

d(0,F∗(x,y,s))≤ p(s)(x,y) a.e. (Π), ∀s ∈ S.

Lemma 2.6. ([22]) Let G(.) : S → D be a l.s.c. set-valued map with closed decompos-
able values and let f (.) : S → L1(Π,Rn), q(.) : S → L1(Π,R) be continuous such that the
multifunction H(.) : S → D defined by

H(s) = cl{v(.) ∈ G(s); ||v(x,y)− f (s)(x,y)||< q(s)(x,y) a.e. (Π)}

has nonempty values.
Then H(.) has a continuous selection, i.e. there exists a continuous mapping h(.) : S →

L1(Π,Rn) such thath(s) ∈ H(s) ∀s ∈ S.

3 The main results

In order to obtain a Filippov type existence result for problem (1.1)-(1.2) one need the
following assumptions on F(., .).

Hypothesis 3.1. F(., .) : Π×Rn → P (Rn) is a set-valued map with non-empty, compact
values that verifies:
i) For all u ∈ Rn, F(., .,u) is measurable.
ii) There exists l(., .)∈ L1(Π,R+) such that there exists L := sup(x,y)∈Π(Ir

0l)(x,y), L < 1 and
for almost all (x,y) ∈ Π, F(x,y, ·) is l(x,y) - Lipschitz in the sense that

dH(F(x,y,u1),F(x,y,u2))≤ l(x,y)‖u1−u2‖, ∀u1,u2 ∈ Rn.

In what follows g(., .) ∈ L1(Π,Rn) is given such that there exists λ(., .) ∈ L1(Π,R+)
with Λ := sup(x,y)∈Π(Ir

0λ)(x,y) < +∞ which satisfies

d(g(x,y),F(x,y,w(x,y)))≤ λ(x,y) a.e. (Π),

where w(., .) is a solution of the fractional hyperbolic differential equation

Dr
cw(x,y) = g(x,y) (x,y) ∈ Π, (3.1)

w(x,0) = ϕ1(x), w(0,y) = ψ1(y) (x,y) ∈ Π, (3.1)

with (ϕ1,ψ1) ∈ S. Set µ1(x,y) = ϕ1(x)+ψ1(y)−ϕ1(0), (x,y) ∈ Π.
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Theorem 3.2. Let Hypothesis 3.1 be satisfied and consider g(., .), λ(., .), w(., .) as above,
(ϕ,ψ) ∈ S and µ(x,y) = ϕ(x)+ψ(y)−ϕ(0), (x,y) ∈ Π.

Then there exists (u(., .), f (., .)) a trajectory-selection pair of problem (1.1)-(1.2) such
that

||u(x,y)−w(x,y)|| ≤ ||µ−µ1||C +Λ

1−L
, ∀(x,y) ∈ Π, (3.3)

|| f (x,y)−g(x,y)|| ≤ l(x,y)(||µ−µ1||C +Λ)
1−L

+λ(x,y), a.e. (Π). (3.4)

Proof. We define f0(., .) = g(., .), u0(., .) = w(., .). It follows from Lemma 2.4 and Hypoth-
esis 3.1 that there exists a measurable function f1(., .) such that f1(x,y) ∈ F(x,y,u0(x,y))
a.e. (Π) and for almost all (x,y) ∈ Π

‖ f0(x,y)− f1(x,y)‖= d(g(x,y),F(x,y,u0(x,y)))≤ λ(x,y).

Define, for (x,y) ∈ Π

u1(x,y) = µ(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 f1(s, t)dsdt.

Since

w(x,y) = µ1(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 f0(s, t)dsdt

one has

||u1(x,y)−u0(x,y)|| ≤ ||µ(x,y)−µ1(x,y)||+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1.

.(y− t)r2−1|| f1(s, t)− f0(s, t)||dsdt ≤ ||µ−µ1||C +
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1.

.(y− t)r2−1
λ(s, t)dsdt ≤ ||µ−µ1||C +Λ.

From Lemma 2.4 and Hypothesis 3.1 we deduce the existence of a measurable function
f2(., .) such that f2(x,y) ∈ F(x,y,u1(x,y)) a.e. (Π) and for almost all (x,y) ∈ Π

‖ f2(x,y)− f1(x,y)‖ ≤ d( f1(x,y),F(x,y,u1(x,y)))≤ dH(F(x,y,u0(x,y)),

F(x,y,u1(x,y)))≤ l(x,y)||u1(x,y)−u0(x,y)|| ≤ l(x,y)(||µ−µ1||C +Λ).

Define, for (x,y) ∈ Π

u2(x,y) = µ(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 f2(s, t)dsdt

and one has

||u2(x,y)−u1(x,y)|| ≤
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1|| f2(s, t)−
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− f1(s, t)||dsdt ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1l(s, t)(||µ−µ1||C+

+Λ)dsdt ≤ L(||µ−µ1||C +Λ).

Assuming that for some p ≥ 2 we have already constructed the sequences (ui(., .))
p
i=1,

( fi(., .))
p
i=1 satisfying

‖up(x,y)−up−1(x,y)‖ ≤ Lp−1(||µ−µ1||C +Λ) (x,y) ∈ Π, (3.5)

‖ fp(x,y)− fp−1(x,y)‖ ≤ l(x,y)Lp−2(||µ−µ1||C +Λ) a.e. (Π). (3.6)

We apply Lemma 2.4 and we find a measurable function fp+1(., .) such that fp+1(x,y) ∈
F(x,y,up(x,y)) a.e. (Π) and for almost all (x,y) ∈ Π

‖ fp+1(x,y)− fp(x,y)‖ ≤ d( fp+1(x,y),F(x,y,up(x,y)))≤ dH(F(x,y,up(x,y)),

F(x,y,up−1(x,y)))≤ l(x,y)||up(x,y)−up−1(x,y)|| ≤ l(x,y)Lp−1(||µ−µ1||C +Λ).

Define, for (x,y) ∈ Π

up+1(x,y) = µ(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 fp+1(s, t)dsdt. (3.7)

We have

||up+1(x,y)−up(x,y)|| ≤
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1|| fp+1(s, t)−

− fp(s, t)||dsdt ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1l(s, t)||up(s, t)−

−up−1(s, t)||dsdt ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1l(s, t)Lp−1(||µ−

−µ1||C +Λ)dsdt ≤ Lp(||µ−µ1||C +Λ).

Therefore from (3.5) it follows that the sequence (up(., .))p≥0 is a Cauchy sequence in
the space C(Π,Rn), so it converges to u(., .) ∈ C(Π,Rn). From (3.6) it follows that the
sequence ( fp(., .))p≥0 is a Cauchy sequence in the space L1(Π,Rn), thus it converges to
f (., .) ∈ L1(Π,Rn).

Using the fact that the values of F(., .) are closed we get that f (x,y) ∈ F(x,y,u(x,y))
a.e. (Π).

One may write successively,

1
Γ(r1)Γ(r2)

||
Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1 fp(s, t)dsdt−

Z x

0

Z y

0
(x− s)r1−1.

.(y− t)r2−1 f (s, t)dsdt|| ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1|| fp(s, t)−

− f (s, t)||dsdt ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− s)r1−1(y− t)r2−1l(s, t)||up−1(s, t)−
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−u(s, t)||dsdt ≤ L||up−1(., .)−u(., .)||C.

Therefore, we may pass to the limit in (3.2) and we obtain, via Lemma 2.3, that u(., .) is
a solution of problem (1.1)-(1.2). On the other hand, by adding inequalities (3.5) for any
(x,y) ∈ Π we have

||up(x,y)−w(x,y)|| ≤ ||up(x,y)−up−1(x,y)||+ ||up−1(x,y)−up−2(x,y)||
+ . . .+ ||u2(x,y)−u1(x,y)||+ ||u1(x,y)−u0(x,y)|| ≤
≤ (Lp−1 +Lp−2 + ...+L+1)(||µ−µ1||C +Λ)≤ ||µ−µ1||C+Λ

1−L .

(3.8)

Similarly, by adding inequalities (3.6) for almost all (x,y) ∈ Π we have

|| fp(x,y)−g(x,y)|| ≤ || fp(x,y)− fp−1(x,y)||+ || fp−1(x,y)− fp−2(x,y)||
+ . . .+ || f2(x,y)− f1(x,y)||+ || f1(x,y)− f0(x,y)|| ≤ l(x,y)(Lp−2 + ...+
+L+1)(||µ−µ1||C +Λ)+λ(x,y)≤ l(x,y) ||µ−µ1||C+Λ

1−L +λ(x,y).
(3.9)

It remains to pass to the limit with p → ∞ in (3.8) and (3.9) in order to obtain (3.3) and
(3.4), respectively and the proof is complete.

If in Theorem 3.2 we take g = 0, w = 0, ϕ1 = 0, ψ1 = 0 and λ = l then we obtain the
following existence result for solutions of problem (1.1)-(1.2).

Corollary 3.3. Let Hypothesis 3.1 be satisfied and assume that d(0,F(x,y,0)) ≤ l(x,y)
∀(x,y) ∈ Π.

Then there exists u(., .) ∈C(Π,Rn) a solution of problem (1.1)-(1.2) such that

||u(x,y)|| ≤ ||µ||C +L
1−L

, ∀(x,y) ∈ Π.

We note that the proof of Corollary 3.3 can be performed also by using the Covitz-
Nadler set-valued contraction principle.

Example 3.4. Consider the following problem which is a slight modification of an example
in [1]

Dr
cu(x,y) =

1
3ex+y+2(1+ |u(x,y)|)

a.e. (x,y) ∈ [0,1]× [0,1],

u(x,0) = x, u(0,y) = y2 (x,y) ∈ [0,1]× [0,1].

In this case ϕ(x) = x, ψ(y) = y2, F(x,y,u) = { 1
3ex+y+2(1+|u|)}, T1 = T2 = 1. A straightfor-

ward computation shows that l(x,y)≡ 1
3e2 , L = sup(x,y)∈Π(Ir

0l)(x,y) = 1
3e2Γ(r1+1)Γ(r2+1) < 1

if r1,r2 ∈ (0,1] and d(0,F(x,y,0)) = 1
3ex+y+2 ≤ 1

3e2 .
Therefore, we can apply Corollary 3.3 and we obtain the existence of a solution which

satisfies

||u(x,y)|| ≤ 6e2Γ(r1 +1)Γ(r2 +1)+1
3e2Γ(r1 +1)Γ(r2 +1)−1

, ∀(x,y) ∈ [0,1]× [0,1].

Next we obtain a continuous version of Theorem 3.1. This result allows to provide a
continuous selection of the solution set of problem (1.1)-(1.2).
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Hypothesis 3.5. F(., .) : Π×Rn → P (Rn) has nonempty compact values, F(., .) is L(Π)⊗
B(Rn) measurable and there exists l(., .) ∈ L1(Π,R+) such that there exists L := sup(x,y)∈Π

(Ir
0l)(x,y), L < 1 and for almost all (x,y) ∈ Π, F(x,y, ·) is l(x,y) - Lipschitz.

Hypothesis 3.6. i) S is a separable metric space, ϕ(.) → C(I1,Rn),ψ(.) : S → C(I2,Rn)
and ε(.) : S → (0,∞) are continuous mappings.

ii) There exists the continuous mappings ϕ1(.)→C(I1,Rn),ψ1(.) : S →C(I2,Rn) g(.) :
S → L1(Π,Rn), λ(.) : S → L1(Π,R) and w(.) : S →C(Π,Rn) such that

(Dw(s))r
c(x,y) = g(s)(x,y) a.e. (Π), ∀s ∈ S,

w(s)(x,0) = ϕ1(s)(x), w(s)(0,y) = ψ1(s)(y) (x,y) ∈ Π, ∀s ∈ S,

d(g(s)(x,y),F(x,y,w(s)(x,y))≤ λ(s)(x,y) a.e. (Π), ∀ s ∈ S

and the mapping s → Λ(s) := sup(x,y)∈Π(Ir
0λ(s))(x,y) is continuous.

We use next the following notations µ(s)(x,y) = ϕ(s)(x)+ψ(s)(y)−ϕ(s)(0), µ1(s)(x,y)
= ϕ1(s)(x)+ψ1(s)(y)−ϕ1(s)(0) (x,y) ∈Π, a(s) = sup(x,y)∈Π ||µ(s)(x,y)−µ1(s)(x,y)|| s ∈
S.

Theorem 3.7. Assume that Hypotheses 3.5 and 3.6 are satisfied.
Then there exist a continuous mapping u(.) : S → C(Π,Rn) such that for any s ∈ S,

u(s)(., .) is a solution of problem (1.1) which satisfies u(s)(x,0) = ϕ(s)(x), u(s)(0,y) =
ψ(s)(y) (x,y) ∈ Π,s ∈ S and

||u(s)(x,y)−w(s)(x,y)|| ≤ a(s)+ ε(s)+Λ(s)
1−L

∀(x,y) ∈ Π,∀s ∈ S.

Proof. We make the following notations u0(., .) = w(., .), λp(s) := Lp−1(a(s)+ε(s)+Λ(s)),
p ≥ 1.

We consider the set-valued maps G0(.),H0(.) defined, respectively, by

G0(s) = {v ∈ L1(Π,Rn); v(x,y) ∈ F(x,y,w(s)(x,y)) a.e.(Π)},

H0(s) = cl{v ∈ G0(s); ||v(x,y)−g(s)(x,y)||< λ(s)(x,y)+
Γ(r1 +1)Γ(r2 +1)

T r1
1 T r2

2
ε(s)}.

Since d(g(s)(x,y),F(x,y,w(s)(x,y)) ≤ λ(s)(x,y) < λ(s)(x,y) + Γ(r1+1)Γ(r2+1)
T r1

1 T r2
2

ε(s) the set

H0(s) is not empty.
Set F∗

0 (x,y,s) = F(x,y,w(s)(x,y)) and note that

d(0,F∗
0 (x,y,s))≤ ||g(s)(x,y)||+λ(s)(x,y) =: λ

∗(s)(x,y)

and λ∗(.) : S → L1(I,R) is continuous.
Applying now Lemmas 2.5 and 2.6 we obtain the existence of a continuous selection f0

of H0 such that ∀s ∈ S, (x,y) ∈ Π,

f0(s)(x,y) ∈ F(x,y,w(s)(x,y)) a.e.(Π), ∀s ∈ S,
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|| f0(s)(x,y)−g(s)(x,y)|| ≤ λ0(s)(x,y) = λ(s)(x,y)+
Γ(r1 +1)Γ(r2 +1)

T r1
1 T r2

2
ε(s).

We define

u1(s)(x,y) = µ(s)(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1 f0(s)(z, t)dzdt.

and one has

||u1(s)(x,y)−u0(s)(x,y)|| ≤ a(s)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− z)r1−1.

.(y− t)r2−1|| f0(s)(z, t)−g(s)(z, t)||dzdt ≤ a(s)+
1

Γ(r1)Γ(r2)Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1[λ(s)(z, t)+

Γ(r1 +1)Γ(r2 +1)
T r1

1 T r2
2

ε(s)]dzdt ≤

≤ a(s)+Λ(s)+ ε(s) =: λ1(s), (x,y) ∈ Π,s ∈ S.

We shall construct, using the same idea as in [11], two sequences of approximations
fp(., .) : S → L1(Π,Rn), up(., .) : S →C(Π,Rn) with the following properties

a) fp(., .) : S → L1(Π,Rn), up(., .) : S →C(Π,Rn) are continuous,
b) fp(s)(x,y) ∈ F(x,y,up(s)(x,y)), a.e. (Π), s ∈ S,
c) || fp(s)(x,y)− fp−1(s)(x,y)|| ≤ l(x,y)λp(s), a.e. (Π), s ∈ S.
d) up+1(s)(x,y) = µ(s)(x,y)+ 1

Γ(r1)Γ(r2)
R x

0
R y

0 (x− z)r1−1(y− t)r2−1 fp(s)(z, t)dzdt,
(x,y) ∈ Π,s ∈ S.

Suppose we have already constructed fi(.),ui(.) satisfying a)-c) and define up+1(.) as
in d). From c) and d) one has

||up+1(s)(x,y)−up(s)(x,y)|| ≤ 1
Γ(r1)Γ(r2)

R x
0

R y
0 (x− z)r1−1(y− t)r2−1

|| fp(s)(z, t)− fp−1(s)(z, t)||dzdt ≤ 1
Γ(r1)Γ(r2)

R x
0

R y
0 (x− z)r1−1(y− t)r2−1.

.l(z, t)λp(s)dzdt < Lλp(s) =: λp+1(s).
(3.10)

On the other hand,

d( fp(s)(x,y),F(x,y,up+1(s)(x,y))≤ l(x,y)||up+1(s)(x,y)−up(s)(x,y)||<
< l(x,y)λp+1(s).

(3.11)

For any s ∈ S we define the set-valued maps

Gp+1(s) = {v ∈ L1(Π,Rn); v(x,y) ∈ F(x,y,up+1(s)(x,y)) a.e.(Π)},

Hp+1(s) = cl{v ∈ Gp+1(s); ||v(x,y)− fp(s)(x,y)||< l(x,y)λp+1(s)}.

We note that from (3.11) the set Hp+1(s) is not empty.
Set F∗

p+1(x,y,s) = F(x,y,up+1(s)(x,y)) and note that

d(0,F∗
p+1(x,y,s))≤ || fp(s)(x,y)||+ l(x,y)λp+1(s) =: λ

∗
p+1(s)(x,y)

and λ∗p+1(.) : S → L1(I,R) is continuous.
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By Lemmas 2.5 and 2.6 we obtain the existence of a continuous function fp+1(.) : S →
L1(Π,Rn) such that

fp+1(s)(x,y) ∈ F(x,y,up+1(s)(x,y)) a.e.(Π), ∀s ∈ S,

|| fp+1(s)(x,y)− fp(s)(x,y)|| ≤ l(x,y)λp+1(s) ∀s ∈ S, (x,y) ∈ Π.

From (3.10), c) and d) we obtain

||up+1(s)(., .)−up(s)(., .)||C ≤ λp+1(s) = Lp(a(s)+ ε(s)+Λ(s)), (3.12)

|| fp+1(s)(., .)− fp(s)(., .)||1 ≤ ||l||1λp(s) = Lp−1||l||1(a(s)+ ε(s)+Λ(s)). (3.13)

Therefore fp(s)(., .), up(s)(., .) are Cauchy sequences in the Banach space L1(Π,Rn)
and C(Π,Rn), respectively. Let f (.) : S → L1(Π,Rn), x(.) : S → C(Π,Rn) be their lim-
its. The function s → a(s)+ ε(s)+ Λ(s) is continuous, hence locally bounded. Therefore
(3.13) implies that for every s′ ∈ S the sequence fp(s′)(., .) satisfies the Cauchy condition
uniformly with respect to s′ on some neighborhood of s. Hence, s→ f (s)(., .) is continuous
from S into L1(Π,Rn).

From (3.12), as before, up(s)(., .) is Cauchy in C(Π,Rn) locally uniformly with re-
spect to s. So, s → u(s)(., .) is continuous from S into C(Π,Rn). On the other hand, since
up(s)(., .) converges uniformly to u(s)(., .) and

d( fp(s)(x,y),F(x,y,u(s)(x,y))≤ l(x,y)||up(s)(x,y)−u(s)(x,y)|| a.e.(Π),

∀s ∈ S passing to the limit along a subsequence of fp(s)(., .) converging pointwise to
f (s)(., .) we obtain

f (s)(x,y) ∈ F(x,y,u(s)(x,y)) a.e. (Π), ∀s ∈ S.

One may write successively,

1
Γ(r1)Γ(r2)

||
Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1 fp(s)(z, t)dzdt−

Z x

0

Z y

0
(x− z)r1−1.

.(y− t)r2−1 f (s)(z, t)dzdt|| ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1|| fp(s)(z, t)

− f (s)(z, t)||dzdt ≤ 1
Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1l(z, t)||up−1(s)(z, t)

−u(s)(z, t)||dzdt ≤ L||up−1(s)(., .)−u(s)(., .)||C.

Therefore one may pass to the limit in d) and we get ∀(x,y) ∈ Π,s ∈ S

u(s)(x,y) = µ(s)(x,y)+
1

Γ(r1)Γ(r2)

Z x

0

Z y

0
(x− z)r1−1(y− t)r2−1 f (s)(z, t)dzdt,

i.e., u(s)(., .) is the desired solution.
Moreover, by adding inequalities (3.10) for all p ≥ 1 we get

||up+1(s)(x,y)−w(s)(x,y)|| ≤
p+1

∑
l=1

λl(s)≤
a(s)+ ε(s)+Λ(s)

1−L
. (3.14)

Passing to the limit in (3.14) we obtain the conclusion of the theorem.
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Hypothesis 3.8. Hypothesis 3.5 is satisfied and there exists q(., .) ∈ L1(Π,R+) with
sup(x,y)∈Π(Ir

0q)(x,y) < ∞ such that d(0,F(x,y,0))≤ q(x,y) a.e. (Π).

Corollary 3.9. Assume that Hypothesis 3.8 is satisfied.
Then there exists a function u(., .) : Π×S→ Rn such that
a) x(.,(ξ,η)) ∈ S(ξ,η), ∀(ξ,η) ∈ S.
b) (ξ,η)→ x(.,(ξ,η)) is continuous from S into C(Π,Rn).

Proof. We take S = S, ϕ(ξ,η) = ξ, ψ(ξ,η) = η ∀(ξ,η) ∈ S, ε(.) : S → (0,∞) an arbitrary
continuous function, g(.) = 0, w(.) = 0, λ(s)(x,y)≡ q(x,y) ∀s = (ξ,η) ∈ S, (x,y) ∈ Π and
we apply Theorem 3.7 in order to obtain the conclusion of the corollary.
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