
Consistency and strong inconsistency of

group-invariant predictive inferences

M O R R I S L . E ATO N � and WILLIAM D. SUDDERTH��
School of Statistics, University of Minnesota, 206 Church Street SE, Minneapolis MN 55455,

USA. E-mail: �eaton@stat.umn.edu; ��bill@stat.umn.edu

Consider a statistical model which is invariant under a group of transformations that acts transitively

on the parameter space. In this situation, the problem of constructing invariant predictive distributions

is considered. It is shown, under certain assumptions, that Fisherian pivoting and the use of right Haar

measure as an improper prior distribution both yield the same invariant predictive distribution.

Furthermore, it is shown that any other invariant predictive distribution is strongly inconsistent in the

sense of Stone.

Keywords: Fisherian pivoting; improper prior distributions; invariant predictive distribution; proper

action; right Haar measure, strong inconsistency

1. Introduction

Let P(dx, dzjè), è 2 È, be the joint distribution for the data variables X , Z given the

unknown parameter è. The problem we consider in this paper is the prediction of Z based on

observed data X � x. A predictive inference for Z, say Q(dzjx), is a distribution for Z, given

the data X � x. In other words, Q(dzjx) is the inferrer's guess at the distribution of Z, given

X � x. Standard methods of constructing predictive inferences include: (i) the Bayes or

formal Bayes method where Q(dzjx) is a posterior distribution of Z given X � x; (ii)

methods based on pivoting arguments; (iii) methods based on substituting estimators of è into

the conditional distribution of Z given X � x and è. A discussion of the Bayes/formal Bayes

method can be found in Geisser (1993), while the recent paper of Barndorff-Nielsen and Cox

(1996) contains elements of both pivoting arguments and estimator substitution methods.

A predictive inference Q(dzjx) is called strongly inconsistent if, for some bounded

measurable function f (x, z),

inf
x

�
f (x, z)Q(dzjx) . sup

è

�
f (x, z)P(dx, dzjè): (1)

As will be explained below, a Q that is strongly inconsistent leads to uniformly inadmissible

predictions. Such a Q is also incoherent in the sense of Lane and Sudderth (1984). As

discussed in Section 2, it is our opinion that strongly inconsistent inferences should be

excluded from serious consideration when one is trying to solve an inference problem. So we

are interested in ®nding conditions for a predictive inference to be consistent, by which we
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mean that it is not strongly inconsistent. (Interesting examples of strong inconsistency in an

inferential setting were given by Stone (1976), who introduced the terminology.)

In this paper, we assume that the model P(dx, dzjè) is invariant under the action of a group G,

and we study predictive inferences Q that are also invariant under G. Throughout, G is assumed

to act transitively on the parameter space È. (De®nitions are in Section 3.) In particular, we

concentrate on the two most popular techniques of invariant prediction, namely, Fisherian

pivoting and the use of a group-invariant prior distribution, typically an improper prior.

Here is a sketch of the paper and the major results. The next section is a discussion of

strong inconsistency. Section 3 presents some necessary de®nitions and a few examples. In

Section 4 we describe a general form of the Fisherian pivotal argument and use it to de®ne

a particular invariant inference Q0(dzjx). Section 5 treats general invariant inferences, and in

Section 6 we show that any such invariant inference is strongly inconsistent if it is

`essentially different' from the pivotal inference Q0 (Theorem 6.1). In Section 7 we

introduce right Haar measure as a (possibly improper) prior and give conditions under

which the formal Bayes inference Q�(dzjx) is well de®ned. Under the hypothesis that the

group G is amenable, Q� is shown to be consistent (Theorem 8.1). Finally, we show in

Section 9 that Q0 and Q� are the same if G acts `properly' on X 3 Z (Theorem 9.1). The

®nal two sections are devoted to examples and discussion.

In essence, our results show that for many standard invariant prediction problems, when

the group acts transitively on the parameter space, there is only one invariant predictive

distribution, say Q0, which can be consistent (assuming the model and the group are given).

When possible, Q0 is obtained via a Fisherian pivoting argument, but in other situations Q0

is obtained by a formal application of Bayes's theorem, using a right Haar measure as an

improper prior distribution. When the group is amenable, Q0 is consistent, but may be

strongly inconsistent in standard examples when the group is not amenable.

Our formulation of the prediction problem is similar in spirit to that in Aitchison and

Dunsmore (1975) and Geisser (1993). This point of view is also adopted in the more

theoretical works of Eaton (1982; 1992), Lane and Sudderth (1984), and Eaton and

Sudderth (1993; 1995). A discussion of many aspects of group invariance in statistical

problems can be found in Eaton (1989) and Wijsman (1990).

The assumption made in Section 4, which we call FP (Fisherian pivoting), implies a

variety of things including assumptions 1 and 2 in the paper of Kiefer (1975) where a

version of the invariant minimax theorem is established. The FP assumption also appears in

Fraser (1968) under the name `unitary'.

In a decision-theoretic setting, the use of the right Haar measure to generate best

invariant decision rules is a well-known technique ± for example, see Stein (1965), Berger

(1985, p. 413) or Eaton (1989, Chapter 6). It is this result, together with the invariant

minimax theorem for amenable groups, which suggested some of our results in Sections 7,

8 and 9. A survey of the role of amenability in certain statistical problems can be found in

Bondar and Milnes (1981).

The use of the Bourbaki notion of proper action in invariant statistical problems ®rst

appeared in Andersson (1982) (see also Andersson et al. 1983). An application in statistical

decision theory appears in Eaton (1989, Chapter 6). The monograph of Wijsman (1990)

contains a detailed discussion of proper action and gives some statistical applications.
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2. Remarks on strong inconsistency

Suppose that the predictive inference Q is strongly inconsistent so that (1) holds for some

bounded, measurable f . We can rewrite (1) in the form

inf
x

�
f (x, z)Q(dzjx) � å� sup

è
Eè f (X , Z) (2)

where å. 0.

Then, for every proper prior distribution ð de®ned on the Borel sets of È,��
f (x, z) Q(dzjx) Mð(dx) > å� E f (X , Z),

where E denotes expectation under ð and the model, and Mð is the marginal distribution of

X . Thus strong inconsistency implies that there is no world (prior opinion on è) for which the

expectation of f can be consistent with its expectation computed under Q(�jx) and the

marginal for x. It follows also that Q is incoherent in the sense of Lane and Sudderth (1984).

This means, roughly, that if a bookie uses Q to post odds on z given x, then there will be a

®nite betting scheme for a gambler that results in a uniformly positive expected pay-off.

Suppose now that we use the strongly inconsistent Q(�jx) to predict f (x, z). Under

quadratic loss, our predictor is

f̂ (x) �
�

f (x, z)Q(dzjx):

However, when (2) holds, it is easy to show that the predictor f �(x) � f̂ (x)ÿ å satis®es

Eè( f �(X )ÿ f (X , Z))2 < ÿå2 � Eè(f̂ (X )ÿ f (X , Z))2

for all è. Thus the mean squared error of f � is at least å2 smaller than that of f̂ , for all è.

3. Some de®nitions and examples

The range spaces X , Z for the variables X , Z are assumed to be Polish and locally compact

as are the parameter space È and the group G. `Measurable' always means `Borel

measurable' and we denote the Borel ó-®eld of any space, for example X , by B (X ). We

assume that the group G acts continuously from the left on X , Z and È and that the model

P(dx, dzjè) is invariant in the sense that��
f (gÿ1x, gÿ1z)P(dx, dzjgè) �

��
f (x, z)P(dx, dzjè) (3)

for all è 2 È, g 2 G and bounded, measurable f .

There is a multitude of examples available. Here are three.

Example 3.1. Let X 1, X 2, . . . , X n, Z be independent N1(è, 1), and take X � (X1, X2, . . . ,

X n). The model is invariant under the translation group of reals with action on X � Rn, for
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example, g(x1, . . . , xn) � (x1 � g, . . . , xn � g). Of course, the N1(è, 1) distribution can be

replaced by any translation family f (xÿ è) where f is known.

Example 3.2. Let X1, X 2, . . . , X n, Z be independent N1(ì, ó 2), and again take X � (X1,

X 2, . . . , X n). This time the natural group is the af®ne group Al1 of transformations on Rn of

the form gx � (a, b)x � (ax1 � b, . . . , axn � b). The action of Al1 on Z � R1 is obvious

and it acts on the parameter space R 3 R� by (a, b)(ì, ó 2) � (aì� b, a2ó 2).

Example 3.3. Let X1, . . . , X n, Z be independent column vectors which are Np(0, Ó), where

the dimension p can be larger than 1. The unknown p 3 p covariance matrix Ó is assumed to

be positive de®nite. It is assumed that n > p. The sample space X for this example is taken

to be the set of all n 3 p real matrices whose ®rst p rows are linearly independent, and the

data, X1, . . . , X n are written as

x �

X 91

X 92

..

.

X 9n

0BBBBBB@

1CCCCCCA 2 X :

Note that X is not the usual sample space consisting of all n 3 p matrices of rank p. The

reason for this choice occurs in the next section (see Example 3.3 (continued)).

The space Z is just R p. There are at least two groups of interest for this example. Let

G2 be the group of all p 3 p non-singular matrices and let G1(� G2) be the group of all

p 3 p lower-triangular matrices which have positive diagonal elements. The action of G2 is

x! xg9, x 2 X

z! gz, z 2Z

Ó! gÓg9:

8>><>>:
It is easy to check that the model is invariant under G2 and hence under G1 since G1 � G2.

Both G1 and G2 are transitive on the parameter space.

By de®nition, a predictive inference, or just inference for brevity, is a Markov kernel

Q(dzjx) on B (Z) 3 X . Such a Q is also called a predictive distribution. It is invariant

under the group G if �
f (gÿ1z)Q(dzjgx) �

�
f (z)Q(dzjx)

for all x 2 X , g 2 G and bounded, measurable f .

Remark 3.1. The predictive framework of this paper includes the usual problem of inference

about è as a special case. Just take Z � È and let P(X 2 A, Z � èjè) � P(X 2 Ajè) for all

A 2 B (X ), è 2 È.
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4. The Fisherian pivotal prediction

In this section, we formulate an abstract version of Fisherian pivotal inference. We will

always assume that G is transitive on È; that is, given è1, è2 2 È, there exists g 2 G with

gè1 � è2. In addition, the following assumption plays a crucial role.

Assumption FP. There is a measurable mapping ô : X ! G such that ô(gx) � gô(x) for all

x 2 X , g 2 G.

It follows from Assumption FP that G is exactly transitive on each orbit in X ; that is, if

x � gx, then the group element g is the identity. Aside from measurability issues, the

converse is also true ± namely, if G is exactly transitive on each orbit, then FP holds.

Exactly transitive group actions are also called free group actions (see Bourbaki 1966, p.

254).

In many examples there is an obvious choice for ô.

Example 3.1 (continued). For x � (x1, . . . , xn) 2 X , let ô(x) � x correspond to translation

by x.

Example 3.2 (continued). Let ô(x) � (s, x) be the element of Al1 corresponding to

multiplication by the sample sum of squares s and translation by x. Here,

s2 �
Xn

i�1

(xi ÿ x)2

which is assumed to be positive.

Example 3.3 (continued). To construct the map ô for G2 in this example, consider x 2 X
and partition x as

x � á
â

� �
where á is p 3 p of rank p, and â is (nÿ p) 3 p. For g 2 G2, recall that

g(x) � xg9

is the action of G2 (and hence G1) on x 2 X . Here the left-hand side denotes the group

action and the right-hand side denotes matrix multiplication. Now, de®ne ô2 by

ô2(x) � á9 2 G2:

Then ô2(g(x)) � ô2(xg9) � (ág9)9 � gá9 � g � ô2(x) where `�' denotes group multiplication.

Thus Assumption FP holds for G2.

The construction of a ô1 for G1 requires a bit more care. For x 2 X , the matrix S � x9x
has rank p since x has rank p. Let t(S) denote the unique element of G1 which satis®es

S � t(S)(t(S))9 and recall that t(hSh9) � ht(S) for h 2 G1 (see Eaton 1983, Chapter 5 for a

proof). Now, de®ne ô1 by
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ô1(x) � t(x9x):

Then, for h 2 G1,

ô1(h(x)) � ô1(xh9) � t(hx9xh9) � ht(x9x) � h � ô1(x):

Thus Assumption FP holds for G1.

Return now to the general framework. A function f de®ned on X is invariant if

f (x) � f (gx) for all x and g. Let ø be a measurable mapping from X onto a measurable

space U that is a maximal invariant under the action of G on X ; that is, ø is invariant

and ø(x1) � ø(x2) implies gx1 � x2 for some g. (The space U is just some version of the

quotient space X =G with ø mapping each x to its orbit.) Then every invariant function f

can be written in the form f (x) � ö(ø(x)) for some function ö.

De®ne now the mapping ë : X 3 Z! U 3 Z by

ë(x, z) � (u, w) � (ø(x), ôÿ1(x)z):

Note that ë is onto since ø is onto by assumption.

Lemma 4.1. The mapping ë is a maximal invariant under the action of G on X 3 Z. (The

action of G on X 3 Z is given by g(x, z) � (gx, gz).)

Proof. The invariance of ë is obvious. To show ë is maximal, suppose that

(ø(x1), ôÿ1(x1)z1) � (ø(x2), ôÿ1(x2)z2):

Then ø(x1) � ø(x2) and, by the maximality of ø, gx1 � x2 for some g. Hence, by

Assumption FP,

ôÿ1(x1)z1 � ôÿ1(x2)z2 � ôÿ1(x1)gÿ1z2

and therefore gz1 � z2. h

Because (U , W ) � (ø(X ), ôÿ1(X )Z) is an invariant statistic and G is transitive on È, the

joint distribution of (U , W ) induced by the model P(dx, dzjè) does not depend on è 2 È.

Let H(du, dw) be this induced distribution and let

H(du, dw) � R0(dwju)S0(du) (4)

be a disintegration of H into its marginal S0 for U and conditional distribution R0 for W

given U . (The disintegration is possible because W takes its values in the Polish space Z.)

We now de®ne the Fisherian pivotal inference Q0 by

Q0(Bjx) � R0(ôÿ1(x)Bjø(x)) (5)

for all x 2 X , B 2 B (Z). Thus the predictive distribution of Z given X � x under Q0

corresponds to the conditional distribution of ô(x)W given U � ø(x) under the model.

In simple examples like 3.1 and 3.2, we recover the usual pivotal predictions.

Example 3.1 (continued). Take ô(x) � x and let ø(x) � (x1 ÿ x, x2 ÿ x, . . . , xn ÿ x) be the
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maximal invariant for the action of the translation group on X � Rn. Under the model,

W � Z ÿ X and U � ø(X ) are independent. Since W � N (0, 1� 1
n
), the pivotal prediction

given x is the distribution of W � x � N (x, 1� 1
n
).

Example 3.2 (continued). Take ô(x) � (s, x) and ø(x) � sÿ1(x1 ÿ x, x2 ÿ x, . . . , xn ÿ x). An

application of Basu's theorem shows that again W � (Z ÿ X )=S and U � ø(X ) are

independent. Let t(m) denote a variable with the Student t distribution with m degrees of

freedom and set c � (1� 1=n)1=2=(nÿ 1)1=2. Since the distribution of W is that of ct(nÿ 1),

the pivotal prediction, given x, is the distribution of sW � x which is that of sct(nÿ 1)� x.

For this example, the sample space X is the set of x 2 Rn such that s2 �Pn
1 (xi ÿ x)2 . 0.

Example 3.3 (continued). First, we describe the prediction distribution of Z given x when the

group under consideration is G1. For this case ô1(x) � t(S) where S � x9x is positive de®nite

and t(S) is the unique element of G1 which satis®es S � t(S)(t(S))9. Thus,

ø(x) � x[(t(S))ÿ1]9

and

W � (t(S))ÿ1 Z:

An easy application of Basu's theorem shows that under the model, W and U are

independent. Thus, the predictive density of Z given x is the density of t(S)W with S ®xed.

The density of W is given in Eaton and Sudderth (1993, Theorem 3.1, p. 485). Hence we

have the Fisherian pivotal predictive distribution when the group G1 is used.

Rather than give the FP predictive distribution here when G2 is the group, we will do so

in Section 10 after an alternative method of calculation is established. However, it should be

pointed out that the G1 and G2 invariant predictive distributions are different.

Assumption FP is quite strong and can fail to hold for at least two reasons ± namely, a

reduction by suf®ciency has occurred and changed the sample space, or the `wrong' group

was chosen to describe the invariance of the problem. The following example illustrates

both of these reasons for the failure of FP to hold.

Example 4.1. As in Example 3.1, consider X1, X 2, . . . , X n, Z that are independent N1(è, 1).

With e denoting the vector of ones in Rn, the sample space of the X s is X �
Rn \ (spanfeg)c. That is, X is the space Rn with the one-dimensional subspace (spanfeg)
removed. Of course, È �Z � R1 in this example. There are three groups of interest in this

example. The ®rst is H1 which is the translation group on R1 and acts on x 2 X in the

natural way: x! x� be, where b 2 R1. The action of H1 on È �Z is just è! è� b.

The second group is H2 which consists of pairs (a, b) with a � �1, b 2 R1 and group

composition given by

(a1, b1)(a2, b2) � (a1a2, a1b2 � b1):

Then H2 acts on X via x! ax� be and on È �Z via è! aè� b.
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The third group is H3 which consists of all pairs (Ã, b) where b 2 R1 and Ã is an n 3 n

orthogonal matrix satisfying Ãe � e. The group operation is

(Ã1, b1)(Ã2, b2) � (Ã1Ã2, b1 � b2),

the action on X is x! Ãx� be while the action on È �Z is è! è� b. It is easily

checked that the prediction problem is invariant under Hi, i � 1, 2, 3:
Choosing ô1(x) � x, it is clear that Assumption FP holds when the group is H1. When

the group is H2, the situation is a bit more complicated. First, assume n > 2. For x 2 X ,

let ø(x) be the ®rst coordinate of x which is not equal to x1, where x � (x1, x2, . . . , xn).

With ô2(x) � (sgn(x1 ÿ ø(x)), x), it is not hard to check that FP holds. However, if n � 1, a

direct calculation shows that FP cannot hold. Thus if we had reduced to the suf®cient

statistic X and used the group H2, then FP would not have held. This circumstance makes

Assumption FP rather unappealing, in spite of its rather natural use in constructing

predictive distributions.

Finally, consider the group H3 and assume that n > 3. For x 2 X , the equation

Ãx� be � x

implies that b � 0 (just multiply by e9 to obtain nb � 0) so that Ãx � x. Because n > 3,

there are always solutions other than Ã � In to the equation Ãx � x, where x 2 X , Ãe � e

and Ã is orthogonal. Thus the action on X is not free and so FP cannot hold.

Even though FP may not hold, it is often possible to use the formal Bayes method (with

right Haar measure as an improper prior) to obtain an invariant predictive inference. When

the group G is amenable, this method will produce a consistent (not strongly inconsistent)

predictive inference. A detailed discussion of this occurs in Sections 7 and 8. For the

normal example above considered invariant under Hi, the formal Bayes method produces a

consistent inference which is the same for each i, i � 1, 2, 3.

5. Describing invariant inferences

Some general properties of invariant inferences will be established in this section and will be

used in the next section to compare such inferences to the Fisherian pivotal inference. We

continue to assume FP and follow the notation of the previous section.

Lemma 5.1. Given a Markov kernel R(dzju) on Z given U, the inference Q de®ned by

Q(Bjx) � R(ôÿ1(x)Bjø(x)), x 2 X , B 2 B (Z), (6)

is invariant. Conversely, given an invariant inference Q, there exists a unique Markov kernel

R(dzju) satisfying the same formula.

Proof. It is straightforward to verify the ®rst assertion.

For the converse, let Q(dzjx) be an invariant inference. De®ne another inference H(dzjx)

by
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H(Bjx) � Q(ô(x)Bjx), x 2 X , B 2 B (Z):

The invariance of Q and Assumption FP imply that the function x! H(Bjx) is invariant

under the action of G on X and must therefore be a function of the maximal invariant ø(x).

Say

H(Bjx) � R(Bjø(x)):

Clearly, equality (6) holds and it is again straightforward to verify that R is a Markov kernel.

(To see that R(Bju) is measurable in u for ®xed B, identify U with X =G and assume that

U has the quotient ó-®eld S de®ned by A 2 S if and only if øÿ1(A) 2 B (X ).) The

uniqueness of R is immediate because ø maps X onto U and, for each x, B! ôÿ1(x)B

maps B (Z) onto itself. h

For a given invariant inference Q, let RQ denote the unique R that satis®es (6). If

h: Z! R1 is bounded and measurable, then�
h(z) Q(dzjx) �

�
h(ô(x)z) RQ(dzjø(x)): (7)

This equality is just (6) when h is the indicator of a set B 2 B (Z). The extension to

functions is obvious.

Suppose now that f (x, z) is an invariant function on X 3 Z. By Lemma 4.1,

ë(x, z) � (ø(x), ôÿ1(x)z) is maximal invariant. So we can write

f (x, z) � f �(ø(x), ôÿ1(x)z) (8)

for some function f � on U 3 Z. Conversely, given any f � on U 3 Z, formula (8) de®nes

an invariant function f on X 3 Z.

Lemma 5.2. Let Q be an invariant inference and let f : X 3 Z! R1 be invariant,

bounded and measurable. Then, for f � as in (8),

inf
x

�
f (x, z)Q(dzjx) � inf

u

�
f �(u, z)RQ(dzju): (9)

Proof. By (7) and (8), �
f (x, z)Q(dzjx) �

�
f �(ø(x), z)RQ(dzjø(x)), (10)

and the mapping ø is onto. h

For the pivotal inference Q0, we see from (5) and (6) that R0 � RQ0
. Also recall from

Section 4 that R0(dwju)S0(du) is the distribution of (U , W ) � (ø(X ), ôÿ1(X )Z) under every

value of the parameter è. The next lemma is then immediate.

Lemma 5.3. Let f � : U 3 Z! R1 be bounded and measurable. De®ne f : X 3 Z! R1

by (8). Then
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sup
è

Eè f (X , Z) �
��

f �(u, z)R0(dzju)S0(du): (11)

6. Non-pivotal invariant inferences are strongly inconsistent

Continue to assume FP holds. Every invariant predictive inference Q for Z given X can be

regarded as a predictive inference RQ about ô(X )Z given ø(X ) by (6). Now S0 is the

distribution of the maximal invariant ø(X ) under every parameter value è. Thus it is natural

to regard two such inferences Q1 and Q2 as being equivalent if RQ1
(�ju) � RQ2

(�ju) for S0-

almost every u.

De®nition. Two invariant predictive inferences Q1 and Q2 are essentially different if

fu : RQ1
(�ju) 6� RQ2

(�ju)g has positive S0-measure.

Theorem 6.1. If Assumption FP holds and Q is an invariant predictive inference that is

essentially different from the Fisherian pivotal inference Q0, then Q is strongly inconsistent.

Proof. Because Z is Polish, B (Z) is countably generated. So we can apply Theorem A.1

(the separation theorem) in the Appendix to RQ(�ju) and R0(�ju) to obtain a bounded,

measurable function f �(u, z) such that

inf
u

�
f �(u, z)RQ(dzju) .

��
f �(u, z)R0(dzju)S0(du): (12)

De®ne f (x, z) by (8). Then, by Lemma 5.2, Lemma 5.3 and (12), we have

inf
x

�
f (x, z)Q(dzjx) . sup

è
Eè f (X , Z):

h

An obvious question, left unanswered by Theorem 6.1, is whether the pivotal inference

Q0 is itself consistent. Suf®cient conditions for its consistency will be given in Section 8

after the next section introduces another method of invariant prediction. However, there are

standard examples in multivariate analysis where Q0 is strongly inconsistent (see Section

10).

7. The formal Bayes inference from right Haar measure

Invariant predictive inferences can often be obtained by the usual Bayes algorithm from

invariant prior distributions. In this section we introduce as a prior a right Haar measure í on

the locally compact group G. The non-trivial measure í is de®ned on B (G) and is uniquely

determined up to a positive constant by its property that
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�
f (gh)í(dg) �

�
f (g)í(dg) (13)

for all h 2 G and measurable f : G ! R�. We continue to make all the assumptions of

Section 3 and also assume that G acts transitively on È. Consequently, we can ®x an element

è0 2 È and write the model as P(dx, dzjgè0), where g ranges over G.

To obtain the Bayes predictive inference from í, we no longer need the structural

assumption FP of Section 4, but we will use two assumptions that were not needed to

obtain the pivotal inference Q0.

Let M be the marginal measure on X determined by í and the model; that is,

M(B) �
�

G

�
Z

P(B, dzjgè0)í(dg): (14)

Assumption H1. The measure M is ó-®nite.

It follows from this assumption that we can write

P(dx, dzjgè0)í(dg) � Q1(dg, dzjx)M(dx), (15)

where Q1 is a Markov kernel on G 3 Z given X and is uniquely determined up to a set of

M-measure zero. (This fact is not dif®cult and is presumably well known. The only reference

that we know for it is Johnson (1991).)

Assumption H2. The Markov kernel Q1 is G-invariant; that is,

Q1(hA, hBjhx) � Q1(A, Bjx), h 2 G, x 2 X , A 2 B (G), B 2 B (Z): (16)

In all the applications that we know, Assumption H2 is satis®ed. However, we do not

know a theorem which implies that Q1 can be so chosen. Rather than discuss this issue

here, we have chosen to make it an assumption. (It is not dif®cult to show that Q1 must be

G-invariant for M-almost all x.)

A consequence of H2 is that the predictive inference Q�(dzjx) de®ned by

Q�(Bjx) � Q1(G 3 Bjx), x 2 X , B 2 B (Z), (17)

is invariant. The inference Q� is the formal Bayes predictive inference from í (or the right

Haar inference for short).

In the special case when X and Z are independent under the model for each parameter

value è, Q� can be calculated by ®rst ®nding the formal posterior Ð(dgjx) which is

characterized by the formula

P(dxjgè0)í(dg) � Ð(dgjx)M(dx)

and then integrating as

Q�(Bjx) �
�

P[Z 2 Bjgè0]Ð(dgjx): (18)
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Here is another look at our examples.

Example 3.1 (continued). We can identify the group G � R1 with the parameter space È.

Take è0 � 0 and í(dè) � dè. Under Ð(dèjx), è � N (x, 1=n) and, given è, Z � N (è, 1)

under the model. So, by (7.6), under Q�(dzjx), Z � N (x, 1� 1
n
). Thus Q� � Q0.

Example 3.2 (continued). Again we can identify the group G � Al1 with the parameter

space. Take è0 � (1, 0) and í(d(ó , ì)) � ó ÿ1dì dó . A calculation will show that Q� again

agrees with Q0.

Example 3.3 (continued). Let Q�i be the right Haar inferences corresponding to the groups

Gi, i � 1, 2. The Q�i are calculated explicitly in Eaton and Sudderth (1993). The results in

Section 9 of this paper show that, for both G1 and G2, the FP inference and the right Haar

inferences are the same. However, Q�1 and Q�2 are different.

Now, let ~G be the group of all p 3 p non-singular lower-triangular matrices. In this case,

the right Haar inference exists and is easily shown to be Q�1 . However, for ~G, we do not

know whether or not FP holds, but we suspect not.

8. Amenable groups and consistent predictive inferences

There are a number of equivalent de®nitions of amenability for groups (cf. Bondar and

Milnes 1981). Here is the one most convenient for our purposes.

Assumption AM. There is a sequence of densities fpn(g)g with respect to right Haar

measure í such that

lim
n!1

�
j pn(gh)ÿ pn(g)jí(dg) � 0

for all h 2 G.

Since G is Polish and locally compact, it is ó-compact. That is why we are able to use a

sequence rather than a net in Assumption AM.

Theorem 8.1. Assume H1 and H2 so that the right Haar inference Q� is well de®ned. If

Assumption AM also holds, then Q� is consistent.

Proof. Let f : X 3 Z! R1 be bounded and measurable. We must show

inf
x

�
f (x, z)Q�(dzjx) < sup

è
Eè f (X , Z): (19)

Fix è0 as in the previous section and rewrite
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sup
è

Eè f (X , Z) � sup
g

E gè0
f (X , Z):

Let p(g) be an arbitrary probability density with respect to í on G. Set

Mp(dx) �
�

G

�
Z

P(dx, dzjgè0) p(g)í(dg): (20)

By (15),

Mp(dx) �
�

G

�
Z

p(g)Q1(dg, dzjx)M(dx): (21)

De®ne

Q̂(dgjx) �
�

Z
Q1(dg, dzjx), (22)

so that

m p(x) �
�

Z

�
G

p(g)Q1(dg, dzjx) �
�

G

p(g)Q̂(dgjx) (23)

is the Radon±Nikodym derivative of Mp with respect to M .

Now

inf
x

�
f (x, z)Q�(dzjx) <

��
f (x, z)Q�(dzjx)Mp(dx)

and �
E gè0

f (X , Z) p(g)í(dg) < sup
g

E gè0
f (X , Z):

So (19) will follow if we can show that

inf
p
Ä p � 0, (24)

where

Ä p �
�����E gè0

f (X , Z) p(g)í(dg)ÿ
��

f (x, z)Q�(dzjx)Mp(dx)

����:
By (15), �

E gè0
f (X , Z) p(g)í(dg) �

���
f (x, z) p(g)Q1(dg, dzjx)M(dx)

and, by (17) and (23),��
f (x, z)Q�(dzjx)Mp(dx) �

���
f (x, z)m p(x)Q1(dg, dzjx)M(dx):

Hence, with K � supx,z j f (x, z)j,
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Ä p < K

���
jmp(x)ÿ p(g)jQ1(dg, dzjx)M(dx)

� K

���
jmp(x)ÿ p(g)jP(dx, dzjgè0)í(dg)

� K

���
jmp(gx)ÿ p(g)jP(dx, dzjè0)í(dg):

The last two lines use (15) and (3), respectively. Because Q1 is invariant by Assumption H2,

mp(gx) �
��

p(h)Q1(dh, dzjgx)

�
��

p(gh)Q1(dh, dzjx) �
�

p(gh)Q̂(dhjx):

Hence,

Ä p < K

����
j p(gh)ÿ p(g)jí(dg)Q̂(dhjx)P(dx, dzjè0): (25)

For any p, �
jp(gh)ÿ p(g)jí(dg) < 2:

So it follows from Assumption AM, (25) and the dominated convergence theorem that

limÄ pn
� 0. This completes the proof of (24) and the theorem. h

In Examples 3.1 and 3.2, the group G is amenable. So the inference Q� � Q0 is

consistent. In Example 3.3, the group G1 is amenable and, hence, Q�1 is consistent. The

group G2 � Glp is not amenable and, indeed, it was shown in Eaton and Sudderth (1993)

that the right Haar inference Q�2 is strongly inconsistent.

9. The right Haar inference is the same as Fisherian pivoting

Suppose that Assumptions FP, H1, and H2 hold so that both Q0 and Q� are well de®ned. If

we impose the additional assumption that G acts `properly' on X , then Q0 and Q� are the

same by Theorem 9.1 below. Before stating it, we need to de®ne `proper action' and brie¯y

review some of its implications.

Suppose G acts continuously on the Polish space Y . Then G is said to act properly on

Y if the mapping (g, y)! (gy, y) from G 3 Y to Y 3 Y is a proper mapping in the

sense that the inverse images of compact sets are compact. An important implication of

proper action is that the quotient space Y =G is a nice topological space (Hausdorff and

second countable) (see Andersson 1982). Let K (Y ) be the set of all real-valued,
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continuous functions with compact support de®ned on Y and let K (Y =G) be the

collection of such functions on Y =G. For h 2K (Y ), de®ne

(Th)(ðy) �
�

h(gy)í(dg)

where ð is the orbit projection from Y onto Y =G and í is a right Haar measure on G.

Another important fact is that T maps K (Y ) onto K (Y =G) (for discussion, see Andersson

1982).

Assumption P. The group G acts properly on X .

Because G acts continuously on Z by assumption, we conclude from Bourbaki (1966,

Proposition 5, p. 232) that G then acts properly on X 3 Z when Assumption P holds.

Assumption P is satis®ed by many of the standard statistical models that we know.

We will represent the quotient space (X 3 Z)=G as before by U 3 Z using the

maximal invariant ë(x, z) � (ø(x), ôÿ1(x)z) as in Lemma 4.1.

Theorem 9.1. Under Assumptions FP, H1, H2, and P, the Fisherian pivotal inference Q0(�jx)

and the right Haar inference Q�(�jx) are equal for M-almost all x where M is the marginal

determined by the model and right Haar measure í as in (14).

Proof. For each f 2K (X 3 Z), let

I �
��

f (x, z)Q�(dzjx)M(dx), J �
��

f (x, z)Q0(dzjx)M(dx):

It suf®ces to show I � J. In fact, we will show that

I � J �
��

(Tf )(u, w)R0(dwju)S0(du),

where Tf is the invariant function

(Tf )(ë(x, z)) �
�

f (gx, gz)í(dg),

with ë as in Lemma 4.1, and R0, S0 as in (4).

We ®rst calculate I . By (15) and (17),
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I �
���

f (x, z)P(dx, dzjgè0)í(dg)

�
���

f (gx, gz)í(dg)P(dx, dzjè0)

�
��

(Tf )(ø(x), ôÿ1(x)z)P(dx, dzjè0)

�
��

(Tf )(u, w)R0(dwju)S0(du):

For J , use (15) to write

J �
����

f (x, z)Q0(dzjx)P(dx, d~zjgè0)í(dg)

�
����

f (gx, z)Q0(dzjgx)P(dx, d~zjè0)í(dg)

�
����

f (gx, gz)í(dg)Q0(dzjx)P(dx, d~zjè0)

�
��

(Tf )(ø(x), ôÿ1(x)z)Q0(dzjx)P(dxjè0)

�
��

(Tf )(u, w)R0(dwju)S0(du):

h

The fact that Q0 and Q� are the same can be useful in calculations as well as theory, for

one of the two can be easier to calculate in particular examples.

Remark 9.1. Suppose Q1(�jx) and Q2(�jx) are both G-invariant predictive distributions. Since

FP holds by assumption, Qi(�jx) can be represented by Ri(�ju), i � 1, 2, as in Section 5. Let

A � fxjQ1(�jx) 6� Q2(�jx)g

and

E � fujR1(�ju) 6� R2(�ju)g:

It can be shown that A has M-measure zero if and only if E has S0-measure zero. Thus,

equality a.e.-M in Theorem 9.1 implies Q1 and Q2 are not essentially different as de®ned in

Section 6.
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10. Examples continued

For Examples 3.1 and 3.2, all of our assumptions (FP, H1, H2, amenability and proper action)

hold. Thus using right Haar measure as an improper prior yields an invariant predictive

distribution which is consistent. Further, any other invariant predictive distribution is strongly

inconsistent. In short, there is only one sensible invariant predictive inference. In addition, the

normality assumptions play essentially no role in these conclusions. For example, if

X 1, . . . , X n are independently and identically distributed from a distribution with a density

f (xÿ è), x 2 R p, è 2 Rp and Z is also from f (xÿ è), then using the improper prior `dè' on

R p yields a consistent invariant predictive distribution.

The situation for Example 3.3 is somewhat more complicated. First consider the group

G2 of all p 3 p non-singular matrices. As remarked earlier, the prediction problem of

Example 3.3 is invariant under G2. Further, all of the assumptions listed above, except

amenability, are satis®ed. Thus, one can use the right Haar measure on G2 to obtain the

right Haar inference Q�2 . Of course, Q�2 agrees with what one obtains from Fisherian

pivoting, using the group G2. An explicit formula for Q�2 is well known and can be found,

for example, in Eaton and Sudderth (1993). It follows from Theorem 6.1 that any G2-

invariant predictive inference which differs from Q�2 is strongly inconsistent.

Next, consider the group G1. Now, all of our assumptions including amenability hold.

Using right Haar measure as an improper prior leads to a G1-invariant inference, say Q�1 .

Of course Q�1 agrees with the inference obtained by Fisherian pivoting, using the group G1,

and Q�1 is consistent. An explicit formula for Q�1 is given in Eaton and Sudderth (1993).

The above discussion implies the following:

For p > 2 in Example 3:3, all G2 invariant predictive distributions are strongly inconsistent:

(26)

To see this, let Q be some G2-invariant inference. If Q is different from Q�2 , it is strongly

inconsistent by Theorem 6.1. However, Theorem 6.1 also implies that any G1-invariant

inference which differs from Q�1 is strongly inconsistent. A direct comparison of Q�2 and Q�1
shows that Q�2 differs from Q�1 . Hence, (26) follows. In short, if attention is restricted to G1-

invariant inferences, then Q�1 seems to be the only viable inference ± all others are strongly

inconsistent by Theorem 6.1. In particular, all G2-invariant inferences share this fate.

But there is one troubling aspect of the above situation ± namely, the inference Q1 is

coordinate-dependent. To see this, consider the case of p � 2 and let Ã be the 2 3 2 matrix

Ã � 0 1

1 0

� �
:

Thus, Ã interchanges coordinates of vectors in R2. Given the original data, X 1, . . . , X n and

the predictand Z, consider ~X i � ÃX i, i � 1, . . . , n, and ~Z � ÃZ. Then, using G1 and
~X 1, . . . , ~X n, construct ~Q�1 as the `good' (consistent) inference for ~Z. The marginal predictive

distribution for the ®rst coordinate of Z is not the same as the marginal predictive

distribution for the second coordinate of ~Z (which equals the ®rst coordinate of Z). This is an
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example of what is meant by saying `Q�1 is coordinate-dependent'. The implications of this

are currently under study.

11. Discussion

The focus of this paper has been on two methods of constructing invariant predictive

distributions when the underlying model is invariant ± namely, Fisherian pivoting and the

formal Bayes method using the right Haar measure as a prior. In most examples that we

know, both methods yield the same answer. Further, when the group under consideration is

amenable, the inference is consistent. One consequence of this is that within the class of

relatively invariant prior distributions (these tend to yield invariant inferences), the right Haar

measure stands out as the one which produces the only possible candidate for consistency.

This follows from Theorem 6.1 combined with Theorem 9.1. The conclusions here bear some

implications for the more general discussion concerning improper priors in the recent survey

paper of Kass and Wasserman (1996). In particular, our Example 3.3 is an instance where

invariance arguments and the Jeffreys prescription produce strong inconsistency in a standard

statistical model.

A widely applicable alternative method of constructing invariant inferences is ®rst to

estimate the parameter è using data x (typically by maximum likelihood) and then use the

estimate è̂ to `estimate' the distribution of Z. A discussion of this method within the

framework of asymptotics appears in Barndorff-Nielsen and Cox (1996). The discussion

here will focus on this method. To simplify things a bit, it is assumed that given è, the data

X and the predictand Z are independent with distributions P1(�jè) and P2(�jè), respectively.

First, observe that if ð is a proper prior distribution for è, then the predictive distribution

for Z given X � x is

Qð(dzjx) �
�
È

P2(dzjè)Qð(dèjx), (27)

where Qð(dèjx) is the posterior distribution of è given the data x. Now, let

E � fP2(�jè)jè 2 Èg
and let C2 be the convex set of probability measures generated by E. Observe that Qð(dzjx),

being an average of points in E, tend to be `inside' C2. However, if è̂ is any estimator of è,

the predictive distribution obtained by substituting è̂ for è in P2(dzjè), that is

Q2(dzjx) � P2(dzjè̂(x)), is always in the set E. Since E will usually be contained in the

boundary of C2, we conclude that P2(dzjè̂(x)) cannot `look like' a Bayes rule Qð(dzjx) for

any ð. This suggests that substituting estimators into P2(dzjè) to obtain predictive

distributions is ill advised. This argument is certainly very soft, but does suggest that

predictive distributions of the form P2(dzjè̂(x)) may not perform well.

Now, maintain the independence assumption made in the previous paragraph. Assume,

further, that G is a group which acts on X , Z and È, that G is transitive on È, and that

both P1(dxjè) and P2(dzjè) are invariant families of distributions. Recall that an estimator

è̂(x) is invariant if è̂(gx) � gè̂(x). Under rather mild assumptions, the maximum likelihood
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estimator is invariant in the situation under consideration here (for discussion, see Eaton

1983, Chapter 7). Assuming that è̂(x) is invariant, note that the predictive distribution

Q3(dzjx) � P2(dzjè̂(x))

is an invariant predictive inference as de®ned in Section 3. In all of the examples we have

checked (including Examples 3.1, 3.2 and 3.3), Q3(dzjx) is not the same as the predictive

inference obtained from Fisherian pivoting (assuming FP holds). Thus, by Theorem 6.1,

Q3(dzjx) will be strongly inconsistent.

In this paper, the prediction problem has been formulated as one of `producing a

distribution for Z after seeing the data', rather than a problem of producing a point

predictor for Z. The only evaluative criterion considered here has been strong inconsistency

(and its negation, consistency). In invariant situations, our results show that there is

essentially one technique for ®nding a consistent invariant predictive distribution (when the

group is amenable) ± namely, one should use the right Haar measure as an improper prior,

and calculate the formal posterior distribution of Z given the data.

The more stringent evaluation of predictive distributions using decision-theoretic notions

(minimaxity, admissibility, etc.) has received very little attention in the literature. A few

results can be found in Eaton (1982; 1992), but a body of work providing hard evidence ±

that is, i.e. theorems ± that speci®c predictive distributions will perform well in particular

situations is, in the main, lacking. The results in Barndorff-Nielsen and Cox (1996) do

provide an asymptotic justi®cation for likelihood-based inference, but ®xed sample size

results are few. Providing such presents a real challenge.

Appendix: A separation theorem

Let (U, B (U)) and (Z, B (Z)) be measurable spaces. Assume singletons fug are in B (U).

Fix a Markov kernel R0(dzju) and a probability measure S0(du). Consider a second Markov

kernel R1(dzju).

Theorem A.1. If B (Z) is countably generated and

S0fu : R0(�ju) 6� R1(�ju)g. 0,

then there exists a bounded, B (U) 3 B (Z)-measurable function g : U 3 Z! R1 such

that

inf
u

�
g(u, z)R1(dzju) .

��
g(u, z)R0(dzju)S0(du): (28)

The proof is an application of a separation theorem (Dunford and Schwartz 1957,

Theorem V.2.10). For the application it is convenient to rewrite (28) as

inf
m

��
g(u, z)R1(dzju)m(du) .

��
g(u, z)R0(dzju)S0(du), (29)
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where m ranges over the collection P (U) of probability measures de®ned on B (U).

Let L be the linear space of all ®nite signed measures on B (U) 3 B (Z) and give L the

weak topology induced by the linear functionals

ì!
�

g dì,

where g : U 3 Z! R1 is bounded and B (U) 3 B (Z)-measurable. The collection Ã of all

such linear functionals is a total space of functions on L (Dunford and Schwartz, 1957, p.

418) so that, by Lemma V.3.3 of Dunford and Schwartz, L is a locally convex linear

topological space in its Ã topology.

Let E be the singleton set fR0(dzju)S0(du)g and let C � fR1(dzju)m(du) : m 2 P (U)g.
Obviously E is a compact, convex subset of L and C is a convex subset of L. The closure

C of C is closed and convex. So, in order to apply Theorem V.2.10 from Dunford and

Schwartz, we need only show that R0(dzju)S0(du) =2 C. Suppose, to the contrary, that

R0(dzju)S0(du) 2 C. Then there exists a net ìá(d(u, z)) � R1(dzju)má(du) of elements of C

such that �
g dìá !

��
g(u, z)R0(dzju)S0(du) (30)

for all bounded, measurable g : U 3 Z! R1. In particular,�
h(u)má(du)!

�
h(u)S0(du) (31)

for all bounded, measurable h : U ! R1.

Here is a lemma that will help us reach a contradiction to (30).

Lemma A.1. There exist A 2 B (Z) and å. 0 such that

S0fujR1(Aju) > R0(Aju)� åg. 0:

Proof. Let G � fA1, A2, . . .g be a countable generating set for the ó-®eld B (Z) and

assume, without loss of generality, that G is closed under ®nite intersections. Then two

probability measures p and q on B (Z) are unequal if and only if for some positive integers i

and j,

j p(Ai)ÿ q(Ai)j > 1= j:

Thus, by the hypothesis of the theorem, there exist i and j such that

S0fukR1(Aiju)ÿ R0(Aiju)j > 1= jg. 0:

To complete the proof of the lemma, take å � 1= j and A to be either Ai or its complement.

h

Let A and å be as in Lemma A.1 and set

B � fujR1(Aju) > R0(Aju)� åg:
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De®ne g to be the indicator function of B 3 A. Then�
g dìá �

�
B

�
A

R1(dzju)má(du)

�
�

B

R1(Aju)má(du)

>

�
B

R0(Aju)má(du)� åmá(B)

!
�

B

R0(Aju)S0(du)� åS0(B)

�
��

g(u, z)R0(dzju)S0(du)� åS0(B):

(The convergence step above is by (31).) We have reached a contradiction to (30).

The theorem now follows immediately from Theorems V.2.10 and V.3.9 of Dunford and

Schwartz.
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