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STRUCTURE OF FOURIER AND FOURIER-STIELTJES 
COEFFICIENTS OF SERIES WITH SLOWLY VARYING 

CONVERGENCE MODULI 

ÖASLAV V. STANOJEVIÓ 

Ostensibly, convergence problems regarding the Fourier series in L1 paral­
lel the classical Tauberian problems. Let ƒ G LX(T), T = R/27rZ, then the 
partial sums Sn(f) = Sn(f,t) = ^2\k\<n J\k)elkt are (C, l)-summable, both 
pointwise and in L1-norm. Inasmuch as the appropriate Tauberian condi­
tions are available, the convergence questions may be settled in the standard 
manner. However, Tauberian conditions needed to recover L1 -convergence 
originate from the Hausdorff-Young inequality and do not have a straight­
forward analogue in the elementary Tauberian theory. Such a condition is 
obtained in [1], i.e. 

[An] 

(1) Afeo¥ £ lAf'WWI^O, 

where 1 < p < 2 and ƒ G LX(T). Later in [2 and 3], the condition (1) has been 
further extended and studied. Although (1) is much weaker than the classical 
[4, 5] and neoclassical [6, 7] regularity and/or speed conditions, it does not 
provide explicit information about the Fourier coefficients. To overcome this 
shortcoming a new approach is proposed in [8], based on regular variation of 
the convergence moduli. 

A nondecreasing sequence {R(n)} of positive numbers is *-regularly varying 

l i m î S « ) < 1 ; 
A-+1+0 n R(n) 

or more generally, the sequence {R(n)} is O-regularly varying if 

n R(n) 

is finite for À > 1. In particular, if limn <R([An])/i2(n) = 1, {R(n)} is slowly 
varying. 

Let {c(n)} be a sequence of complex numbers and let ]Cin|<oo <?(n)em* be its 
formal trigonometric transform. The convergence modulo of the trigonometric 
transform is defined as 

K{c)= E i*r1iM*)ip, P>I-
|fc|<n 
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The following two theorems are proved in [8]. In the second theorem M(T) 
denotes the class of all complex Borel measures on T. 

THEOREM A. Let ƒ e L1 (T) and for some 1 < p < 2 and some ^-regularly 
varying sequence {R(n)} let K%(f) = logR(n). Then the Fourier series of 
ƒ converges a.e. and it converges in L1(T)-norm if and only if f (n) log \n\ = 
o(l), \n\ —• oo. 

THEOREM B. Let fie M(T) and let (fi(n) - fi(-n))logn = 0(1), n -> 
oo. If for some 1 < p < 2 and some O-regularly varying sequence {R(ri)}, 
KP(fi) = log R(ri), then 

| |5n(/i)|| = Bn\{l{n)\logn + O(l), n -+ oo, 

where {Bn} is a bounded sequence of real numbers, bounded away from zero. 

This theorem is a quantitative version of Helson's [9] theorem, and it is 
given here in somewhat different form than in [8] to match the form of The­
orem A. 

In this announcement we shall show that: (i) *-regular variation in The­
orem A can be lightened to O-regular variation; and (ii) there is a represen­
tation for {/(n)} and {ju(n)} in terms of Fourier coefficients of functions in 
Lq(T), l/p + 1/q = 1. Consequently, Theorem A and Theorem B can be uni­
fied in a new theorem that improves both theorems, in particular Theorem 
A. 

THEOREM. Let {c(n)}\n\<00 be a sequence of complex numbers and for 
some 1 < p < 2 and some O-regularly varying sequence {R{n)} let 

(2) KZ(c) = log R(n). 

Then 
(i) there exists h G Lq(T), l/p+ 1/q = 1, such that 

\k\—i 

i=(l-sgn(fc))/2 

(ii) for c(n) = o(l), \n\ —+ oo, the trigonometric transform of {c(n)} con­
verges a.e. and c(k) = Y^jL\k\ M.7' sgn(^))^ & € Z; 

(iii) for c = ƒ, ƒ € LX(T), the Fourier series of f converges in L1(T)-norm 
if and only if ƒ (n) log \n\ = o(l), \n\ —• oo. 

(iv) for c = /ï, fi G M{T), and (fi(n) — jS(—n))logn = O(l), n —• oo; 

||Sn(M)ll = Bn|2(n)| logn + O(l), n -^ oo, 

ly/iere {-Bn} zs a bounded sequence of real numbers, bounded away from zero. 

OUTLINE OF PROOF. The case K*(c) = 0(1), n - • oo, is trivial. Assume 
K%(c) —• oo, n —• oo. Then condition (2) is equivalent to: 

[An] 

lim Y, \k\p~X\&c(k)\p is finite for A > 1. 
|fc|=n+l 
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Hence {K%(c)} is slowly varying. Also 

(3) E , A c ü ) | P <c 1 E^-HC 2 jp , 
lil<n \j\<n U] ' ' 

where C\ and C2 are absolute constants. The series on the left-hand side of 
(3) is therefore convergent. By F. Riesz's theorem [10] there is an h € Lq(T), 
1/p + 1/q = 1, such that 

(4) h(t)= £ Ac(n)e<»*, 
|n|<oo 

and the representation in (i) follows. 
The series (4) converges a.e. by L. Carleson's theorem [11], for c(n) = o(l), 

\n\ —• 00, and for t ^ 0, ]C|n|<oo c(n)eint converges a.e. The representation 
in (ii) is now evident. 

The statement (iii) is a considerable generalization of Theorem 2.1 in [8] 
and the proof requires several refinements. Let A > 1. Define 

and 

Then 

Tn(A) = (-7r,-7r/(A - l)n) U (TT/(A - l)n,7r) 

[An] 

Tn(/,A) = rn(/,t,A) = î - r — £ Sk(f). 
I J fc=n+l 

\\Tn(fA)-Sn(t)\\Li{t)= f \Tn{f,t,\)-Sn(f,t)\dt 
JTn(g) 

+ / \Tn(f,t,\)-Sn{f,t)\dt 
JT-Tn(X) 

= Jl + J 2 . 

For J2 we have the uniform estimates 

[An] 

« p s ^ £ l/(*)l-"W. »-«»• 
L J |fc|=n+l 

The integral Ji can be written as a sum of two integrals J n and J12. Applying 
Holder's inequality to J n , followed by the Hausdorff-Young inequality, we get 

[An] 

|fc|=n+l 

where C3 is an absolute constant. Thus 
lim lim J n = 0. 

A-a+o n 

Therefore 

(4) lim lim||r„(/,A) - Sn(f)\\Li{T) = 0 
A—•l+O n 
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is equivalent to 
lim lim Jio = 0 . 

A-»l+0 n 
However 

' f(n)eint + f(-n)e-int \ 

and limn J12 = 0 if and only if / (n)log|n | = o(l), \n\ —• oo. Hence (4) is 
equivalent to / (n)log|n | = o(l), \n\ —• oo. A standard argument completes 
the proof. 

The proof of (iv) follows the lines of the proof of Theorem 2.3 in [8]. 
The details and proofs will appear elsewhere. 
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