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ALGEBRAIC SURFACES AND 4-MANIFOLDS: 
SOME CONJECTURES AND SPECULATIONS 

ROBERT FRIEDMAN AND JOHN W. MORGAN 

Introduction. Since the time of Riemann, there has been a close interplay 
between the study of the geometry of complex algebraic curves (or, equiva-
lently, compact Riemann surfaces) and the topology of 2-manifolds. These 
connections arise from the uniformization theorem, which asserts that every 
simply connected Riemann surface is conformally equivalent to either the Rie­
mann sphere, the plane, or the interior of the unit disk. Prom this it follows 
that every compact Riemann surface has a conformally equivalent metric of 
constant curvature. A key idea in the proof of this result is the Dirichlet 
problem: Find a harmonic function on a Jordan region R in the plane with 
given boundary values. Any such harmonic function minimizes the functional 

f^ ff \Vf\2dxdy 

among all functions on R with the given boundary values. The existence of 
such functions has a physical interpretation. If we view the boundary values 
as a charge density on dR then the harmonic function corresponds to the 
resulting electrostatic potential in R. This physical interpretation suggests 
that such a harmonic function should exist and should be unique, at least 
for reasonable regions and boundary conditions. In fact one can solve this 
problem by integrating over the boundary a family of Green's functions, each 
of which is the electrostatic potential of a point charge, against the charge 
density. 

The connection between the analysis and differential geometry of 2-dimen-
sional metrics of constant curvature on the one hand and the topology and 
algebraic geometry of compact Riemann surfaces on the other has been a 
fruitful one. Major ideas have evolved from the work of Teichmüller [39], and 
Ahlfors and Bers [1, 6] and more recently through the work of Thurston [40]. 
Some of the nicest recent examples of this interplay can be found in [20], with 
applications to the algebraic geometry in [21]. 

Of course a smooth complex algebraic variety of dimension n is naturally a 
C°° -manifold of dimension 2n. But for n > 3 the algebraic geometry of these 
varieties diverges quite markedly from the topology for many reasons, some 
of which will be made more precise below. Quite surprisingly, very deep con­
nections have emerged recently between the complex geometry of a complex 
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surface and the C°°-topology of the underlying 4-manifold. These connections 
follow the paradigm briefly indicated above in the case of Riemann surfaces. 
By minimizing a certain functional analogous to the Dirichlet integral one con­
structs geometric objects (Yang-Mills connections) associated to Riemannian 
4-manifolds. These should be thought of as "harmonic" connections. They 
have (at least sometimes) a physical interpretation in terms of three of the 
basic forces of nature (the electromagnetic, the weak, and the strong force). 
The original emphasis for the analysis of these objects came from the physics. 
Yang and Mills introduced nonabelian gauge theory in 1954 [46]. There was 
an upsurge of interest in solving the Yang-Mills equations in the 1970s, when, 
after initial work of Penrose, Atiyah became interested in the problem. It 
was the insight of Penrose and Atiyah that techniques of algebraic geometry 
might produce physically interesting solutions to these equations (cf. [2, 34]). 

While the original applications of this confluence of physics and mathemat­
ics were from topology and algebraic geometry to the physical problems, there 
was eventually a reversal of direction, as often happens in mathematics. It was 
Donaldson [11] who realized that the spaces of Yang-Mills connections could 
be used to define invariants to study 4-manifolds and complex surfaces. These 
recent advances and the subsequent work they motivated are the subject of 
this paper. 

The starting point for this study of the differential topology of complex 
algebraic surfaces is the theory of connections on certain auxiliary principal 
G-bundles over 4-manifolds, where G is a compact Lie group. Let M be a 
closed oriented C°°-manifold, P -^ M a principal G-bundle, and a d P the 
bundle associated to P via the adjoint representation of G on its Lie algebra. 
We denote by Q*(M) the G°° z-forms on M and by fî*(M;adP) the G°° 
f-forms on M with values in ad P. If A is a connection on P , then its curvature 
FA lies in Q2(M; adP) . Given a Riemannian metric g on M, there are induced 
Hodge *-operators 

ü\M) A Qn-*(M) and n*(M;adP) A Q n - ' (M;adP) 

where n = dimM. If n = 4, then both *FA and FA belong to Q2(M; adP). 
Moreover, there is a natural energy functional on the space of all connections: 
the Yang-Mills functional 

A~ f ||FA||2<*VO1. 
JM 

The Euler-Lagrange equations for critical points (i.e., the Yang-Mills equa­
tions) are 

DAFA = 0\ 
DA*FA = 0 J 

where DA is the covariant derivative on H2(M;adP) associated to the con­
nection A. The solutions to these equations are the Yang-Mills connections. 
(Notice that DAFA = 0 is the Bianchi identity which holds for all connec­
tions.) The natural group of symmetries of P, Q(P) = {<p: P —• P 17ro£> = 7r 
and <p(p • g) = <p(p) • g for all p 6 P and g € G}, is called the gauge group. It 
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acts on the space of connections leaving invariant the Yang-Mills functional. 
Thus, it leaves invariant the subspace of Yang-Mills connections. 

There is a special subspace of Yang-Mills connections to which we often 
restrict. These are the anti-self-dual connections (resp. self-dual connections) 
which by definition are connections A whose curvature satisfies 

FA = -*FA (resp. FA = *FA). 

(Of course, self-dual and anti-self-dual connections are Yang-Mills connec­
tions.) In the special case that G = SU(2), the anti-self-dual connections 
(resp. self-dual connections) are the absolute minima for the Yang-Mills func­
tional provided C2{P) > 0 (resp. C2{P) < 0). 

Let us illustrate all of this with the abelian case, that is, the case of a 
U(l)-bundle P over a simply connected 4-manifold M. Since U(l) is abelian, 
ad P is a trivial R-bundle. Hence, the curvature of a connection A on P is 
an ordinary 2-form FA € fi2(M;R). Furthermore, DA is ordinary exterior 
derivative. Thus, the Bianchi identity simply says that FA is closed. Of 
course, its cohomology class is C\(P) € //*2(M;R). The Yang-Mills equations 
say that FA is also closed, i.e., harmonic. The existence of such connections is 
completely understood: By Hodge theory every cohomology class has a unique 
harmonic representative. Furthermore, given a closed form F representing 
ci(P), there is a connection A on P with FA = F. Thus, every U(l)-bundle 
P has Yang-Mills connections and the curvature of any such connection is the 
unique harmonic representative for ci(P). The nonuniqueness of these Yang-
Mills connections is accounted for by the gauge group. Since M is simply 
connected, any two connections with the same curvature lie in the same $(P)-
orbit. Hence, the set of all Yang-Mills connections on the U(l)-bundle P are 
all equivalent by the gauge group. 

Maxwell's equations for electromagnetism in the vacuum can be interpreted 
as the Yang-Mills equations on a U(l)-bundle over space-time. More explicitly, 
let B(x, J/, 2, i) = (Bx, By, Bz) and E(x, y, z, t) = (Ex, Ey, Ez) be the magnetic 
and electric fields. Then consider the 2-form over (z, y, 2, t)-space 

Q = Exdx Adt + EydyAdt + Ez dz A dt 

+ Bx dy A dz + By dz A dx + Bz dx A dy. 

The equations div B = 0 and V x E = -dB/dt say that dû = 0. The 
equations div E = 0 and V x B — dE/dt say that d(*fi) = 0 for the Hodge 
•-operator associated to the metric 

ds2 = dx2 + dy2 + dz2 - dt2. 

Thus, Maxwell's equations can be formulated as saying that Q is a harmonic 
2-form. Let A = (Ax,Ay,Az) be the vector potential and <p be the scalar 
potential, and set 

(jj = Axdx + Aydy + Azdz — <pdt. 

The equations E = -V<p - dA/dt and B = V x A say that a; is a 1-form 
satisfying du = Q. It is natural to view a; as a connection 1-form on a 
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U(l)-bundle over space-time with curvature H. The reason is that changing 
the potentials (A, <p) by (V^, -dip/dt) corresponds to acting on w by the 
gauge group. This then is the formulation of electromagnetism in terms of 
Yang-Mills connections on U(l)-bundles over space-time. 

The above discussion shows that Yang-Mills theory for G = U(l) essentially 
reduces to Hodge theory. Of course Hodge theory is a powerful tool for the 
study of the topology of smooth algebraic varieties. Still it is natural to ask if 
more information is available when we take G to be nonabelian. In this case 
the Yang-Mills equations or the anti-self-dual equations are nonlinear PDEs. 
For this reason, we expect the theory to be both more subtle and richer. 
The choice of the group G will be dictated by physical and/or mathematical 
considerations. Thus, SU(2) x U(l) arises in attempting to unify the weak 
force with the electromagnetic force [44], and SU(3) arises for the strong 
force [18]. Although one can develop the mathematical formalism for any 
compact Lie group, the details are best understood in the cases G = SU(2) 
and G = SO(3). However, for reasons that will become apparent below, we 
shall confine ourselves to G = SU(2). 

We fix now a smooth 4-manifold M with Riemannian metric g and a prin­
cipal SU(2)-bundle P over M with C2{P) > 0. The recent breakthrough in 
understanding the differential topology of algebraic surfaces comes from con­
sidering the moduli space M (P, g) of all anti-self-dual connections on P modulo 
the gauge group of the bundle. The basic analytic properties of M(P, g) have 
been established by Uhlenbeck [42], Taubes [38], and Donaldson [11, 13] (cf. 
also Atiyah-Hitchin-Singer [3]), and the method, which we shall describe, of 
applying these results to C°° 4-manifolds was pioneered by Donaldson. For 
a generic metric, it turns out that M(P,g) is a finite-dimensional orientable 
submanifold of JT(F), the space of all connections modulo the gauge group. 
Its dimension d can be computed from the Atiyah-Singer index theorem. The 
basic idea is to try to use M(P,g) to define a cycle class in the homology 
of X{P). Unfortunately, M(P,g) is rarely compact. Thus, one is faced with 
the problem of trying to compactify it in a canonical way. This is one of the 
main technical points in the theory. But this problem can be surmounted, at 
least for C2{P) sufficiently large, and one obtains a homology class [M(P,g)] 
in H+(X{P)). Of course the space M(P, g) depends on the Riemannian metric 
g. However, as we vary g, M(P, g) usually varies by a homology in X{P), and 
in the exceptional cases its failure to do so can be precisely described. Fi­
nally, there is an explicit description of H*{X(P)\ Q) in terms of H*(M). In 
particular, using the second Chern class of the universal bundle on M x X (P) 
one can identify H2{M) with H2(X{P)). Furthermore, the product in co-
homology induces an injection of the polynomial algebra on H2(X(P)) into 
H2*{X(P)). Thus, evaluating elements of Hd(X{P)) on [M{P,g)] gives a 
polynomial of degree d/2 on H2(M) which is a differential invariant of M. 

This machinery is especially well suited to studying algebraic surfaces. The 
reason traces back to a theorem of Donaldson [12]: When M is an algebraic 
surface and g is an appropriate Kahler metric one can identify M (P, g) with 
the moduli space of stable holomorphic bundle structures on the complex 
2-plane bundle associated to P. (It is for this reason that we consider the 
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special unitary group as opposed to the special orthogonal group.) Conse­
quently, the moduli spaces of stable bundles over an algebraic surface, which 
are algebro-geometric in nature, give important C°° invariants of the under­
lying smooth manifold. Quite independently of these considerations, alge­
braic geometers have been studying holomorphic rank-2 vector bundles over 
algebraic surfaces for twenty-five years. They have developed a wealth of 
techniques for classifying them and studying their moduli spaces. 

Since the inception of the theory of 4-manifolds, a guiding question has 
been: 

What is the relationship between smooth 4-manifold theory 
and the theory of algebraic surfaces? 

For the reasons indicated above, the methods of gauge theory give us power­
ful new tools to attack this question. Of course, one doesn't expect a complete 
correspondence. For example, any finitely presented group occurs as the fun­
damental group of a closed orientable smooth 4-manifold, but fundamental 
groups of algebraic surfaces are severely restricted. One such restriction is 
given by Hodge theory [19]: 61 = 0 (mod 2) for an algebraic surface. For 
more subtle restrictions see [9]. These examples suggest that one should first 
focus attention on the simply connected case. In this paper, we shall consider 
the C°°-topology of complex algebraic surfaces, state some results and give 
some conjectures and speculation which these results suggest (at least to us). 

1. A brief review of the homotopy theory of 4-manifolds. Through­
out this section we are concerned with simply connected, closed, oriented, 
smooth 4-manifolds. Any such manifold M has an orientation class [M] G 
#4 (M; Z). Cap product with it induces the Poincaré duality isomorphism 

f | [ M ] : / / i ( M ; Z ) - ^ / f 4 - i ( M ; Z ) . 

Since M is simply connected, Hi (M; Z) = 0. By Poincaré duality it follows 
that Hs(M; Z) = 0 and that H2(M; Z) is a free abelian group of finite rank. 
Furthermore, Poincaré duality induces an intersection pairing 

qM: H2{M;Z) ® H2(M;Z) - Z 

which is symmetric and nonsingular, i.e., unimodular. (We shall also use the 
dual pairing on cohomology which is given by the cup product pairing and 
evaluation on the top class.) This then leads to the first invariant associated to 
a 4-manifold: the algebraic isomorphism class of the pairing (Ü2{M; Z), CM)-

The isomorphism classification of such pairings is more or less understood: 
Let (A, q) be a unimodular, symmetric pairing. Its rank is the rank of the free 
abelian group A. Its index I(q) is defined as follows: Over R the pairing can be 
diagonalized, i.e., there is an R-basis x i , . . . , x^ for A 0 R such that q(xi, Xj) = 
0 for i 7É j . We set p(q) equal to the number of xt for which q{xi,X{) > 0. 
Similarly, we define n(q) as the number of Xi for which q(xi,Xi) < 0. Since q 
is nonsingular p(q) + n(q) is equal to the rank. We define I(q) = p(q) - n(q). 
We say that a pairing is positive (resp. negative) definite if n(q) = 0 (resp. 
p(q) = 0). Lastly, we say that q is even if q(a,a) = 0 (mod 2) for all a € A. 
Otherwise we say the pairing is odd. This defines the parity of q. 
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The basic result in the classification of unimodular pairings (see [36]) says: 
(1) if (A,q) is indefinite it is determined up to isomorphism by its rank, 

index and parity; and 
(2) there are only finitely many definite pairings of a given rank. 
There are some relationships among these invariants. Besides the obvious 

ones, \I(q)\ < rankA and I(q) = rank(^l) (mod 2), there is one more: If q is 
even then I(q) = 0 (mod 8). Subject to these restrictions, all values of the 
rank, index and parity are possible. 

Returning to the 4-manifold, we set b£(M) = P(<7M)> ^{M) = n(q\f)i 
and I{M) = / ( ( /M)- We call I(M) the index of M. It turns out that two 
simply connected 4-manifolds M and N are homotopy equivalent if and only 
if their pairings qM and q^ are isomorphic, see [45] and [31]. Similarly the 
group of homotopy automorphisms of M is commensurate to the group of 
automorphisms of the intersection pairing. 

On the level of homotopy types every pairing is realized. That is to say, 
given an algebraic pairing (A, q) there is a simply connected complex X sat­
isfying Poincaré duality of dimension 4 with (H2{X;Z),qx) isomorphic to 
{A,q). Such an X is unique up to homotopy equivalence. 

Freedman [16] recently determined the homeomorphism classification of 
simply connected 4-manifolds. He showed that every pairing occurs up to 
isomorphism as the intersection pairing of a simply connected topological 
4-manifold. If the pairing is even then all manifolds realizing it are homeo-
morphic. If the pairing is odd, then there are exactly two homeomorphism 
classes of manifolds realizing it. Exactly one of these is stably smoothable 
(i.e., is such that the product with R carries a smooth structure). 

Before Donaldson's recent results the only known restriction on forms re­
alized by smooth manifolds was Rokhlin's theorem [35]: If the intersection 
pairing of a smooth 4-manifold M is even then I(M) = 0 (mod 16). Nothing 
was known about how many differentiably distinct manifolds represent a given 
pairing. (The case of the trivial pairing is the 4-dimensional smooth Poincaré 
Conjecture). The landscape changed drastically about three or four years 
ago when Donaldson introduced the techniques that we have briefly described 
above. We shall mention some of his results in what follows, especially in §4. 

2. A brief review of the classification of algebraic surfaces. For 
simplicity, we shall concentrate on simply connected algebraic surfaces, refer­
ring the reader to [5 or 19] for a more complete description of the non-simply 
connected case. Let I b e a (smooth) algebraic surface. We begin by de­
scribing the plurigenera Pn(X) and the Kodaira dimension K(X). Let Kx 
be the canonical line bundle of X. Its local holomorphic sections are holo­
morphic 2-forms on X, i.e., in local coordinates {21,22}, a local section of 
Kx is of the form ƒ (21, z<i) dz\ A dz2, where ƒ (21, z?) is a holomorphic func­
tion. For n > 0, let K%n be the nth tensor power of Kx- It is a line 
bundle whose local sections look like q{z\,Z2){dz\ A dz?)71. Set Pn(X) = nth 
plurigenus = dimc^°(A', üf®n). The geometric genus of X is defined to be 
pg(X) = Pi{X); it is the number of linearly independent holomorphic 2-forms 
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on X. By the Hodge index theorem, b2{X) = 2pg(X) + 1, and thus pg{X) is 
a homotopy invariant of X. 

If Pn{X) = 0 for all n > 0, we set K{X) = -oo. Otherwise, Pn{X) = 0{na) 
for some integer o, 0 < a < 2 (see [5]), and we let the smallest such a be /c(X), 
the Kodaira dimension of X. Thus, in general, K(X) G {-OO, 0,1,2}. 

We also need to recall the notion of blowing up an algebraic surface X. 
Given the surface X and a point p G X, there is an algebraic surface X, a 
holomorphic map p: X —• X and a holomorphic curve E = C P 1 Ç X such 
that p induces an isomorphism X—E-+ X—{p} and p(E) = {p}. Moreover, if 
[E] denotes the cohomology class Poincaré dual to E, then the self-intersection 
number [E] • [E] of E on X is — 1. This process, which is uniquely specified by 
X and p, is called blounng up X at p. We have K^ = p*#x + E (as divisor 
classes on X). From this it is easy to see that pg{X), Pn(X), and K(X) are 
not affected by blowing up a point of X. Topologically, X is diffeomorphic 
(in an orientation-preserving way) to X # C P , where C P is C P 2 with the 
opposite orientation to the one induced by the complex structure. We may 
invert the procedure: if X is an algebraic surface and E a holomorphic curve 
in X with E S C P 1 and [E] - [E\ = - 1 , then there exists p: X - • X and 
p(i^) = p G X such that X is the blow-up of X at p. Such a curve Ü? is called 
an exceptional curve. We say that X is obtained from X by blowing down E. 
An algebraic surface is said to be minimal if it has no exceptional curve, i.e., 
if it cannot be blown down. Every algebraic surface can be blown down to a 
(not necessarily unique) minimal surface. 

With this said, a simply connected algebraic surface X of Kodaira dimen­
sion —oo can be described as follows. It is a rational surface, which means 
that X may be obtained from C P 2 by iterating the procedure of blowing 
up finitely many times, followed by iterating the procedure of blowing down 
finitely many times. Equivalently, the field of meromorphic (or rational) func­
tions on X is isomorphic to C(xi,X2). The diffeomorphism types of X are 

———1 
easy to describe: such an X is diffeomorphic either to C P 2 # n C P , n > 0, 
or to S2 x S2. Finally, we should mention the famous Castelnuovo criterion: 
an algebraic surface X is rational if and only if it is simply connected and 
P2(X) = 0. (Actually, it suffices to assume that bx{X) = P2(X) = 0.) A 
non-simply connected surface S with K(S) = -oo is a ruled surface. More 
precisely, a minimal ruled surface is an algebraic surface 5, together with a 
holomorphic map 7r: S —• C, where C is an algebraic curve, such that all 
fibers 7r_1(x), x G C, are isomorphic to CP 1 . A general ruled surface S is 
then a blow-up of a minimal ruled surface 5, and thus there is an induced 
map S —• C. If g(C) = 0, then S and S are rational. Otherwise, the map 
S —• C is unique, although the blow-down S —• S is not. (The nonuniqueness 
is exactly accounted for by the so-called elementary transformations [22, p. 
416].) 

If 5 is an algebraic surface with K(S) > 0, then S can be uniquely blown 
down to a minimal surface Sm[n which is called its minimal model. The 
uniqueness implies that there are a finite number of marked curves on 5, the 
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curve components of the fibers of S over 5min- These are the only curves 
which can be contracted under any degree one holomorphic map of S to 
another smooth surface. (By contrast, it is possible for a rational surface to 
have infinitely many exceptional curves [22, p. 409].) Thus, the classification 
of surfaces with /c > 0 is reduced to the study of their minimal models. 

Let us consider minimal surfaces S with /c(5) = 0 . If 5 is simply connected, 
then S is a K3 surface. Such surfaces are parametrized by an (extensively 
studied) irreducible 20-dimensional complex space, and consequently, all such 
surfaces are diffeomorphic. If S is not simply connected, then it is a quotient 
of a K3 surface or a complex torus by a finite group acting freely. Moreover, 
such surfaces are parametrized by a finite number of connected complex spaces 
(in fact, the list is very short; cf. [5 or 19]). From this discussion, it follows 
that minimal surfaces S with K(S) = 0 represent only finitely many C°°-types 
of 4-manifolds. 

If 5 is a minimal surface with K(S) = 1, then S is elliptic, i.e. there is 
a canonically defined holomorphic map TT: S —• C, where C is an algebraic 
curve, such that TT_1(£) is a smooth algebraic curve of genus one (i.e., an 
elliptic curve), for almost all t G C. Such a fibration may have multiple 
fibers [24]. The surface can always be deformed until the multiple fibers are 
smooth. In local analytic coordinates near a multiple fiber, 7r: S —* C is 
then given by 7r(z, t) = tm where m > 1 is the multiplicity. If 7Ti (S) = 0, 
then C = CP1. Furthermore, there are at most two multiple fibers and 
the multiplicities are relatively prime. The simply connected elliptic surfaces 
without multiple fibers fall into countably many connected, in fact irreducible, 
families indexed by pg (or equivalently by 6^). Any elliptic surface with 
multiple fibers is obtained from one without multiple fibers by log transforms 
[25]. From this one can show that simply connected elliptic surfaces are 
divided into countably many irreducible families indexed by pg, p, and q where 
p, q > 1 are the multiplicities and are relatively prime. But if pg = 0 and at 
least one of p and q is 1 the resulting surfaces are rational. If pg = 1 and 
p = q = 1 then the resulting surface is a K3 surface. In all other cases, we 
get a surface of Kodaira dimension one. 

Finally, if K(S) = 2, then S is of general type, which for our purpose will 
be simply synonymous with "other." For example, a smooth hypersurface 
of degree at least 5 in C P 3 is of general type. More generally, we define a 
complete intersection surface S Ç CPN to be the transverse intersection of 
(N — 2) smooth hypersurfaces of degrees d i , . . . , dw-2- With very few excep­
tions, these are all of general type. Surfaces of general type remain a vast 
and uncharted wilderness, whose study (largely consisting of constructing ex­
amples), goes by the name of "geography". Indeed, the name general type 
reflects the feeling that, given the bewildering array of examples of surfaces 
of general type, most surfaces fall into this class. In spite of this, from the 
point of view of classifying smooth 4-manifolds, one can at least say the fol­
lowing. If we fix the homotopy type of a 4-manifold, all but finitely many 
diffeomorphism types of algebraic surfaces of the given homotopy type will be 
(possibly nonminimal) surfaces with /c = 1 (i.e. blown up elliptic surfaces). 
Put slightly differently, the (possibly nonminimal) surfaces of general type of 
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a given homotopy type fall into at most finitely many irreducible families. 
This will be discussed in more detail in the remarks after Conjecture 1 in the 
next section. We summarize the situation in the Table. 

TABLE 

Classification of algebraic surfaces 

K 

— OO 

0 

1 

[_2 

simply connected 
case 

rational; diffeomorphic 
to S2 x S2 or C P 2 # n C P 2 

existence 
of a 

unique 
minimal 
model 

Smin is a KS surface 

5min is an elliptic 
surface, described by 
Pg,P,Q > 1 

general type 

non-simply connected 
case 

ruled over a curve of 
genus at least one 

Smin is a complex torus, 
an Enriques surface, or 
a hyperelliptic surface 

Smin is a more general 
elliptic surface 

general type 

Simply connected elliptic surfaces X with pg(X) = 0 occupy a special 
case in the classification. We will call a minimal such surface a Dolgachev 
surface; its C°°-type is determined by p,q G N, p,q > 2 and g.c.d.(p,g) = 1. 
Historically, their interest was as follows. Castelnuovo proved in 1896 that 
X is rational if and only if bi(X) = Pï{X) = 0. This result is akin to the 
well-known fact that a compact Riemann surface C is C F 1 if and only if 
the genus g(C) is 0. However, it is not clear that P2(X) is a topological 
invariant. As we shall see, P2(X) is not determined by the homotopy type of 
X. A more natural invariant, which does depend only on the homotopy type, 
would be pg(X) = P\(X). However, Enriques constructed a surface S (which 
now bears his name) with pg{S) = b\(S) = 0 which is not rational. For the 
Enriques surface 5, we have K(S) = 0 and TTI(S) = Z/2Z; the universal cover 
of S is a KS surface. Later, Godeaux constructed a surface T of general type 
with pg(T) = 6i(T) = 0, and 7Ti(T) = Z/5Z. Severi posed the problem of 
whether a surface S with Hi (S; Z) = 0 and pg{S) = 0 was necessarily rational. 
Dolgachev constructed his counterexamples in 1966 [10]; they are in fact 
simply connected. Only in 1982 did Barlow [4] produce a simply connected 
surface of general type with pg = 0. It is unknown whether Barlow's surface 
is diffeomorphic to a rational surface (this seems quite unlikely), and it is 
known that the Dolgachev surfaces and their blow-ups are never diffeomorphic 
to rational surfaces [17]. (We shall discuss this further in the next section.) 
As these examples show, P2{X) is not a homotopy invariant, and indeed by 
Freedman's result [16], it is not a homeomorphism invariant. One can ask 
if P2{X), or more generally Pn(X), is a diffeomorphism invariant. This is 
unknown at present. 

3. Some conjectures. The first application of gauge theory to the differ­
ential topology of algebraic surfaces was Donaldson's example showing that 
the /i-cobordism theorem does not extend to dimension 4 [14]. He showed that 
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a Dolgachev surface with multiple fibers of orders 2 and 3 is not diffeomor-
phic to CP2 blown up at 9 points, although by Dolgachev's work the surfaces 
are homotopy equivalent and hence /i-cobordant [10]. By Freedman's result 
[16] this amounts to putting two nondiffeomorphic smooth structures on the 

_ _ _ 0 

topological manifold GP 2 #9CP . Donaldson's example was generalized in 
[17] to Dolgachev surfaces and their blow-ups and independently in [33] to 
Dolgachev surfaces. 

One consequence of [17] is a proof of the existence of infinitely many non-
-——2 

diffeomorphic smooth structures on CP2#nCP for all n > 9. This result is 
qualitatively very different from results in higher dimensions [37], which say 
roughly that a smooth simply connected manifold of dimension > 5 is deter­
mined up to finitely many diffeomorphism possibilities by its homotopy type 
and Pontrjagin classes. Another consequence of [17] is that for all blown up 
Dolgachev surfaces, the automorphisms of (H2(S),qs) which can be realized 
by self-diffeomorphisms satisfy nontrivial conditions. These will be explained 
in more detail below, but to mention a qualitative result here, the subgroup of 
such automorphisms has infinite index in the full group of all automorphisms 
of the form. Once again this is qualitatively very different from the results in 
higher dimensions (cf. [37]). 

It is our feeling that these results for Dolgachev surfaces are but the tip 
of the iceberg, and that the techniques used to study them have wide appli­
cations. The conjectures we make here are natural generalizations of what is 
now known in the case of Dolgachev surfaces. 

DEFINITION. Two smooth complex manifolds Z\ and Z% are of the same 
deformation type (also called c-homotopic in the older literature) if there ex­
ist connected complex spaces X and T, a smooth proper holomorphic map 
$ : X -+ T, and points tllt2eT with Z{ S $_1(*t). 

Equivalently, deformation type is the equivalence relation generated by 
declaring that two complex manifolds are equivalent if they are both fibers in 
a proper smooth map between two connected complex manifolds. If Z\ and 
Z2 are of the same deformation type, their underlying manifolds are diffeo­
morphic, via a diffeomorphism which preserves the canonical orientations and 
the canonical classes. 

CONJECTURE 1. The natural map 

algebraic surfaces 1 ( oriented smooth 4-manifolds 
modulo deformation > —• < modulo orientation-preserving 

type J y diffeomorphisms 

is finite-to-one. 

REMARKS. (1) In the definition of deformation type we do not require that 
all fibers of the map $ : X —• T be algebraic, merely that they be complex 
surfaces. However, it can be shown that requiring all fibers to be algebraic 
gives an equivalent conjecture, although a more natural category to work in 
is that of Kàhler surfaces. 

(2) It suffices to prove Conjecture 1 for blown up elliptic surfaces. The 
reason is that the result holds if we restrict to the category of algebraic surfaces 
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which have nonelliptic minimal models. This fact is more or less well known. 
(See [17, III.3.4] for the case pg = 0.) We have divided surfaces into those 
of Kodaira dimension -oo, 0,1,2 and we are claiming that the result holds 
for surfaces with /c / 1. It clearly suffices to consider the cases /c = —oo, 
K = 0, and K, = 2 independently. For K = —oo, a straightforward argument 
with elementary transformations shows that, for a possibly nonminimal ruled 
surface, deformation type and diffeomorphism type coincide. The surfaces of 
Kodaira dimension zero (possibly non-simply connected) fall into a very short 
finite list of C°°-types, and here again deformation type and diffeomorphism 
coincide. Lastly, we consider (possibly nonminimal) surfaces Y of general 
type. The Noether formula says 

c?(y) + c2(Y) = 12X(0y). 

From the Hirzebruch Index Theorem one derives that c\(y) = 3I(Y)+2x(Y). 
Thus Ci(ymin) is bounded solely in terms of the homotopy type of F , as 
Ci(¥min) < c ? 0 0 + ^ 0 0 - By results of Moishezon, Kodaira, and Bombieri 
(with the sharpest bounds due to Bombieri [8]), minimal surfaces with c\ less 
than or equal to a given bound may all be mapped birationally to a fixed pro­
jective space CPN. According to the general properties of the Hubert scheme, 
such surfaces may then be parametrized by a finite union of quasiprojective 
varieties, and the same will be true after a bounded number of blow-ups. 
Hence, the number of deformation types of surfaces of general type in a given 
homotopy type, and thus the number of diffeomorphism types of such surfaces, 
is finite. 

In [17], we proved Conjecture 1 for Dolgachev surfaces and their blow-ups. 
This established Conjecture 1 for all simply connected algebraic surfaces with 
pg = 0 (or equivalently with b% = 1). Liibke and Okonek [27] and F. Maier 
[28] have verified Conjecture 1 for minimal elliptic surfaces with pg = 0 and 
finite cyclic fundamental group. 

(3) Surprisingly, if Conjecture 1 holds for simply connected surfaces, then 
it holds for all surfaces. First, one reduces to the case of (possibly blown up) 
elliptic surfaces, by the above remark. Next, if an elliptic surface has a finite 
fundamental group, its universal cover is again elliptic, and a straightforward 
argument reduces this case to the simply connected case. Finally, if the funda­
mental group is infinite, one associates to the surface a certain 2-dimensional 
orbifold V, which consists of the base C of the elliptic fibration 7r: S —• C, 
together with points X\,..., Xk € C and multiplicities p\,..., pk at x\,..., Xk-
Here, the Xi are the images of the multiple fibers and the pi are the multiplic­
ities of the corresponding fibers. One can show that the fundamental group of 
S determines the "orbifold fundamental group" of V. By a result in surface 
topology, this orbifold fundamental group determines V and hence g(C) and 
the pi, unless g(C) = 0 and k < 2. However, in this last case, either the 
fundamental group of S is finite (a case which we have already dealt with), or 
it is infinite and this case can be handled by Kodaira's work on elliptic sur­
faces of type VII [25]. Compare also Ue [41], who discusses the relationship 
between the fundamental group and the diffeomorphism classification for the 
case of infinite fundamental group. 
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An analogous conjecture is false for complex dimension > 2. For example, 
let 5(p, q) be a Dolgachev surface with multiple fibers of orders p and q such 
that g.c.d.(p,g) = 1. The 8-manifolds S(p,q) x S(p,ç), as (p,q) ranges over 
unordered pairs of relatively prime natural numbers, are all of the same ho-
motopy type and have the same Pontrjagin classes. One can show that there 
are at most two possibilities for the diffeomorphism type. Hence, for infinitely 
many choices of p and q, the S(p,q) x S(p,q) are all diffeomorphic. However, 
the order of divisibility of the canonical line bundle becomes arbitrarily large 
as p, # —• oo, and this easily implies that the S(p,q) x S(p,q) cannot all fall 
into finitely many deformation types. 

On the positive side, however, Kollâr has shown, by a simple but clever 
argument, the following. Let M2n be a smooth oriented 2n-manifold with 
62(M) = 1. Then the set of deformation types of Kahler (or equivalently 
algebraic) complex structures on M is finite. 

SPECULATION. IS it possible that the map in Conjecture 1 is actually 
one-to-one? 

No counterexamples to this speculation are known, even for non-simply 
connected surfaces. In this connection, the case of elliptic surfaces with infinite 
fundamental group seems very accessible. As farther evidence, Moishezon 
has found many examples of pairs of simply connected surfaces of general 
type which can be shown to be orientation-preserving homeomorphic but not 
diffeomorphic, and hence not of the same deformation type. On the other 
hand, establishing the above speculation for all surfaces of general type seems 
to be extremely difficult. 

It seems to be the case that the nature of the differential topology of a 
surface depends on its Kodaira dimension, with the case K = —oo being 
qualitatively different. Thus, our next conjectures are for surfaces with K > 0. 

CONJECTURE 2. Let S be an algebraic surface with K(S) > 0, let Sm[n 

be the minimal model and let p: S —• Sm\n be the natural map. If ƒ : S —• S 
is an orientation-preserving diffeomorphism, then ƒ* preserves the subspace 
p*H2(Smin;Z)ÇH2(S',Z). 

If E\,..., Ek are the exceptional fibers of p (assuming that we have blown 
up k distinct points for simplicity), then p*H2(5min; Z)1- is the Z-span of 
[Ei],..., [Ek], where [Ei] is the cohomology class dual to E{. Thus ƒ* pre­
serves p*H2(Sm{n; Z) if and only if ƒ* preserves 

P*H2(Smin; Z ) x = Z[Ei] © . . . © Z[Ek); 

since [Ei]2 = — 1, this is true if and only if ƒ* acts on the [Ei] via sign changes 
and permutations. 

CONJECTURE 3. With 5 ,5 m i n , and p as in Conjecture 2, if ƒ : S - • S is 
an orientation-preserving diffeomorphism, then /*[p*^smin] = ±[p*Ksmin]-

For a minimal surface, of course, Conjecture 3 simply reads f*[Ks] = 
±[Zfs]. However, it is not in general true that f*[Ks] = ±[#s] if S is not 
minimal. The reason is that if S has an exceptional curve E, then there is 
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a diffeomorphism which realizes reflection in [E] in cohomology. This diffeo­
morphism ƒ almost never satisfies f*[Ks] = ±[#5]. 

Conjectures 2 and 3 have been verified in [17] for Dolgachev surfaces and 
their blow-ups, thus giving an infinite family of interesting special cases. Using 
unpublished work of Donaldson, the authors have also verified Conjecture 3 
for minimal (nonrational) simply connected elliptic surfaces and complete 
intersection surfaces of general type provided that pg = 0 (mod 2). This 
includes all hypersurfaces of degree d in CP 3 , where d ^ 0 (mod 4) and 
d > 5 . 

As a general comment, the classes of possibly blown up simply connected 
elliptic surfaces and of complete intersection surfaces seem to be quite feasible 
testing grounds for the validity of Conjectures 2 and 3. A key property of these 
surfaces is that their diffeomorphism groups are large. Paradoxically, this fact 
can be used to find nontrivial conditions on diffeomorphisms of these surfaces. 

There are natural extensions of Conjectures 2 and 3 concerning diffeomor­
phisms between distinct algebraic surfaces. 

CONJECTURE 2''. Let S and S' be algebraic surfaces with K(S) > 0 and 
/c(S") > 0. Let f:S—+S' be an orientation-preserving diffeomorphism. Let 
p: S —• Smin and p' : S' —• S^iQ be the minimal models. Then 

r ( ( p ' ) * ^ 2 ( ^ i n ; Z ) ) = p*H2(Smia;Z). 

CONJECTURE 3'. With assumptions as in Conjecture 2' we have 

r(py[KS.mj = ±p*[KSmin\. 

Clearly, these Conjectures imply Conjectures 2 and 3. We shall see below 
(Proposition 4) that Conjectures 2 and 3 imply Conjecture 2'. Conjecture 
3' seems less accessible. As weak evidence for Conjecture 3' we have the 
following: Let 5 and S' be blown up Dolgachev surfaces and let ƒ : 5 —• S' be 
a diffeomorphism. In [17] Conjecture 3' was established for ƒ up to multiples, 
i.e., / V W s ; , J = r(f) • p*[KSmJ for some r(f) e Q. 

We give some consequences which show the power of these conjectures. 

PROPOSITION 4. Suppose that S is an algebraic surface, that K(S) > 0 
and that Conjectures 2 and 3 hold for S and all its blow-ups. Assume, for 
simplicity, that p: S —• 5min is obtained by blowing up distinct points of 5min. 
( This is always true after a deformation of S.) Let E Ç S be a smoothly 
embedded 2-sphere and a € H2(S;Z) be the cohomology class Poincaré dual 
to E. Suppose a ^ O . Then a2 < —1 and if a2 — —1, then a = ±[E], where 
E is an exceptional fiber of pi S —• Smin. 

PROOF. First suppose that a2 = - 1 . Let Ra: H2(S;Z) - • H2{S\Z) be 
reflection about the hyperplane (a-1). Then by [17, III.2], Ra is induced by 
a self-diffeomorphism of 5. It follows by hypothesis that Ra preserves the 
decomposition 

H2(S; Z) = p*H2(Smin; Z) 0 0 Z[tf<]. 
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Thus, either a G p*H2(Sm\n;Z) or a G 0t-Z[£?»]. First, suppose that a G 
P*H2(Smin;Z). FYom Conjecture 3 we have Ra([p*KSmin)) = ±[p*KSmin]. 
Thus, we see that either [p*Ksmin] is a multiple of a or a € [p*^5min]'L. By 
a general result on surfaces with K > 0, [Ksmln]

2 > 0, so the first case is 
impossible. Hence a G [p*#smin]"

L- By the Wu formula, 

([p'KsnJ^ n / # 2 ( S m i n ; Z) = / ( [ürS m l n ] x ) 

is an even lattice, and hence does not contain any class of self-intersection — 1. 
This contradiction establishes that a G 0 ^ Z[Ei). Since a2 = - 1 , a = ±[E{] 
for some i. 

The case where a2 > 0 is handled by blowing up S at a2 + 1 distinct points 
along E, and reducing to the above case to obtain a contradiction. 

Note. The characterization of embedded 2-spheres of self-intersection - 1 
easily implies Conjecture 2'. 

There is a generalization of Proposition 4 to immersed 2-spheres. 

PROPOSITION 5. Assume that p: S —• 5min is as in Proposition 4. Let 
Y, —> S be a genetically immersed 2-sphere with Poincaré dual cohomology 
class a ^ 0. Let d+ (resp. eL) be the number of double points o/E where the 
local self-intersection is -1-1 (resp. —1). (Thus, a2 = 2d+ — 2d- +x> where \ 
is the Euler characteristic of the normal bundle of E —• S.) Then 

d+ > (a2 + l) /4 

with equality only if a = ±[Ei] for some i. 

Notice that the conclusions in Propositions 4 and 5 refer only to the ho­
mology class of E, not to the isotopy class of the embedding or the regular 
homotopy class of the immersion. 

Finally, as a corollary of Proposition 4, we obtain conjecturally the correct 
answer to the problem posed by Severi that was described at the end of the 
last section. 

PROPOSITION 6. Suppose Conjectures 2 and 3 hold for all simply con­
nected algebraic surfaces S with pg(S) = 0 and K(S) > 0. If X is an algebraic 
surface diffeomorphic to a rational surface, then X is a rational surface. 

PROOF. If X is diffeomorphic to a rational surface, then b^(X) = 1 and 
hence pg(X) = 0. Of course, X is simply connected. If X is not rational, then 
K(X) > 0. Hence, by the hypotheses of Proposition 6, Conjectures 2 and 3 
hold for X, and its blow-ups. Thus, Proposition 4 holds for X. Hence, X 
has no embedded 2-spheres of positive self-intersection. This implies that X 
is not diffeomorphic to a rational surface, contrary to assumption. 

Note. By the results of [17] for blown up Dolgachev surfaces it suffices to 
check Conjectures 2 and 3 for a finite set of minimal surfaces of general type 
and their blow-ups. 

In order to state Conjectures 2 and 3 and their generalizations, we need 
the existence of a unique minimal model and hence the hypothesis K(S) > 0. 
It is of interest to consider the case K(S) = — oo as well and to try to find 
analogous results. If S is moreover simply connected, then it is rational, and 
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we are essentially reduced to considering Xk equal to CP2#fcCP . In this 
case we have: 

THEOREM (WALL [43]). Ifk<9, every integral isometry of H2(Xk;Z) 
is induced by an orientation-preserving self-diffeomorphism of'Xk-

Using the methods of Donaldson, one can investigate the isometries of 
H2(Xk',%) for all k and characterize those induced by self-diffeomorphisms 
of Xk- It turns out that they all "come from algebraic geometry," in some 
sense. However, for k > 10, they form a subgroup of infinite index in the full 
integral isometry group! (See [17] for more details.) 

One can also consider non-simply connected surfaces with K(S) = — oo, 
i.e. ruled surfaces. Let 5 be a ruled surface over C, with g(C) > 1. Suppose 
that S is obtained from 5min by blowing up distinct points x\,..., xk (for the 
purposes of topology, we may always make this assumption). Let e i , . . . , e& be 
the cohomology classes dual to the exceptional curves, and [F] the cohomology 
class dual to TT~1(X), where x is a general point of C. Thus [F]2 = 0. 

THEOREM 7. (a) If E Ç S is an embedded 2-sphere and [E] is the co­
homology class dual to E, then [E]2 < 0. Moreover, [E]2 = 0 if and only if 
[E] = n[F\, n € Z, and [E]2 = - 1 if and only if [E] = ie* + n[F] for some i, 
1 < i < k, and some n € Z. 

(b) Let <p: S —• 5 be an orientation-preserving diffeomorphism. Then 
<p*([F]) = ±[F]. Moreover, let 

A = {xl) an integral isometry ofH2{S;Z): i/>{[F\) = ±[F]}. 

Then the elements of A realized by self-diffeomorphisms form a subgroup of 
finite index in A. 

We leave the proof as an exercise to the reader. 
Arguments similar to those used to prove the above theorem give special 

cases of Conjectures 2 and 3 for certain surfaces with K > 0 and "big" fun­
damental group, e.g. elliptic surfaces over curves of genus at least one or 
quotients of the unit ball in C2 . The general principle at work, as in the dis­
cussion of Conjecture 1, seems to be that the presence of a large fundamental 
group simplifies the topology of the surface. 

4. Algebraic surfaces versus 4-manifolds. This section consists en­
tirely of wild speculation restrained only by the few examples we know. The 
wildest speculation of all apparently goes back to René Thorn. 

SPECULATION. IS every simply connected 4-manifold M diffeomorphic to 
^ i # ^ 2 # * • • #Nfc> where each Ni is an algebraic surface (possibly with the 
orientation reversed)? 

Here, S4 is the empty connected sum, in good Bourbaki tradition. Note 
that this is a modest speculation: it includes the smooth Poincaré conjec­
ture in dimension 4, as well as the claim that every positive definite simply 
connected 4-manifold is diffeomorphic to nCP2. Another consequence would 
be the following: If M is simply connected and b% (M) and b% (M) are both 
even, then M is decomposable. Yet another consequence would be the follow-
ing: For k < 8 the topological manifold CP2#kCP has only finitely many 
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distinct smooth structures. We leave it to the reader to judge the plausibility 
of this speculation. A weaker version of this speculation is: 

CONJECTURE 8. Every simply connected 4-manifold is homotopy equiva­
lent to one of the form JVi#JV2# • • • #Nk as above. 

There is some evidence for this. If the intersection form of M is odd, then, 
by the algebraic classification of forms, either it is isomorphic to a diagonal 
form © n ( l ) ® © m ( - l ) or it is definite. By Donaldson's theorem [11], if the 
intersection form of M is definite it is also diagonalizable. Since a 4-manifold 

— — 2 

with diagonal intersection form is homotopy equivalent to n C P 2 # r a C P , 
Conjecture 8 is true for odd intersection forms. 

If the intersection form of M is even, then this conjecture is equivalent to 
the "eleven-eighths" conjecture (due to Kas and Kirby): 

THE 11 /8 CONJECTURE. If M is a simply connected 4-manifold with 
even intersection form, then 

862(M)> 11- | /(M)| . 

The fact that this conjecture holds for connected sums of algebraic surfaces 
is immediate from the fact that it holds for algebraic surfaces (the latter a fact 
apparently first noticed by Moishezon). Note that an algebraic surface with 
an even intersection form must be minimal. To prove the result for algebraic 
surfaces with I{M) > 0 one appeals to the Bogomolov-Miyaoka-Yau inequality 
[5] that for an algebraic surface c\ < 3c2. If I(M) < 0, then one uses the fact 
that for minimal simply connected algebraic surfaces c\ > 0 (which follows 
from the Kodaira classification) and the fact that any even form of rank < 8 
has zero signature. Conversely, any simply connected 4-manifold M with even 
intersection form satisfying 862 (M) > H * Î C&OI is homotopy equivalent to a 
connected sum of |/(M)|/16 copies of the ÜT3 surface and (862 -11-|/(M)|)/16 
copies of S2 x S2 . (Note that |/(M)|/16 is an integer because of Rokhlin's 
theorem and 862 — 11 • | / (M)| is divisible by 16 by the algebraic classification 
of forms.) 

Donaldson has recently shown [13] that if M is simply connected with even 
intersection form and if 62(M) - \I(M)\ < 4 (i.e., if max(6j(M), 6^(M) < 2) 
then I(M) = 0 and M is homotopy equivalent to a connected sum of S2 x S2,s. 
This is a very special case of the 11/8 conjecture. 

Speculation of the above type must be restricted to simply connected 4-
manifolds, even if we replace algebraic surfaces by compact complex surfaces. 
For instance, by combining results of Bogomolov [7] and Inoue [23] (cf. also 
Kodaira [26]) one can show that if E3 is a rational homology 3-sphere, then 
S1 x E3 is homotopy equivalent to a connected sum of compact complex 
surfaces only if E3 = S3. (Complex structures do exist on S1 x S3, and these 
are all Hopf surfaces [26].) In fact, using the classification of surfaces one can 
construct many other examples. 

Without being so ambitious in our speculation, we could simply restrict 
attention to those 4-manifolds which we get by taking connected sums of 
algebraic surfaces (possibly with the orientation reversed), and ask about 
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the relations among these, i.e. when is iVi#iV2#- • • #iVfc diffeomorphic to 
N[# - - - #iV/, where the N{,Nj are algebraic surfaces or their negatives? A 
result due to Mandelbaum and Moishezon [29, 32] shows that cancellation 
fails to hold in a spectacular way. They show that, if S(p,q) is the Dol-
gachev surface with multiple fibers of multiples p and q, then for all (p, q) 
and {p',q') e N x N with g.c.d.(p,g) = g.c.d.(p',g') = 1, S{p,q)#CP2 is 
diffeomorphic to 5(p ' ,^ / )#CP 2 . In the same spirit, they showed in [30] that, 
if Vd is a smooth hypersurface of degree d in CP 3 , then Vd#CP2 is dif-
feomorphic to a connected sum a C P 2 # 6 C P , where a and b are functions 
of d. Earlier and more generally, Wall showed that if M and M' are sim­
ply connected 4-manifolds with the same self-intersection form, then, after 
taking connected sum with sufficiently many CP2 ' s and C P 's, M and M' 
become diffeomorphic. ([In [32], Moishezon gave an explicit upper bound on 
the number of CP 2 ' s and C P 's needed in case M and M' are algebraic sur­
faces.) So the relations among connected sums of algebraic surfaces seem to 
be very complicated. The general principle, however, seems to be that as soon 
as we leave the algebraic category via connected sums, the structure of the 
4-manifold simplifies dramatically. Along these lines, Mandelbaum [29] con­
jectured that, if M is a simply connected algebraic surface, then M # C P 2 is 
diffeomorphic to r C P 2 # s C P . On the other hand, considerable efforts to de­
compose algebraic surfaces themselves into standard pieces failed. After this 
Mandelbaum and Moishezon [§6 of 30] conjectured that nonrational algebraic 
surfaces were never completely decomposable, i.e., were never diffeomorphic 

o 

to a connected sum of CP 2 , s and C P 's. It was a triumph when Donaldson 
showed the following statement which implies this and much more in the case 
when b% > 2: 

THEOREM (DONALDSON). Let S be a simply connected algebraic sur­
face, and suppose there is an orientation-preserving diffeomorphism from S to 
Mi#M2, where Mi, M^ are oriented 4-manifolds. Then one of M\,M<i has 
a negative definite self-inter section form. 

Here is a possible complement to Donaldson's result, one which would say 
that the only possible decompositions of algebraic surfaces are the obvious 
ones coming from algebraic geometry. 

SPECULATION. Suppose S is an algebraic surface with K(S) > 0 and 
suppose <p: S —• Mi#M2 is an orientation-preserving diffeomorphism with 
M2 having a negative definite intersection form. Does there exist an algebraic 
surface T and a blow-down p: S —>T which realizes this decomposition? By 
this we mean the following: if p : S —• T is a blow-down then there is a natural 

2 =* 

diffeomorphism 1: T#fcCP -^ S well-defined up to isotopy. To say the 
blow-down realizes <p: S —> Mi#M2 means that there are diffeomorphisms 
\l) : Mi - • T and tp' : M2 - • #A;CP2 such that 

S ** M,#M2 ^ ^ T#fcCP2 -i> S 

is isotopic to the identity. 
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NOTE. Such results do not hold for rational surfaces. 
As before, one can formulate a weaker version of this speculation which 

seems more accessible. 

CONJECTURE 9. Suppose S is a simply connected algebraic surface with 
K(S) > 0. Suppose there is an orientation-preserving diffeomorphism (p: S —• 
Mi#M2 with M% negative definite. Then there is a blow-down p: S —• T such 
that <p*H2{Mi) = p*H2(T) in H2(S), or equivalently with <p*H2(M2) equal 
to the span in cohomology of the exceptional fibers of p. 

As a final note, those questions which we have called conjectures in this 
section pertain to the homotopy classification of smooth 4-manifolds and al­
gebraic surfaces. The techniques of gauge theory seem to be a very promising 
approach to these problems. On the other hand, those questions which we 
have called speculations and which involve the diffeomorphism classification 
of 4-manifolds seem to require completely new ideas. 
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