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An extension of P. Lévy’s distributional
properties to the case of a Brownian motion
with drift
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We extend the well-known P. Lévy theorem on the distributional identity (M, — B,, M,) ~
(|B:|, L(B);), where (B,) is a standard Brownian motion and (M,) = (Supo<,<,B;s) to the case of
Brownian motion with drift 1. Processes of the type

2 2
dX} = —Asgn(X7)ds +dB,
appear naturally in the generalization.
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1. Introduction

A classical result of Paul Lévy states that if B = (B;)o</<1 is a standard Brownian motion
(Boy=0,EB, =0, EB? = 1) then

(M — B, M) ™ (|B|, L(B)), (1)

ie. (M;—B,M;);0st=<1) lg (|B:], L(B);; 0 < t < 1), where M = (M)o<i<1, M, =
maXo<s<: By, and L(B) = (L(B))o<<1 is the local time of B at zero:

. 1!
LB, =t 5| 1m0 ds @

(see, for example, Revuz and Yor, 1994, Chapter VI).

The main aim of this note is to give an extension of the distributional property (1) to the
case of a Brownian motion with drift B*, where B* = (B’::)Ogtgl, B’} = B, +At. Let us
denote M* = (M};)Ogtgl, M’} = maxogsg,Bﬁ.

For our presentation the process X* = (X’})og <1, defined as the unique strong solution of
the stochastic differential equation
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plays a key role. (Here sgnx is defined to be 1 on R, —1 on R_ and 0 at 0.) In particular,
we shall see that the process |X*| = (|X*|)o=/<| realizes an explicit construction of the
process RBM(—A2), i.e. a reflecting Brownian motion with drift (—Af).

2. Main result

Theorem 1. For any 2 € R

(M* — B}, M%) 2 (X7, LX), )

law

ie. (M* — B}, M), 0 <t<1) & (X4, L(XY); 0 < t < 1), where

t

1
T
L(X*"), = lell%l ZLI(M‘SE) ds.

Proof. Denote by (2, .7, (7 1)o<i<1, P) a filtered probability space and let B = (B,)o<,<1 be
a standard Brownian motion on (2, .7, (7 /)o</<1, P). Define on (L2, .7) a new probability
measure P*:

dP* — e ABi-4/24p (= o ABI+A /2 dp). 5)
By Girsanov’s theorem (Revuz and Yor 1994; Liptser and Shirayev 1977),
Law(B*|P*) = Law(B|P). (6)

Denoting by C'[0, 1] the space of non-negative continuous functions on [0, 1] we obtain,
using (5), (6) and (1), that for any non-negative measurable functional G = G(x, y),
(x, y) € CT[0, 11 X CT[0, 1]:

E[G(Mﬂ. _ Bl’ Ml)] _ El[eiB’}—lZ/2G(Ml _ Bl’ Mﬂ.)]
= E[e*" /2 G(M — B, M)] = E[¢M P IBD-E2G(|B|, L(B)).  (7)
From another angle, let us introduce a new measure P*:
APt — o [/ senx’aB, 222 dp (: o [} senx?axiiz)2 d P) ®)
Again by Girsanov’s theorem,
Law(X*|P*) = Law(B|P). )
From (8) and (9) we find that (with E* denoting expectation with respect to P*)

E[G(|X*|, L(x"))] = E* [e‘l [ st axi= 2. xo0) L(Xi»}

1
— E[eﬁljo senBedB2 G g, L)] . (10)
Now we note that by Tanaka’s formula (Revuz and Yor 1994, Chapter VI)
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1
|B/| = J sgn B;dB; + L(B),.
0

So, from (10)
E[G(|X*|, L(X")] = E[e" P 1P021G(|B|, L(B))]. (11
Comparing (7) and (11), we obtain (4). Ol

3. Study of X*

In this section we consider some properties of the processes X* and | X ’1|. If A =0 then
X% = B, |X°| = |B| and, as is well known, Law(|B|) = Law(RBM(0)), where RBM(0) is a
Brownian motion reflecting at zero (Revuz and Yor 1994, Chapter III; Ikeda and Watanabe
1981, Chapter IV). In this sense the process |B| gives an explicit construction of the reflecting
Brownian motion. We shall see below that for reflecting Brownian with drift the process |X*|
plays the corresponding role.

Let us describe first of all some properties of X* and |X*| from the point of view of the
general theory of Markov processes.

On a filtered probability space (R2,.7, (7 1)s=0, P) for given 1 € R and every x € R we
consider the stochastic process X = (Xf”l),zo which satisfies the stochastic differential
equation

A = —AsgnXPrdi+dB,  Xjt=x (12)

This equation has a unique strong solution and, as a corollary (see Revuz and Yor 1994;
Chapter IX, Theorem 1.11), we also have uniqueness in law. Denote the corresponding
distribution of X** on the space (C, #") of continuous functions by P**:

Law(X**| P) = P*, (13)
Denote also by (T };, t = 0) the set of operators given by

i = [feoPco, (14)

where f € .%,(R) (the set of bounded Borel measurable real-valued functions defined on R)
and ¢ = (¢)s=0 denotes the coordinate process, ¢ € C.
If 7 is a finite (7 ;);=0-stopping time and A € .7, then

E[ f(X¥F) - 14] = E[T.f(X*) - 14]. (15)
Indeed, from (12),

t
DGR G Ajo sen(X**)du + (Brys — By). (16)

But Law(B;; — B;, t = 0|P) = Law(B;, t = 0| P) and (B, — B;)s=0 is independent of .77,
and so by the uniqueness in law of equation (12) we obtain (15).
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Thus the process X = (X ;"’1) =0 18 a time-homogeneous Markov process with transition
function (T ’}(x, ), t = 0) defined above. From Karatzas and Shreve (1988), Chapter 6,
Result 6.5] it is known that T*(x, dy) for all x and A admits a density p*(y|x), ie.

THx, dy) = p*(y|x) dy,

and, for example, for x = 0, A = 0, the following formula holds:

1 2 0 2
A _ —(x—y—A1)* /2t -2y —(v—A0)* /2t
X) = e + le J e dv |, =0,
Py T < . ) y

1 2 0 2

_ —(2Ax—(x—y+A1)*/21) 2y —(v—At)* /2t

=——\¢ + le J e dv |, <0. 17

V ZJ'IZI < x—y > y ( )

This explicit form of the transition density can be used to show that X** is a Feller process
— indeed this can also be deduced using Zvonkin’s method (Revuz and Yor 1994, Chapter IX,

@2.11)).

Now we show that | X**| is also a time-homogeneous Markov process. Indeed, sgn x is an
odd function and {#|X** = 0} is P-as. a Lebesgue null set (it is clearly true for A = 0, that
is, for (x 4+ B;);=0, but the measures P** and P** are locally equivalent so it holds, in fact,
for any 1 € R). Thus it follows that P-a.s.

t
—X = _x — AJ sgn (—X**)ds — B, (18)

0

and by the uniqueness in law we then obtain
Law(—X**|P) = Law(X | P). (19)

Using the Markov property of X**-processes this implies that for all s, = 0, x € [0, oo) and
all bounded real-valued Borel functions f on [0, co) we have, for any 4* € o(|X fll\ lu<ys),

E[f(|X3E,]), 4] = E[f (X)), 4] = BT f(XTH), 4%]
and
/(X3 D, 4 = BUA( = X3, 471 = ELF(X 5D, 47
=E[f(X;]), A1 = E[Tf(X;*), 4]
= E[T/(=X}"), 47]. (20)

Here we have used the notation f(x) for f (|x[), x € R. We have thus shown that |X**| is
indeed a Feller—Markov process.

Theorem 2. For each x € R and 4 € R,

Law(|X**|) = Law(RBM*(—1)). 1)
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Proof. In Markov theory, as is well known (see, for example, Ikeda and Watanabe 1981,
Chapter 1V, §5), the process RBM*(—A), called a Brownian motion with drift (—At) started at
x =0 and reflected at zero, is a diffusion Markov process with infinitesimal operator . 7*
acting on functions
_ 0}
x|0

A L) =310 = Af (). (22)

(It is well known that the operator . 7* generates a unique (diffusion) family of measures
Q% x =0, and the corresponding Markov process is by definition the process RBM*(—1)
(Ikeda and Watanabe 1981).)

Now let us consider our process X**. By the Ito—Tanaka formula (Revuz and Yor 1994,
Chapter VI),

drf
dx

DA = { f € Cy([0, ),

by the formula

Al = sgn it dXG4 4 AL,
= —Adt +sgn X dB, + dL(X*),, (23)

where L(X**), is a local time at zero on the time interval [0, 7] for the process X **. Suppose
that f € Cﬁ([O, 00)) with f'(0+) = df/dx|xj0o = 0. Then by It6’s formula,

t 1 t
SO = 70X = | S D dlae?|+ ijof”(IXi"ll)ds

t 1 t
= | 1 (IX)(=Ads 4 sgn X4 dB, + dL(X™),) + EJ FI(XE ) ds
0 0

t 1 t
= | A S Mt | FOxaLae., o)

where M, = forf’(|X>’§”1|)sgn)(_’§”1 dB; is a local martingale and
t
[ axpazce, o
0

because f'(0+) = 0 and L(X**) increases only on the time set {¢| X’ ;"’1 = 0}. From (24) we
see that

FUX) — F(XEH) — jolfziqu:?ﬂ) ds 25)

is a local martingale and thus the infinitesimal operators for the two processes |X**| and
RBM*(—]) are the same (acting on &/(_#")). Therefore (21) is proved. O
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4. Some remarks

The theorem of P. Lévy (1) and its extension (4) given above both have ‘two-dimensional’
character in the sense that they are statements for pairs of processes ((M* — B*), M*) and
(X%, LX)

M. Yor has pointed out the connection between Theorem 1 and 2 above and the results in
Kinkladze (1982) and Fitzsimmons (1987). From Kinkladze (1982) one may obtain easily the
corresponding ‘one-dimensional’ result saying that M* — B RBM(—A). (For the notion of
RBM(—4) see Definition 1 in Kinkladze (1982).) Indeed by Theorem 1 and 2 in Kinkladze
(1982) the process Y* = RBM(—A) can be realized with some Brownian motion B in the form

YA = sup (=A(t — s) — (B, — By)), t=0.
=s=t
So Y’1 supo<s</((As + B;) — (At + B,)) and as a corollary Y* = M* — B* with B’1 At+ B,.
Together with formula (21) of Theorem 2 we obtain that M* — B* & £ |X*|. In connection with
this formula it is useful to remark that the process X* has appeared in many different problems;
however, the very natural property RBM(—1) = faw |X*| apparently has not been noted before.

It is very reasonable to ask about possible extensions of the result M* — B*'2 | X?| for
the more general class of processes Z = (Z,),;=o besides the processes B* = (Bt),>0, AeR.
According to Fitzsimmons (1987), if Z = (Z,);=¢ is a conservative real-valued diffusion
process and the process max Z — Z is a time-homogeneous strong Markov process then
necessarily Z = B, where B’}"’ = At+ 0B, with A € R, 0 >0. So, this result shows that
in some sense a direct extension of the P. Lévy’s result is possible only for Brownian
motion with drift. This is exactly the framework of Theorem 1 above.
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