STRUCTURE OF FOURIER AND FOURIER-STIELTJES COEFFICIENTS OF SERIES WITH SLOWLY VARYING CONVERGENCE MODULI

ČASLAV V. STANOJEVIĆ

Ostensibly, convergence problems regarding the Fourier series in L^1 parallel the classical Tauberian problems. Let $f \in L^1(T)$, $T = \mathbf{R}/2\pi\mathbf{Z}$, then the partial sums $S_n(f) = S_n(f,t) = \sum_{|k| \leq n} \widehat{f}(k)e^{ikt}$ are (C,1)-summable, both pointwise and in L^1 -norm. Inasmuch as the appropriate Tauberian conditions are available, the convergence questions may be settled in the standard manner. However, Tauberian conditions needed to recover L^1 -convergence originate from the Hausdorff-Young inequality and do not have a straightforward analogue in the elementary Tauberian theory. Such a condition is obtained in [1], i.e.

(1)
$$\lim_{\lambda \to 1+0} \overline{\lim_{n}} \sum_{|k|=n+1}^{[\lambda n]} |k|^{p-1} |\Delta \widehat{f}(k)|^{p} = 0,$$

where $1 and <math>f \in L^1(T)$. Later in [2 and 3], the condition (1) has been further extended and studied. Although (1) is much weaker than the classical [4, 5] and neoclassical [6, 7] regularity and/or speed conditions, it does not provide explicit information about the Fourier coefficients. To overcome this shortcoming a new approach is proposed in [8], based on regular variation of the convergence moduli.

A nondecreasing sequence $\{R(n)\}$ of positive numbers is *-regularly varying if

$$\lim_{\lambda \to 1+0} \overline{\lim}_n \frac{R([\lambda n])}{R(n)} \le 1;$$

or more generally, the sequence $\{R(n)\}$ is O-regularly varying if

$$\overline{\lim_n} \frac{R([\lambda n])}{R(n)}$$

is finite for $\lambda > 1$. In particular, if $\lim_n R([\lambda n])/R(n) = 1$, $\{R(n)\}$ is slowly varying.

Let $\{c(n)\}$ be a sequence of complex numbers and let $\sum_{|n|<\infty} c(n)e^{int}$ be its formal trigonometric transform. The convergence modulo of the trigonometric transform is defined as

$$K_n^p(c) = \sum_{|k| \leq n} |k|^{p-1} |\Delta c(k)|^p, \qquad p > 1.$$

Received by the editors October 15, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 42A20, 42A32.

The following two theorems are proved in [8]. In the second theorem M(T) denotes the class of all complex Borel measures on T.

THEOREM A. Let $f \in L^1(T)$ and for some $1 and some *-regularly varying sequence <math>\{R(n)\}$ let $K_n^p(f) = \log R(n)$. Then the Fourier series of f converges a.e. and it converges in $L^1(T)$ -norm if and only if $\widehat{f}(n) \log |n| = o(1), |n| \to \infty$.

THEOREM B. Let $\mu \in M(T)$ and let $(\widehat{\mu}(n) - \widehat{\mu}(-n)) \log n = O(1)$, $n \to \infty$. If for some $1 and some O-regularly varying sequence <math>\{R(n)\}$, $K_n^p(\mu) = \log R(n)$, then

$$||S_n(\mu)|| = B_n|\widehat{\mu}(n)|\log n + O(1), \qquad n \to \infty,$$

where $\{B_n\}$ is a bounded sequence of real numbers, bounded away from zero.

This theorem is a quantitative version of Helson's [9] theorem, and it is given here in somewhat different form than in [8] to match the form of Theorem A.

In this announcement we shall show that: (i) *-regular variation in Theorem A can be lightened to O-regular variation; and (ii) there is a representation for $\{\widehat{f}(n)\}$ and $\{\widehat{\mu}(n)\}$ in terms of Fourier coefficients of functions in $L^q(T)$, 1/p+1/q=1. Consequently, Theorem A and Theorem B can be unified in a new theorem that improves both theorems, in particular Theorem A.

THEOREM. Let $\{c(n)\}_{|n|<\infty}$ be a sequence of complex numbers and for some $1 and some O-regularly varying sequence <math>\{R(n)\}$ let

(2)
$$K_n^p(c) = \log R(n).$$

Then

(i) there exists $h \in L^q(T)$, 1/p + 1/q = 1, such that

$$c(k) = \frac{1 + \operatorname{sgn}(k)}{2}c(0) + \frac{1 - \operatorname{sgn}(k)}{2}c(-1) - \sum_{j=(1-\operatorname{sgn}(k))/2}^{|k|-1} \widehat{h}(j\operatorname{sgn}(k)), \quad k \in \mathbf{Z};$$

- (ii) for c(n) = o(1), $|n| \to \infty$, the trigonometric transform of $\{c(n)\}$ converges a.e. and $c(k) = \sum_{j=|k|}^{\infty} \hat{h}(j \operatorname{sgn}(k))$, $k \in \mathbf{Z}$;
- (iii) for $c = \hat{f}$, $f \in L^1(T)$, the Fourier series of f converges in $L^1(T)$ -norm if and only if $\hat{f}(n) \log |n| = o(1)$, $|n| \to \infty$.

(iv) for
$$c = \widehat{\mu}$$
, $\mu \in M(T)$, and $(\widehat{\mu}(n) - \widehat{\mu}(-n)) \log n = O(1)$, $n \to \infty$;

$$||S_n(\mu)|| = B_n|\widehat{\mu}(n)|\log n + O(1), \qquad n \to \infty,$$

where $\{B_n\}$ is a bounded sequence of real numbers, bounded away from zero.

OUTLINE OF PROOF. The case $K_n^p(c) = O(1)$, $n \to \infty$, is trivial. Assume $K_n^p(c) \to \infty$, $n \to \infty$. Then condition (2) is equivalent to:

$$\overline{\lim_{n}} \sum_{|k|=n+1}^{[\lambda n]} |k|^{p-1} |\Delta c(k)|^{p} \text{ is finite for } \lambda > 1.$$

Hence $\{K_n^p(c)\}$ is slowly varying. Also

(3)
$$\sum_{|j| \le n} |\Delta c(j)|^p \le C_1 \sum_{|j| \le n} \frac{K_j^p(c)}{|j|^p} + C_2 \frac{K_n^p(c)}{|n|^{p-1}},$$

where C_1 and C_2 are absolute constants. The series on the left-hand side of (3) is therefore convergent. By F. Riesz's theorem [10] there is an $h \in L^q(T)$, 1/p + 1/q = 1, such that

(4)
$$h(t) = \sum_{|n| < \infty} \Delta c(n)e^{int},$$

and the representation in (i) follows.

The series (4) converges a.e. by L. Carleson's theorem [11], for c(n) = o(1), $|n| \to \infty$, and for $t \neq 0$, $\sum_{|n| < \infty} c(n)e^{int}$ converges a.e. The representation in (ii) is now evident.

The statement (iii) is a considerable generalization of Theorem 2.1 in [8] and the proof requires several refinements. Let $\lambda > 1$. Define

$$T_n(\lambda) = (-\pi, -\pi/(\lambda - 1)n) \cup (\pi/(\lambda - 1)n, \pi)$$

and

$$\tau_n(f,\lambda) = \tau_n(f,t,\lambda) = \frac{1}{[\lambda n] - n} \sum_{k=n+1}^{[\lambda n]} S_k(f).$$

Then

$$||\tau_n(f,\lambda) - S_n(t)||_{L^1(t)} = \int_{T_n(g)} |\tau_n(f,t,\lambda) - S_n(f,t)| dt$$

$$+ \int_{T - T_n(\lambda)} |\tau_n(f,t,\lambda) - S_n(f,t)| dt$$

$$= J_1 + J_2.$$

For J_2 we have the uniform estimates

$$J_2 \leq \frac{1}{[\lambda n] - n} \sum_{|k| = n+1}^{[\lambda n]} |\widehat{f}(k)| = o(1), \qquad n \to \infty.$$

The integral J_1 can be written as a sum of two integrals J_{11} and J_{12} . Applying Hölder's inequality to J_{11} , followed by the Hausdorff-Young inequality, we get

$$J_{11} \le C_3(\lambda - 1)^{1/q} \sum_{\substack{|k| = n+1}}^{\lceil \lambda n \rceil} |k|^{p-1} |\Delta \widehat{f}(k)|^p,$$

where C_3 is an absolute constant. Thus

$$\lim_{\lambda \to 1+0} \overline{\lim}_{n} J_{11} = 0.$$

Therefore

(4)
$$\lim_{\lambda \to 1} \overline{\lim_{n}} ||\tau_n(f,\lambda) - S_n(f)||_{L^1(T)} = 0$$

is equivalent to

$$\lim_{\lambda \to 1+0} \overline{\lim}_{n} J_{12} = 0.$$

However

$$J_{12} = \int_{T_n(\lambda)} \left| \frac{\widehat{f}(n)e^{int} + \widehat{f}(-n)e^{-int}}{1 - e^{-it}} \right| dt,$$

and $\overline{\lim}_n J_{12} = 0$ if and only if $\widehat{f}(n) \log |n| = o(1)$, $|n| \to \infty$. Hence (4) is equivalent to $\widehat{f}(n) \log |n| = o(1)$, $|n| \to \infty$. A standard argument completes the proof.

The proof of (iv) follows the lines of the proof of Theorem 2.3 in [8].

The details and proofs will appear elsewhere.

REFERENCES

- Č. V. Stanojević, Tauberian conditions for the L¹-convergence of Fourier series, Trans. Amer. Math. Soc. 271 (1982), 237-244.
- W. O. Bray and Č. V. Stanojević, Tauberian L¹-convergence classes of Fourier series.
 I, Trans. Amer. Math. Soc. 275 (1983), 59-69.
- Tauberian L¹-convergence classes of Fourier series. II, Math. Ann. 269 (1984), 469-486.
- 4. S. Sidon, Hinreichende Bedingungen fur den Fourier Charakter einer Trigonometrischen Reihe, J. London Math. Soc. (2) 14 (1939), 158-160.
- 5. S. A. Telyakovskii, On a sufficient condition of Sidon for the integrability of trigonometric series, Math. Notes 14 (1973), 742-748.
 - 6. G. A. Fomin, A class of trigonometric series, Math. Notes 23 (1978), 117-124.
- 7. Č. V. Stanojević and V. B. Stanojević, Generalizations of the Sidon-Telyakovskii Theorem, Proc. Amer. Math. Soc. 101 (1987), 679-684.
- 8. Č. V. Stanojević, O-Regularly varying convergence moduli of Fourier and Fourier-Stieltjes series, Math. Ann. 279 (1987), 103-115.
- 9. H. Helson, Proof of a conjecture of Steinhaus, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 205-206.
- 10. F. Riesz, Über eine Verallgemeinerung des Parsevalschen Formel, Math. Z. 18 (1923), 117-124.
- 11. L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.

UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401