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MIXED HODGE STRUCTURES ON HOMOTOPY GROUPS 

BY RICHARD M. HAIN1 

In [3] Deligne defined mixed Hodge structures (M.H.S.'s) and showed that 
the cohomology of every algebraic variety over C has a natural M.H.S. Morgan 
[12], using Sullivan's minimal models, showed that the rational homotopy Lie 
algebra and rational homotopy type of every smooth variety have natural 
M.H.S.'s. In this note we announce an extension of mixed Hodge theory to 
arbitrary varieties and homotopy fibers of morphisms between varieties. The 
latter is a major step in extending asymptotic Hodge theory to homotopy 
groups and periods of iterated integrals. The bar construction and Kuo-
Tsai Chen's iterated integrals [1] provide the link between Hodge theory and 
homotopy groups. Some of the results announced have been distributed in 
preprint form [7]. Proofs of the results stated will be published elsewhere. 

Because the higher homotopy groups of a non-nilpotent topological space 
are inaccessible to rational homotopy theory, we make the following definition. 
The homotopy Lie algebra of a pointed topological space (X, x) is the graded 
Lie algebra 0.(X, x) where 0o(^> z) is the Malcev Lie algebra associated with 
7Ti(X, x) and, when k > 1, 

(Y \ _ J ^fc+iPfix) ® Q 'à (X>x) i s nilpotent, 
g f c ( A , x j - | 0 otherwise. 

The class of nilpotent spaces includes simply connected spaces and topological 
groups. There is a Hurewicz homomorphism 

9k(X,x)-.Hk+1(V,Q)-

THEOREM 1. If (V, x) is a pointed algebraic variety, then the homotopy 
Lie algebra of (V, x) has a M.H.S. that is functorial with respect to morphisms 
of pointed varieties and such that 

(a) the bracket is a morphism of M.H.S.'s. 
(b) The Hurewicz homomorphism is a morphism of M.H.S. 's. Moreover, if 

(V, W, x) is a pair of simply connected varieties, then 7r.(V, W, X) has a natural 
M.H.S. and the long exact sequence of the pair is a long exact sequence of 
M.H.S.'s. 

If (V, x) is simply connected, then the M.H.S. on 7Tfc(V, x) does not depend 
on the basepoint x. However, if V is not simply connected, this is not the 
case. 
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Denote the integral group ring of a group G by ZG. The augmentation 
ideal J is the kernel of the augmentation ZG —> Z: g —> 1. One can also show 
that if (V, x) is a pointed variety, then for each s, the truncated group ring 

Z7Ti(F,x)/JS 

has a M.H.S. 
The following theorem is an improvement of a result of the author by 

M. Pulte [13]. 

THEOREM 2. Suppose that X and Y are smooth projective curves and 
that x G X and y €Y. Suppose that 

$:Z7r1(X,x)/J3-+ZiT1(Y,y)/J3 

is a ring isomorphism that commutes with the augmentations. If $ induces 
an isomorphism of M.H.S.'s, then for all but at most two exceptional points 
x of X, there exists a biholomorphism <j>:X —>Y such that <j)(x) — y. 

Presumably these exceptional points do not exist. The previous result is 
related to the study of certain algebraic 1-cycles in Jac(X) via the work of 
Bruno Harris [11]. The details of this connection will appear in [13]. 

It is sometimes convenient to have a M.H.S. on the rational homotopy type 
of a variety. 

THEOREM 3 ( Cf. [12] when V is smooth). If (V, x) is a pointed variety, 
then the rational Lie algebra model and rational minimal model of (V, x) have 
(not necessarily unique) M.H.S.'s. 

Using this result, one can find nontrivial restrictions on the rational homo­
topy types of projective varieties. 

THEOREM 4. There exists a simply connected finite CW-complex X whose 
integral cohomology ring is isomorphic to that of a simply connected projective 
variety, but X does not have the rational homotopy type of any projective 
variety. 

THEOREM 5. If X is a complete (e.g. projective) variety whose rational 
cohomology ring satisfies Poincaré duality, then X is formal. 

There are many such varieties that are not smooth. The main result of 
[4] follows from Theorem 5. The following interesting corollary of Theorem 5 
and a result from [9] was pointed out to me by S. Halperin. 

COROLLARY 6. Suppose that V is a simply connected complete variety. 
Ifnk{V) is torsion when k is sufficiently large, then V is formal. 

In the homotopy category, every continuous map ƒ : X —> Y can be canon-
ically replaced by a fibration n:Ef —> Y where E f is homotopy equivalent 
to X. The fiber 7r~x(y) is called the homotopy fiber of ƒ over y and will be 
denoted by Ef(y). If Y is path connected, then all homotopy fibers are homo­
topy equivalent. For example, if Y is an Eilenberg-Mac Lane space K(ir, 1), 
then the homotopy fiber of ƒ is the total space of the covering of X determined 
by the kernel of ni(X) —* ni(Y). 

Set Xy = f~~l(y). There is a natural inclusion Xy —> Ef(y), which is a 
weak equivalence if ƒ is a fibration. 
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THEOREM 7. Suppose that f:X —» Y is a morphism of algebraic varieties. 
IfEf(y) is path connected and 7Ti(y, y) acts unipotently on H'(Ef(y); Q), then 
the cohomology and the rational homotopy Lie algebra (and types) of Ef(y) 
have natural M.H.S. 's. Furthermore, the restriction map 

H-{Ef{y)) -+ H'{Xy) 

and the monodromy representation 

H-(Ef(y))®Qo(Y,y)^H-(Ef(y)) 

are morphisms of M.H.S.'s. If X and Y are simply connected, then the long 
exact sequence of homotopy groups associated with the fibration Ef(y) —> X —> 
Y is a sequence of M.H.S. 's. 

This theorem is true for spaces more general than algebraic varieties. Loose­
ly speaking, X and Y may be replaced by any topological spaces whose co­
homology and homotopy have natural M.H.S.'s. In [5] it is shown that the 
cohomology and homotopy of a deleted tubular neighbourhood of a subvariety 
of a smooth variety have natural M.H.S.'s. 

If ƒ : X —> A is a local degeneration of projective varieties, then after a 
base change if necessary, we may assume that the monodromy representation 
is unipotent. Theorem 7, combined with Steenbrink's work [14], then yields 
the next result. 

THEOREM 8. If f:X —• A is a degeneration of projective varieties with 
unipotent monodromy, then the M.H.S. on the homotopy fiber of X* —> A* 
is the limit M.H.S. on the cohomology of the generic fiber of ƒ. Moreover, 
ifcr:A —• X is a section, then there is a limit M.H.S. on the homotopy Lie 
algebra of (Xt,a(t)) when t =̂  0 such that the natural map 

g.(Xo,a(0))->fl.(X t,a(t))i im 

is a morphism of M.H.S. 's. 

One can show that the Hodge filtration on the homotopy Lie algebra varies 
holomorphically with (X, x) and satisfies Griffiths transversality. Also, in joint 
work with Zucker [8], we show that the variation of M.H.S. over a variety V 
whose fiber over x is %o(y,x) classifies all variations of M.H.S. over V with 
unipotent monodromy, a result conjectured by Deligne. 

9. Sketch of proofs. The first step is to show that if A* is a mixed Hodge 
complex (M.H.C.) that is also a d.g.a. (a multiplicative M.H.C.) and if M*, 
N' are M.H.C.'s that are right and left A' modules respectively, then Chen's 
reduced bar construction B(M\A\N*) [2] is also a M.H.C. For Theorem 1, 
we need to show that if A' is a multiplicative M.H.C. that is augmented, then 
the usual bar construction B(A') and its indécomposables QB(A') are also 
M.H.C.'s. 

The second step is to construct for each algebraic variety V a commutative 
multiplicative M.H.C. whose rational part has the same homotopy type as 
the Thom-Sullivan rational de Rham complex of V. This is done by taking 
A' to be a collection of compatible forms on the geometric realization of a 
hypercovering of V. 
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Theorems 1 and 7 now follow from results in [1, 6, 10] and standard results 
from algebraic topology. 
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