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EVERY THREE-SPHERE OF POSITIVE RICCI CURVATURE 
CONTAINS A MINIMAL EMBEDDED TORUS 

BRIAN WHITE 

One of the most celebrated theorems of differential geometry is the 1929 
theorem of Lusternik and Schnirelmann, which states that for every rie-
mannian metric on the 2-sphere there exist at least three simple closed 
geodesies. Jurgen Jost [J] (following important work of Pitts [P] and Si­
mon and Smith [SS]) has recently generalized this result by showing that 
for every riemannian metric on S3, there exist at least 4 minimal embedded 
2-spheres. This is optimal in that there are metrics for which the number 
of embedded minimal 2-spheres is exactly four [W2,4.5]. However, one 
can also ask about surfaces of higher genus, and here our knowledge is 
very incomplete. On the one hand, Lawson [L] showed that S3 with its 
standard metric contains embedded minimal surfaces of every orientable 
toplogical type, and recently Pitts and Rubinstein [PR] have discovered 
many new infinite families of examples. But for general metrics on S3, no 
known theorem asserts the existence of any minimal surface other than a 
sphere. The present paper takes a first step in this direction by proving: 

THEOREM 3. For every C4 riemannian metric y of positive ricci curvature 
on S3, there exists at least one minimal embedded torus. 

I conjecture that every metric on S3 admits at least 5 minimal embedded 
tori, but I can prove it (by a perturbation argument [W2,4.4]) only for 
metrics that are close to the standard metric. 

Peliminaries. The proof uses the following facts about the space of all 
minimal surfaces for varying riemannian metrics. The facts are proved in 
[W2] using the implicit function theorem. Let N be a compact 3-manifold, 
T be an open set of C4 metrics on TV, and M be the set of pairs (y, S) where 
y G T and S C N is a smooth embedded y-minimal surface. 

THEOREM 1 [W2, 2.1,2.2,5.1]. The set M is a smooth Banach manifold, 
and the map 

U:(y,S)^y 

is a smooth map. Almost every (in the sense ofBaire category) y is a regular 
value of 1% i.e., each element ofU~{(y) is a nondegenerate critical point of 
the area functional. 
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Let Mo be the union of one or more connected components ofM. If F is 
connected and ifH:Mo~^Tisa proper map (inverse images of compact 
sets are compact), then Yl\Mo has a mapping degree d such that for each 
regular value y, 

(1) d= Y, (-l)index(5). 
(y,S)eMQ 

REMARK 1. If for some y, n_1(y) = 0, then y is a regular value of n 
and so d would have to be 0 by (1). 

REMARK 2. This theorem remains true for simple immersed minimal 
surfaces. An immersion is simple if there is an x e N that is covered 
exactly once. 

If (y,S) e Mo and S has nullity 0, then S is a nondegenerate critical 
point of the area functional, and (y, S) is isolated in II ~l (y) and contributes 
(_l)index(S) t 0 the degree. It sometimes happens that H~l(y) contains a 
compact /odimensional manifold X of surfaces. Of course the surfaces 
in X are degenerate critical points, but if each of them has nullity equal 
to fc, then X is said to be a nondegenerate critical manifold and has nice 
properties. 

THEOREM 2 [W2,5.1]. Suppose II-1(?Q) contains a nondegenerate criti­
cal manifold X. Then there is a neighborhood T0 c T of yo and a connected 
component Mo of n _ 1 ( r 0 ) such that 

n-1(7o)nAt0 = x 

and 
deg(n|M0) = /(X)(-l)index(I) 

where # (X) is the euler characteristic of X and index(X) is equal to the index 
of S for each (y,S) G X. 

For example consider the Clifford tori. (A Clifford torus is the set of 
points in S3 c R4 equidistant from a pair of orthogonal planes through 
the origin.) The set of all such tori (or, equivalently, the set of pairs 
of orthogonal planes in R4) is topologically the 4-manifold RP2 x RP2. 
Straightforward calculations show that each Clifford torus is a minimal 
surface with nullity 4 and index 1. Thus the hypotheses of Theorem 2 are 
satisfied. 

The Theorem. 

THEOREM 3. For every C4 metric y of positive ricci curvature on S3, there 
exists at least one embedded torus that is minimal with respect to y. 

PROOF. Let yo be the standard metric on S3 and let Sl = {z e C : \z\ = 
1} act on S3 c R4 = C2 by complex multiplication. Let Rn : S

3 -> S3 be 
multiplication by e2niln. We first prove the following: 

LEMMA. There is an no such that ifn > no and if M c S3 is an embedded 
yo-minimal torus with Rn(M) = M, then M is a Clifford torus. 
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PROOF. Suppose not. Then there is a sequence n(i) —• oo of integers 
and a sequence Mt of embedded minimal tori, none of which is a Clifford 
torus, such that Rn^)(Mi) = Mt. 

By the compactness theorem of Choi and Schoen [CS], there is a con­
vergent subsequence, which we may assume to be the original sequence: 
Mi —• M. Fix a real number t > 0 and let k(i) be the greatest integer less 
than or equal to tn{i), so that 

fc(i) 
*(/) ~* l' 

By hypothesis 
e^(Mi) = Mi. 

Thus 

so, letting i —• oo, 
e2™'(M) = M. 

Since this holds for each t, M is invariant under the Sl action. Let 

h:S3 cC2-+S2 = Cu{oo} 

be the Hopf map 
h(z,w) = z/w. 

In more geometrical terms, h : S3 c C2 —• CT1 = S2 maps each point 
to the complex line that contains it. The S1 invariance of M means that 
there is a curve T C S2 such that 

M = h~\T). 

The area of the inverse image (under h) of a curve is a constant times the 
length of the curve. Thus the minimality of M implies that T is a union 
of geodesies. Since M is embedded, T is a single great circle and so M is 
a Clifford torus. It follows from Theorem 2 (and the example given after 
it) that for sufficiently large /, Mt is a Clifford torus. D 

Now to prove the theorem, let T be the set of C4 metrics of positive 
ricci curvature on S3, M be the Banach manifold of Theorem 1, and M0 
be the set of (y,S) e M such that S is a torus. The space F is connected 
by a theorem of Hamilton [H]. By the compactness theorem of Choi and 
Schoen [CS], II|M0 is proper and therefore (by Theorem 1) has a mapping 
degree; we will show that the degree is not zero. Let p be a prime number 
greater than the no of the lemma. Let yo be the standard metric on S3 and 
let To C T be a neighborhood of yo such that I I - 1 (r0) contains a connected 
component Mcliff such that 

n- l(7o)nwcl i f f 

is precisely the set of Clifford tori. (This is possible by Theorem 2.) Let 

Mother = n- 1 (r 0 )n M0 \ MCM. 
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By the lemma we may choose T0 small enough that if (y9S) e Mother then 
RP(S) 7̂  S. Note that since p is prime, if T c S3 is an embedded submani-
fold that is not Rp invariant, then there is an x e T such that x $. (Rp)

k(T) 
for 1 < k < p. That is, T becomes a simply immersed submanifold in the 
quotient space S3/Rp. According to Theorem 1, for almost every metric y 
on S3/Rp, each simple y-minimal surface has nullity 0. Equivalently, for 
almost every Rp invariant metric y on S3, each y-minimal surface that is 
not Rp invariant has nullity 0. Fix any such Rp invariant metric y e T0. 

Now if (y,S) e Mother, then so is (y,(Rp)
kS) for 1 < k < p. Further­

more, these p surfaces are distinct and all have the same index (and nullity 
0). Thus 

deg(n| Mother) = £ (-l)index(S) 

(y,S)E Mother 

= 0 mod p. 

On the other hand, by Theorem 2 and the example following it: 
deg(n|Mcliff) = ^ (^P 2 x i?P 2 ) ( - l ) 1 

Thus 

deg(n|Mo) = deg(n|Mcliff) + deg(n|Mother) 
^ - 1 mod p. 

Since this holds for arbitrarily large p, in fact deg(ü|Mo) must be - 1 . The 
theorem follows immediately (see Remark 1 after Theorem 1). D 

REMARK 1. The argument above for Mother also shows 

THEOREM 4. Let Mg be the Banach manifold of pairs (y,S) where y is 
a C4 metric of positive ricci curvature on S3 and S c S3 is an embedded 
surface of genus g + 1 that is minimal with respect to y. Then 

deg(Il|Mg) = 0 

unless g = 0. 

REMARK 2. Mapping degrees were first applied to minimal surface the­
ory by Tomi and Tromba [TT]. Additional applications were given in [Wl]. 
Theorem 3 is the first result for which it is necessary to use the integral 
mapping degree rather than the simpler mod 2 degree. 
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