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This work has been set forth in two volumes. The first volume is de­
scribed as Basic results and the second Supplementary notes and references. 
The title Correlation theory of stationary and related random functions in­
dicates that the exposition does not attempt to discuss general aspects of 
the study of stationary processes but rather confines itself to the impor­
tant but more limited aspect dealing with first and second order moment 
properties. 

The object apparently is to give a direct development of results on a 
heuristic basis supplemented by illustrations in terms of applications and 
graphical representations in the first volume. The second volume consists 
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of notes on the material developed in volume one together with an exten­
sive set of references. Generally the first volume has no proofs. Occasion­
ally sketches of proofs are given in the notes of volume two. However, 
for the most part these are not given. The reader is referred to material 
in the references. As remarked by the author, the book is intended as an 
elementary introduction to the second order theory of stationary processes 
for readers without a special mathematical background. It is assumed that 
most readers will be interested in applications of the theory. 

The book starts with an introduction in which basic properties of distri­
bution functions, probability densities and moments of random variables 
are mentioned. Random processes are discussed heuristically in the con­
text of Brownian motion, shot noise, turbulence, electroencephalography 
as well as other applications. 

First the basic properties of stationary processes are considered. The 
concept of a random process is first dealt with in terms of compatability 
of the family of joint distribution functions. Stationarity is mentioned in 
terms of invariance of joint probability structure under time shift. Weak 
stationarity is discussed as the restriction of stationarity just to conditions 
on first and second order moment structure. The characterization of the 
correlation function of a stationary process as a positive definite func­
tion is given. Convergence in mean square and the associated concepts of 
derivatives and integrals of processes in mean square are presented. 

The exposition continues with an enumeration of a number of examples. 
These include uncorrelated sequences, moving averages, autoregressive se­
quences, and autoregressive—moving average (ARMA) sequences. A num­
ber of point processes like the Poisson process and Poisson pulse process 
are also analyzed. The spectral representation of the covariance function 
of a weakly stationary process in terms of the spectral distribution func­
tion of the process is detailed. The corresponding spectral representation 
of the weakly stationary process (assuming continuity in mean square) in 
terms of the random spectral function of orthogonal increments is also laid 
out. Both of these are given in terms of Fourier integral representations, 
the first as a Stieltjes integral and the second as a random Stieltjes inte­
gral in mean square. Then there is a discussion of examples of correlation 
functions and of linear transformations. 

There is an extended discussion concerned with the estimation of as­
pects of the structure of the process on the basis of observations of the 
process. The first question dealt with is estimation of the mean or first 
order moment. Conditions for convergence of the sample mean to the 
true mean in mean square are given in terms of an ergodic result that the 
volume refers to as Slutsky's ergodic theorem. The condition amounts to 
continuity of the spectral distribution function at zero. The question of 
estimation of the correlation function is then considered. In the Gaussian 
case a necessary and sufficient condition for consistency of estimates of the 
correlation function, given observations x(t), 0 < t < T, on the process 
as T —• oo, is continuity of the spectral distribution function. As already 
remarked, the focus of the book is on second order moment properties, 
or their equivalent (for example spectra) for weakly stationary processes. 
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However, every so often remarks are made about conjectured asymptotic 
normality of certain estimates. References are given in volume 2 to a num­
ber of works on the central limit theorem for dependent processes. Such 
results depend on some formulation of weak dependence. Since such a 
concept does depend on more than second order moment information in 
the non-Gaussian case, a more detailed discussion has been avoided. Usu­
ally the notion of weak dependence is formulated in terms of a version 
of a "strong" mixing condition employing a big block, small block argu­
ment in terms of partial sums (see Rosenblatt [8]) or else in terms of a 
criterion that can eventually be used to reduce the argument to the applica­
tion of a martingale difference central limit theorem (see Hall and Heyde 
[4]). Yaglom continues with a discussion of statistical spectral analysis. 
The spectral density is the derivative of the spectral distribution function. 
Assuming that it exists and is smooth the object is to estimate it. There 
are several methods that have been proposed. One of these amounts to 
estimating the convariance function r(t) by AY(0> 0 < t < T (assuming 
mean zero) 

1 f7'1 

rT(t) = — ƒ x(u)x(u + t)du, 1 Jo 
and using a weight function ar(t) close to one near zero and tapering down 
to zero for large t, e.g. 

MO = (0 " ^) • °si'isr°' 
{0, otherwise, 

with 0 < a < 1. One then just Fourier transforms the product rT(t)ciT(t). 
Another amounts to computation of the periodogram (originally due to 
Schuster) and smoothing it appropriately. Historically, it was remarked 
at a later point, that if the data is discretely sampled, a computationally 
efficient method of proceeding would be to compute the periodogram by 
using the fast Fourier transform. This observation is especially important 
because of the existence now of high speed modern computers. Initially 
it was thought that the proposal for such an efficient algorithm was new. 
However, Yaglom states that the idea for such an algorithm has been traced 
back to Gauss (for a historical discussion see Cooley, Lewis and Welch, [2] 
as well as Heideman, Johnson and Burns, [6]). Initial insights into spec­
tral estimation are due to Daniell, Bartlett and slightly later Tukey in the 
1940s. Yaglom remarks in a startling note that on a heuristic basis Einstein 
already in an incredibly early paper (1914) had suggested smoothing the 
periodogram to obtain an estimate of the spectral density. The asymptotic 
properties of the spectral estimates are described by Yaglom as T —• oo. 
There is also given a description of what are termed parametric methods 
of spectral density estimation. One could describe this as an attempt to 
approximate the spectral density by an autoregressive spectral density by 
estimating autoregressive coefficients. The number of coefficients estimated 
depends on the sample size. Much of the initial insight into finite parameter 
estimates is due to Whittle. A discussion of finite parameter estimation on 
its own can be found in Hannan and Deistler, [5] and Brockwell and Davis, 
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[1]. An extensive treatment of finite parameter models and their estimates 
is not given in Yaglom's books. One should note that most of this finite 
parameter theory is centered on Gaussian models. More recently there 
has been some investigation of finite parameter non-Gaussian models (see 
Kreiss, [7]). Due to the restriction to second order moments and their es­
timation, phase information (which is available in the non-Gaussian case) 
cannot be resolved. This is possible in the non-Gaussian case using higher 
order moment or spectral information. Also a larger class of models (so-
called non-minimum phase models) can be dealt with. There are recent 
researches in this direction which are naturally not covered in Yaglom's 
opus (see Rosenblatt, [8]). The maximum entropy spectral estimate (as an 
example of a parametric spectral estimate) is discussed at some length. 

Finally generalizations of the concepts of a stationary process and a 
spectral representation are presented. At first vector-valued stationary pro­
cesses are considered with the corresponding spectral representations of 
the covariance (matrix-valued) function and the vector-valued process. 
The nondecreasing Hermitian character of the now matrix-valued spec­
tral distribution function is noted. Homogeneous random fields are now 
introduced. They are processes indexed by a multidimensional parameter 
and weakly stationary with respect to a shift in that parameter. Again spec­
tral representations are introduced. Statistical inference for homogeneous 
random fields is then addressed. Isotropic random fields, that is homoge­
neous random fields whose covariance function depends only on the length 
oft, 

E[X{t + r)X(t + T)] = B(x) 

are considered. The corresponding spectral representations are now what 
might be termed Fourier-Bessel representations. Two different generaliza­
tions of isotropy to the vector-valued case are considered. The one of 
greatest interest is that in which mean and matrix-valued covariance func­
tion do not change when one replaces the pair of points ^i, ^ by a new 
pair of points t\, t'2 obtained from t\, h by making a rotation or reflec­
tion in Rn and the linear transformation of X is carried out corresponding 
to the rotation or reflection. The concepts of homogeneity and isotropy 
are partially motivated by the study of the model of homogeneous turbu­
lence. A brief discussion of the motivation is given. It would have been 
interesting if Yaglom, so knowledgeable relative to turbulence, had given 
a more extended discussion of the field as well as the usefulness of these 
statistical models there. Homogeneous fields are described on spheres and 
other homogeneous spaces (spaces with a transitive group of motions on 
them). Random processes with stationary increments and generalized ran­
dom processes (or random distributions as introduced by K. Ito and I. 
M. Gelfand, independently) are then treated. Locally isotropic fields (or 
equivalently random fields with isotropic increments) are characterized. A 
number of comparatively isolated topics are examined at the end of the 
book. The Karhunen-Loève expansion of a random process in terms of 
the eigenfunctions and eigenvalues of the integral equation having the co-
variance function as kernel (and compact operator) is developed. Remarks 
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are made about oscillatory and evolutionary spectra. The object is to see 
whether a local version of the type of spectral representation one has for 
a stationary process might hold for some nonstationary processes. Finally 
there are some words about harmonizable processes (a class of processes 
introduced by Loève) where a Fourier representation for the process is 
possible but not generally in terms of a random spectral function with 
orthogonal increments. 

The book is extensively illustrated by many examples and illustrations. 
The second volume has over 800 references to an extensive literature in 
theory and applications with brief comments on the text in volume one or 
on the references. The work provides a much more rapid introduction to 
the probabilistic background, the extensive applications and basic results 
on stationary processes and spectral analysis than is possible in a conven­
tional exposition and is excellent in this way. A reader who wants a more 
formal background should supplement the book by referring to other texts 
or to original papers. The two volumes are incredibly free of all except 
trivial typographical errors. The author is to be hailed for his extended 
and richly rewarding exposition. 
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Representations of algebraic groups, by Jens Carsten Jantzen. Pure and 
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The appearance of this book marks an important point in the develop­
ment of the theory of rational representations of algebraic groups. Many 


