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The probabilistic structure of a discrete-time (high-order) vector Markov process may be studied using
two approaches. In the first approach, the Markov process is specified by the transition probability and
the initial distribution. An alternative approach is via a stochastic difference equation. We have proved
that these two approaches are equivalent under very mild conditions.
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1. Introduction

Consider a discrete-time Markov process. We can study its structure with reference to its
conditional probabilities, i.e. its transition probabilities, in addition to its initial distribution.
This approach will be referred to as the direct approach. An alternative approach is via a
stochastic difference equation. In the linear Gaussian case, the two approaches are clearly
equivalent. The state-space approach to nonlinear time series typically adopts the transition
probability approach, while the nonlinear autoregressive approach is clearly within the
nonlinear stochastic difference framework. Rather curiously, the two approaches seem to be
developing without much interaction. It is therefore relevant to investigate whether they are
theoretically equivalent. Now, for a real-valued Markov chain and in the first-order case, the
two approaches can be shown to be equivalent under very general conditions; see Rosenblatt
(1971, Lemma 2, p. 169) and Tong (1990, Lemma 3.1, p. 97). Whether this equivalence can
be generalized to the case of higher-order vector-valued Markov processes is, as far as we are
aware, an open problem. This open problem deserves careful attention as the equivalence of
the two approaches, if true, has the following useful consequences. First, it implies that
whether we should use one approach in preference to the other becomes a matter of either
taste or convenience. Second, it is then guaranteed that one can convert freely between the
two approaches. While the direct approach facilitates likelihood calculations, the stochastic
difference equation approach yields a direct description of the dynamics of the process, which
is of relevance for forecasting purposes. Moreover, it provides a recipe for recovering the
noise terms under certain conditions, which terms are useful for (not necessarily likelihood-
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based) model estimation and diagnostics. Hence, the equivalence of the two approaches
would be of some practical value.

The purpose of this paper is to address this open problem. We show in Section 2 that
under very general conditions, the two approaches are indeed equivalent.

2. Main result

We recall the well-known device of writing a pth-order Markov chain, say {Y,}, as a first-
order vector-valued Markov chain via the stacking operation X, = (Y}, ¥, |, ..., ¥, ,.))T,
where X, is k-dimensional and % is equal to p times the dimension of Y,. Henceforth, it
suffices to consider first-order k-dimensional Markov chains.

Let {X, = (Xu1, Xn2, ...,X,,,k)T} be a k-dimensional homogeneous Markov chain. We

say that {X,} satisfies a stochastic difference equation of the normal form if

Xor1,1 = Gi(Xy, €i11,1), (D
Xnr12 = Go( Xy, Xpt1,15 €ns1.2)s (2
Xnt13 = G3(Xpy Xpt1,1, Xnt125 €u413)s (3)
Xn+1,j = Gj(Xn’ Xn+l,i, i< j, En+l,j)> (4)
X1,k = Gi(Xu, Xuyr,io 1 <k, €ny1,0), (5)
where ¢, = (i1, €125 - - - » k) > {€n} is a sequence of independent and identically distributed

(i.i.d.) random vectors, each of which consists of independent components, and the Gs are
measurable functions. By substituting, in order, (1) into (2), (2) into (3), and so on, we
see that X, = G(X,, €¢,41), for some function G. The normal-form stochastic difference
equation, if it exists, is not unique for the underlying process, as it depends on the order of
the components in X,. Even when this order is fixed, the normal-form stochastic difference
equation is generally not unique, because we can apply a non-singular transformation to ¢,
componentwise and modify the functional form of the Gs accordingly to preserve the
equalities (1)—(5). Equations (1)—(5) are said to be invertible if and only if we can invert the
equations to express €,.1,; in terms of X, X, ;, i < j, i.e. there exist measurable functions
H;, 1< j<k, such that ¢,.1; = H{(X,, Xy41;, i=<j) for all n, j. Notice that a non-
degenerate vector Gaussian AR(1) process always admits an invertible normal-form stochastic
difference equation that can be derived as follows. Assume that {X,} is a non-degenerate
vector Gaussian AR(1) process. Then, given past Xs, X, 11 ~ N(4X,, 2), where Aisa k X k
constant matrix and X a positive definite matrix. Consider the Choleski decomposition
S = RTDR, where R is a k X k upper-triangular matrix with unit diagonal elements and D is
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a diagonal matrix. Then (RT)"'X,. | ~ N((R")"'4X,, D). Notice that (RT)™' is a lower-
triangular matrix with unit diagonal elements. Hence, (R")"'X,.1 = (R") " '4X, + ¢1p1,
where ¢,1 ~ N(0, D), yielding an invertible normal-form stochastic difference equation
representation for {X,}.

The above definition of invertibility implicitly assumes that the state vectors X, are
observable. In some cases, the state vectors X, are partially observable, e.g. only the first
components of the state vectors are observable, in which case it may be more desirable to
rephrase the definition of invertibility by requiring that the noises be expressed as functions
of the current and past observable components of the state vectors. However, we shall not
pursue this issue here.

Let us now introduce some notation for the general case of k-dimensional Markov
chains. Denote by B, ; the o-algebra generated by all Xs up to and including epoch 7,
and X1, 0 <i<j, ie. the first j components of X,;. If {X,} satisfies an invertible
normal-form stochastic difference equation, then B,ii; = B, X Cppi1 X Cup12,X ... X
Cu+1,j» where C,i1; denotes the o-algebra generated by ¢,.1; This is an explicit
requirement on the manner in which the process is generated, namely, the jth component of
X1 1s built up by the past Xs and the first j components of the invertible noise term ¢, .
If this requirement is satisfied then, for fixed j, the one-dimensional conditional distributions
of Xyi141 given X, =x, X,q1; = Xu41,, | < J, are equivalent functions for all x, x,41;,
i < j. (Following Rosenblatt (1971), two unidimensional distribution functions, say F nd G,
are said to be equivalent if and only if the discontinuity points of F can be mapped to
those of G in a one-to-one manner with the jump size preserved.) It is well known that a
distribution function admits at most countably many points of discontinuity. For any
distribution function, say H, the set of all discontinuity points of H will be denoted
by D(H). Hence, FF and G are equivalent if and only if there exists a one-to-one
map ¢:x € D(F)— ¢(x) € D(G) preserving the jump sizes, ie. for all x € D(F),
F(x) — F(x—) = G(¢(x)) — G(¢(x)—) where, for example, F(x—) = lim;, F(y). In parti-
cular, continuous distribution functions are, by definition, equivalent. Conversely, following
the same kind of construction as in Rosenblatt (1971, p. 169), it will be shown below that if
the equivalence requirement on the conditional distribution functions holds, there exist
6 = (€nls €2y - i)' and Gy, j=1,..., k, such that X, ;11 = GA(Xn, Xps1r | < J,
€nt1,741), Which is, indeed, an invertible normal-form stochastic difference equation
representation, as can be seen from the proof of the lemma below. Consequently, we
have X, = G(X,, ¢,11) almost everywhere, a stochastic difference equation representation.

We can now summarize the preceding heuristic discussion in the main result below by
first posing the following question.

Question Q. Do there exist independent components ¢, = (€1, - . ., e,,,k)T such that, for all n
and all j, €,11 j11 is independent of B,y ; while B, j.1 equals the o-algebra generated by
Buy1,j and ¢,101,7417

Lemma. Let {X,} be a k-dimensional stationary Markov chain with conditional distributions
Fi(xj1]x, Xpp1s <)) = P(Xpp1j01 < x51|Xn =% Xop1i = Xuy1,, [ < )). The answer to
Question Q is affirmative if and only if, for each j, Fi(xji1|x, X,415 1< j), as functions of
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Xj+1, are equivalent for almost all x, X,1; 1< j, with respect to the stationary probability
measure of the process {X,}.

Remark. A simple sufficient condition for the equivalence of the F's in the preceding lemma
is that the stationary distribution of (X,, X,+1) admits a positive pdf with respect to the
Lebesgue measure on R?¥, in which case all the Fs are continuous functions with the real
line as their support, and hence they are equivalent. While the positivity condition generally
holds for stationary Markov chains with ‘non-degenerate’ transition probability kernel, it is
inapplicable for Markov chains with ‘singular’ transition probability kernel, e.g. when X, is
the state vector in the Markovian representation of a scalar-valued kth-order Markov chain,
say {Y,}, so that X, = (Yn, Yu_1, ..., Yupt+1)". In the latter case for j > 1, the F; are the
distribution functions of some Dirac delta probability measures, and, for j = 1, coincide
with the conditional distributions of Y, given Y,, Y,_1, ..., Y,_x+1. We can then adapt
the preceding positivity condition to require that the stationary distribution of (Y41,
Yy, ..., Yu_i+1) admits a pdf with respect to the Lebesgue measure on R+,

Before we present the proof of this lemma, three additional remarks are in order. First, in
the vector case, the stochastic difference equation representation is ordinarily not unique.
In fact, the non-uniqueness of the difference equation representation is related to the
identifiability of the model. This problem is very challenging and well documented in the
case of linear autoregressive moving-average (ARMA) models for vector time series; see
Tuan (1978) and Hannan (1979). Second, we have assumed a particular order of the
components of X,. Already in the linear ARMA case, ordering the components differently
may yield different stochastic difference equation representations, some of which may be
more tractable than others in terms of statistical inference. Third, jumps may occur naturally
in the conditional distribution functions. For example, consider an AR(2) model Y, =
a1Y,_1 +ayY, 2+ e, where the e, are i.i.d. Let X, = (X,1 = Y,, X,2 = Y,_1)!. Clearly,
the conditional probability distribution of X, 1, given X, jumps at the point X, ; from 0
to 1.

Proof. First, we consider the proof of the necessity of the equivalence of the F; for each ;.
Let C,; denote the o-algebra generated by ¢,; For fixed j, the equality B,.(; =
B,11,j—1 X Cpy1,; implies that, conditional on X, X,11;, i < j, the o-algebra generated by
Xny1,; equals G, ; and hence the F; are equivalent functions.

Conversely, suppose that, for all j, the F; are equivalent functions. For simplicity, first
assume that all the F; are continuous functions with no jumps. Then, let U,y ; =
Fi(Xp11,/| X0, Xuy1,, © <j), which are uniformly distributed over the unit interval [0, 1].
Hence, {U, = (U1, ..., U,,’k)T} is a sequence of i.i.d. random variables, each component
of U, being uniformly distributed over [0, 1]. Therefore, X, ;= FJT'(U,,J|X,,, Xot1.is
i <j) almost surely. Here, the inverse of a distribution function, say F, is defined
as F~'(x) =inf{y: F(y) > x}. This demonstrates that there exists a G such that
Xn+1 = G(X,, Uyt1), a stochastic difference equation representation.

If the functions F; have jumps, we adapt below the arguments of Rosenblatt (1971,
p.- 169) to show that the above difference equation representation still holds, but the
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components of U, need not be uniformly distributed over [0, 1]. For fixed j, let the set of
discontinuity points of Fj(:|x, x,+1,, 0 <i <j) be D ={d\, d>, ds, ...} where the ds are
assumed to be labelled so that their corresponding jump sizes are non-increasing:
p1 = p» = ps =.... (Note that the only accumulation point of the jump sizes must be zero,
as the total probability mass equals 1; hence the jump sizes attain their maximum value.) In
other words, for all k, Fi(di|x, xy41, 0 <i<j)— Fi(dy — |x, Xp11, 0 <i<j)= py with
the ds labelled sequentially so that the corresponding ps are non-increasing. Moreover,
the set of ps depends on j but is independent of x, x,11,;, 0 < i < j, by the equivalence of
the F;. On the other hand, the set of discontinuity points does depend on both j and the
conditioning values, x, x,11,, 0 < i < j. We have suppressed the dependence of the ps on j
for the sake of conciseness; similarly, we adopt a simpler notation for the ds. Now, define
€1 =1 when X,,;=d; given X, =x, X,11; = Xpp1;, 0<i<j; otherwise define
€1 = F 7 (X1 )| X0 = X, Xyt = Xoup1is 0 < i < j). It is readily verified that ¢,; is a
probabilistic mixture such that it equals i with probability p; and is uniformly distributed on
[0, 1] with probability 1 — "%, p. Clearly, there exist measurable functions G; such that
Xnv1,j = Gil€nt1,j> Xn> Xug1,i, 0 <1 <j). This completes the proof that there exists G such
that X, 11 = G(X,, €.+1), a stochastic difference equation representation. O

3. Conclusion

In the case of vector ARMA modelling, the non-uniqueness of the stochastic difference
equation representation has given rise to much research on convenient parametrization of
vector ARMA models; see, for example, Akaike (1976), Tuan (1978), Hannan (1979),
Hannan and Deistler (1988) and Tiao and Tsay (1989). This non-uniqueness problem is much
more challenging in the case of nonlinear time series, partly because the functional form of
the nonlinear model is often unknown. Innovative research on this challenging problem is
clearly needed to advance nonlinear multiple time series modelling.
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