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DISCRETE ANALOGUES 
OF SINGULAR RADON TRANSFORMS 

E. M. STEIN AND S. WAINGER 

The purpose of this paper is to describe recent results we have 
obtained in finding discrete analogues of the theory of singular 
integrals on curves, or more generally of "singular Radon trans­
forms," at least in the translation-invariant case. Our theorems 
are related to estimates for certain exponential sums that arise 
in number theory; they are also connected with Bourgain's recent 
maximal ergodic theorem [2, 3]. The detailed proofs of our re­
sults are quite lengthy, and will appear elsewhere. Here we shall 
limit ourselves to stating the main conclusions, and sketching the 
motivation and background. We take this opportunity to acknowl­
edge our indebtedness to Guido Weiss and A. De la Torre, whose 
suggestions were the starting point of this research. 

1 

The theory of singular Radon transforms may be thought of as a 
natural extension of the Calderón-Zygmund theory of singular in­
tegrals. It had as its origin some problems related to parabolic dif­
ferential equations, and was developed further because of its real-
variable consequences, in particular differentiation theory along 
lower-dimensional varieties; see [10]. Later its relevance to several 
complex variables and its connection with analysis on nilpotent Lie 
groups were brought out; (see [6, 7, 8]). Here we begin by stating 
one of the main known results in the Rn setting for a basic model 
problem. 

Let K be a Calderón-Zygmund convolution kernel on R (here 
k need not equal n ). Then K is defined away from the origin, 
satisfies the estimates \K(x)\ < A\x\~k, \Vk(x)\ < A\x\~k~l, and 
the cancellation property: fR<\x\<yR K(x)dx — 0, for some y > 1, 
and all 0 < R < oo . 

Received by the editors March 29, 1990. 
1980 Mathematics Subject Classification (1985 Revision). Primary 42B20, 

42B99, 11L40. 

© 1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

537 



538 E. M. STEIN AND S. WAINGER 

We also suppose we are given a polynomial map P : R -» R" , 
i.e. P — (P{, P2, . . . , Pn), where the P£ are real-valued polyno­
mials on R . We consider the transformation T, defined by 

(1) T{f){x)= fkf(x-P(y))K(y)dy 
J R 

which can be defined on the Schwartz space of R" as a generalized 
principal-value. Then a restatement of the known results is as 
follows: 

Theorem A. T extends to a bounded operator on Lp(Rn) to itself 
1 < p < oo. Moreover the norm of T has a bound which depends 
only on the degree of P ( and of course on p and K), but is 
otherwise independent of P. 

2 

The discrete analogue of ( 1 ) can be formulated as follows. We 
consider the operator S, given by 

(2) S{f)(x)=yjr'Ax-PU))K(j), 
jezk 

where Z denotes the integral lattice in R^ , and the prime in (2) 
indicates that 7 = 0 is excluded from the sum. The question we 
deal with is that of the bounds 

(3) \\S{f)\\L,pr)<4\f\\L>{*ry 

In the special case the polynomials map Z to Zn (e.g. when 
they have integer coefficients) we can also consider the mapping S 
as transforming functions on Zn to functions on Zn . In this case 
we can also formulate the question whether 

(3 ' ) \\S(f)\\ePiZn}<A\\f\\eP{znr 

Our main result is a partial analogue of the continuous case 
described by Theorem A. While the result below deals only with a 
range of p, it is not unreasonable to expect that ultimately it will 
be shown to hold for all p, 1 < p < oo . 

Theorem 1. The operator S is bounded on Lp(Rn) to itself for 
3/2 < p < 3. Moreover the norm of S has a bound that depends 
only on the degree of P (and p and K ), but is otherwise indepen­
dent of P. In the case that P maps Z to Zn, similar results hold 
for 3'. 
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There are several variants of the above which are possible; here 
we state two. First, let x —• Ux be a continuous mapping of Rn 

to unitary operators on some Hubert space %?, which satisfies the 
multiplicative property: Ux - Uy = Ux+y, x, y e Rn . Then the 
(appropriately defined) operator 

(4) S^^'U^KU) 
jezk 

is bounded on %?. 
Further, suppose (X, dju) is a cr-finite measure space, and each 

Ux is realized as induced by a measure-preserving transformation 
of (X, dpi). Then the operator (4) is bounded on LP(X, dju) to 
itself, 3/2 < p < 3 . There are also variants when the mappings 
x —• C/x are defined only for je G Z" ; then one requires that the 
polynomial P maps Z^ to Zn . 

3 

Beyond the motivation of the continuous case described in § 1, 
we mention here three other sources for our work — to which we 
shall return below. 

First, the extensions of the maximal ergodic theorem due to 
Bourgain [2, 3]. He proved in the setting when U is induced by 
a measure-preserving transformation, that the maximal operator 
ƒ -• sup£|£i<;<;v UPU)f\ is bounded on LP(X, dfi) to itself, 

for 1 < p < oo . Here P = (P{9 P2, . . . , Pn) is a polynomial from 
Z1 to Zn . Bourgain used the techniques of the "circle method" 
of Hardy and Littlewood, as further developed by Vinogradov and 
others (see [11]), which divides the spectrum into "major" and 
"minor" arcs. We also use these techniques in an essential way, as 
indicated below. 

Second, we showed in the case P is a quadratic polynomial, 
then the result for p — 2 is deducible from Carleson's theorem [4] 
on the convergence of Fourier series (in its «-dimensional form 
given in Sjölin [9]). We return to this in §7 below. 

Third, is the work of Arkhipov and Oskolkov [1]. They proved, 
in effect, the case corresponding to p = 2, and in one dimension 
(i.e., k = 1 ), also using the circle method. Unfortunately we did 
not know their results when we undertook our work; their paper 
had been overlooked by us, and others*. 

*Only in March 1989, after one us lectured on our work was their paper brought 
to our attention. 
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4 

We now describe some other consequences of our methods of 
proof. These involve the space of functions of bounded mean 
oscillation. 

Theorem 2. Suppose d is a positive integer. Then the function 

f(0) = ET=ieijd6/J isinBMO. 

We also state two variants of this result. Let Px, . . . , Pn be 
n polynomials on R , each with integer coefficients. For 6 = 
(0l9...,0n)eTn

9 write 6 • P(j) for exPx{jx) + 02P2{j2) + • • • + 
enPnUn) where7 = ( 7 1 , . . . , y , 2 ) e Z \ 

Theorem 3. The function f(6) = E ^ z - ^ ^ ' ^ V l ^ T ) is in 

BMO(Tn). 

Next, let rk d(j) equal the number of representations of the in­
teger j as a sum of k, dth powers, which is the counting function 
in Waring's problem. 

Theorems The function E%i^k,dU)(eUeljk'd) is in BMO{Tx). 

One can make more general statements of this kind if one also 
ilc ft 

uses an observation we owe to J. L. Journé: Namely, if Ylake 

with ak > 0 is in BM'0(7"), then sois J2bkc wherever \bk\ < 
ak. 

5 
A natural problem raised by the theory of the continuous case 

and our results is the extension of the above when R" is replaced 
by a more general nilpotent group (and Zn is replaced by a corre­
sponding discrete subgroup). That it is reasonable that substantial 
results along these lines are to be expected is indicated by the fol­
lowing, which we have obtained for the Heisenberg group. Let 
H — {(x{, x2 , x3)} be the Heisenberg group with multiplication 
x • y = (x{ + y j , x2 + y2 , x3 + y3 + xxy2 - x2yx ) . The points Z 
form a subgroup. Suppose K is a Calderón-Zygmund kernel on 
R2 and let (Tf)(x) = £jeZ> f(x • (;,, j 2 , 0))K(j). 

2 1 

Theorem 5. The mapping ƒ —• T(f) is bounded on L (H ) to 
itself 
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By similar methods one can also prove that the maximal oper­
ator 

ƒ - sup - j 
R>0 R 

E f(x-ü\,j2,o)) 
j]+J2

2<R2 

is bounded on LP(HX), 2 < p . The results are discrete analogues 
of operators considered in [6, 7]. 

We indicate the method of proof of Theorem 1 for p = 2 . 
For the continuous analogue given by (1), the L boundedness 
reduced to the following estimate 

(5) 
jRk 

elQ{y)K(y)dy <A 

where Q is any real polynomial on R , and the bound A depends 
only on the degree of Q (and of course on K ). For the discrete 
analogue there is an analogous result, which is of interest in its 
own right. 

Lemma. 

m 
jezk 

\J\<R 

'e2niQ{j)K(j) <A. 

Here again the bound depends only on the degree of Q and 
on K, but not on R. The proof of (5) proceeded by exploit­
ing the method of stationary phase, and dilations on R . How­
ever (6) is subtler, since neither ideas are applicable; it requires 
the circle method. More precisely we write Q(y) = J2\a\<d ^a^" » 
where d is the degree of Q. We then decompose the full sum in 
(6) into dyadic parts X^<m<2'+1 e2niQU)K(j), and try to control 
each part. Now we divide the 6 space into "major" and "mi­
nor" boxes, following the philosophy of Hardy and Littlewood. 
The former consist of those 6 where the 6a are approximately 
close to rationals with small denominators; and the latter consist 
of the complementary d's . The latter contributions are "small," 
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and are estimated by reducing matters to estimates for Weyl sums. 
The former contain the main contribution. These can be replaced 
(again making small errors) by products involving the appropri­
ate generalized Gauss sums (see (7) below), and the corresponding 
contributions form the continuous case, which is the integral (5). 

The generalized Gauss sums can be written as follows: P is a 
polynomial of k variables of degree d, with integer coefficients 
which are relatively prime to a "denominator" q. We then con­
sider 

(7) Sq = Y,e*v(2niP{j)lq) 
J 

where the sum is taken over the range 1 < j \ < q, 1 < j2 < 
q,..A<jk<q. The estimate we need is then that for some 
8 = ed > ed > ° > 

(8) \Sq\<Adq
k~\ 

Below we shall also need the following estimate. Let m(q) de­
note the maximum of the absolute values of all sums in (7) with 
denominator q . For 0 < a < 1, let N(a) denote the number of 
q 's so that q~ m(q) > a. Then 

—2—e 

(9) N(a) = 0(a ) as a —• 0, for every e > 0. 
The estimate (8) is obtained by reducing matters to estimates 

for Weyl sums. For (9) one uses induction, the multiplicative 
properties of sums (7), and ultimately Weil's estimates when q is 
a prime in the one-dimensional case. See also Carlitz-Uchiyama 
[5] and Bourgain [3] for some related statements. 

7 

We now point out an alternative proof of the main lemma above 
in the case when Q is at most degree 2, without using the circle 
method. It is based on the following. 

Lemma. The operator ƒ —• sup£€R* D^z* e jK(j)f(x - j) is 

bounded on L2(Z ) to itself. 

This is a discrete version of Sjölin's generalization of Carleson's 
theorem. The case d = 2of the main lemma follows from it 
if we apply the above to f(x)elQ°^, where Q0 is an arbitrary 
homogeneous polynomial of degree 2, and where we choose ^ = 
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(V<20)(.x). As a consequence, the operator 

f^J2eiQoU)K(j)f(x-j) 
j 

is bounded on L , with a bound independent of Q0 , from which 
the desired result follows. 

8 

The proof of Theorem 1, when p ^ 2 follows the idea of the ar­
gument given in Bourgain [3], for the proof of his maximal ergodic 
theorem cited in §3. Here we will only indicate how the limitation 
3/2 < p < 3 comes about. In considering the major boxes which 
arose in §5, we further group these contributions according to the 
sizes for the sums (7). Now the norm on L2 of an appropriate sub-
sum is majorized by 0(2~m). (The subsum corresponds to those 
q 's, where q~ m(q) « 2~m ). On the other hand, one can show 
that the Ü norm of such a subsum is dominated by 0(2 ( 2 + e ) m), 
using essentially Theorem A, for 1 < p < oo, and estimate (9). 
An interpolation then gives the LP bound 0(2~e m), wherever 
3/2 < p < 3 , and the convergence of the series J2m>o ^~e m al­
lows us to obtain the LP boundedness of the operator S in (2). 
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