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1. The year 1982, the centenary of Charles Darwin's death, witnessed 
conferences, symposia, and publications in many disciplines devoted to re­
assessing the theory of evolution by natural selection and all its ramifications. 
A brief historical review on developments in evolutionary theory emphasizing 
the role of mathematics is given in §3 of this paper. §2 presents background 
material on agents of evolutionary processes. §4 contains an annotated listing 
of several problems and controversies pertaining to evolutionary processes, and 
a more extended discussion of the neutralist-selectionist controversy. §5 pre­
sents background information relating to sex ratio in various plant and animal 
species. Several classes of mathematical models of much recent interest center­
ing on sex ratio evolution and related dynamical systems are examined in 
§§6-8; the purely mathematically oriented reader can pass directly to these 
sections. The concluding section presents our views on several philosophic 
issues in evolutionary theory today, and on the nature of the mathematics 
relevant to the genetics of the current decade. 

Taxonomists have recorded 1-2 million plant and animal species and 
surmise that another 4-6 million species remain to be classified. More than 
50% of all living species are of the insect genera; the Drosophila flies alone 
comprise at least 2,500 species. Counts of bird species vary from 8,000 to 
10,000. The number of species from the evolution of life to the present is 
estimated at 4-16 billion. Simpson (1953) projects that more than 99.9% of all 
species that ever existed are extinct. 

The ubiquitous variability within species of biochemical, morphological, 
physiological, and behavioral traits is also intriguing. As observation, and 
experimental techniques are being refined, increasing numbers of segregating 
genes (those exhibiting at least two alternative types) are being detected. 
Another aspect of nonuniformity is the prodigious variety of sexual mecha­
nisms, mating patterns, life cycles, life styles, strategies for survival and 
reproduction, growth characteristics, and ecosystem interactions. 

Concomitant to the observed diversity in living forms and life patterns, there 
are some universals and expressions of identity. The basic DNA-RNA struc­
ture and its replication mechanism are present in "all" organisms. Proteins 
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appear to be an essential component of life. And though energy conversion 
and production are managed in a number of ways, common to all these ways is 
the generation and use of ATP (Adenosine Triphosphate), the main energy 
source used in driving all other activities. 

Many evolutionists contend that both the immense diversity of life and its 
universals are products of the Darwinian principle of natural selection, which 
operates on genetic variation in responding to the challenges of ever-changing 
environmental conditions. 

A central problem of evolutionary theory is to explain the vast variability 
observed on all levels from the molecular to organizational characteristics. 
How much of this variability and what kinds can be accounted for by natural 
selection, and what is the nature of the selection forces and causal mecha­
nisms? 

2. Agents and forces of evolutionary processes. We begin by defining some 
terms. Chromosomes, usually found in the nucleus, mostly govern the inherita­
ble characteristics of an organism. Chromosomes may occur singly (the haploid 
case), as in bacteria and some fungi; in pairs (the diploid case), as in mammals; 
or in larger groups (triploid, tetropioid, in general polyploid), as in many plants. 
The associated pairs, triplets, etc. are called homologous chromosomes. Locus is 
the position at which a gene (a sort of unit of the chromosome) occurs on a 
chromosome. Alleles are alternate gene forms at a given locus. Genotypes are 
the various possible combinations of alleles at corresponding loci on homolo­
gous chromosomes. In the diploid case if the alleles are A and a, the genotypes 
are AA, Aa, and aa. 

The populations to be considered, unless specified otherwise, contain diploid 
individuals. We shall assume that an offspring is formed by the donation of a 
gamete (one of each pair of homologous chromosomes) from each of two 
parents. In the case of one locus, each parent, depending on its genotype, may 
donate either A or a to form a zygote (fertilized egg) of genotype AA, Aa, or aa. 
Individuals with genotype AA or aa are homozygotes', those with Aa are 
hétérozygotes. The physical manifestation of the genotype is called the pheno-
type. 

Consider the case of two loci, where the alleles A and a are possible at the 
first locus and alleles B and b at the second locus. A typical one of the ten 
possible genotypes could be written AB/ab, which signifies that AB are linked 
on one chromosome with A at the first locus and B at the second and that ab 
are correspondingly situated on the second chromosome. Recombination may 
occur in the case of two loci, and the two loci are not independent so far as 
gamete donation is concerned. An individual heterozygous at both loci can 
produce four types of gametes. For example, an individual of genotype AB/ab 
can produce gametes of types AB and ab and also gametes of types Ab and aB. 
The AB and ab gametes are called parental, while Ab and aB are called 
recombinant. If the loci are linked, there will be an excess of parental gametes 
over recombinants. It is generally found that the parental types AB, ab are 
produced with equal frequencies ^(1 - r) and the recombinant types with 
equal frequencies \r, where the number r, 0 < r < 1, is called the recombina­
tion fraction. 
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For further information and biological scope on these terms, consult, for 
example, the texts by Futuyma (1979), Hartl (1980), Wallace (1981), and 
Hedrich(1983). 

Causal and historical analyses of the evolutionary process fall back on a 
combination of modeling, interpretation and systematization of the paleonto-
logical record, experimental findings, field observation, and data on the 
phylogeny of the living world. The agencies acting on populations of individu­
als include natural and sexual selection forces, mutation and migration pres­
sures, mating patterns, interaction of genes, recombination and linkage rela­
tions, changing environmental conditions, the influence of the initial popula­
tion makeup, historical factors, and a conglomeration of chance factors. We 
now briefly discuss these factors in qualitative terms. 

Natural selection. Fertility, viability, and segregation distortion are the major 
representations of what Darwin called "fitness". Differential viability refers to 
how the types differ in their ability to survive and reproduce. Fertility selection 
reflects the variation in numbers of offspring produced by the different 
parental crosses. Segregation distortion (known also as meiotic drive) refers to 
deviation from the Mendelian segregation ratio, in which both parents contrib­
ute equally to the offspring. 

Mutation. Mutation events, the ultimate source of genetic variability, occur 
constantly. In many species mutation at the gene level comes about by 
substitution, deletion, or addition of mucleotides in DNA chains. These can 
alter enzyme function or change the time, place, or amount of protein 
synthesis. Chromosomal mutations and aberrations change the arrangement of 
genes or duplicate blocks of genes, or translocate and bind segments of 
chromosomal pieces, etc. The location of mutation events may be finely or 
coarsely tuned. The rates of mutation vary among species and are sensitive to 
environmental conditions. Some modes of mutation rate may be under genetic 
control. Mutant types tend to be deleterious, although some mutation events 
can produce advantageous forms. 

Migration and population structure. The mixing of populations is an im­
portant consideration in explicating spatial frequency patterns of various traits. 
The concept of subpopulation primarily refers to separate breeding units 
differentiated by a myriad of social, geographical, and historical criteria. 
Population structure (how individuals are distributed and mate) depends to a 
large extent on the pattern of migration, age classes, and behavioral and 
physiological endowments (which may not be constant in time or space). 

Mating patterns and sexual systems. The variety of mating systems in nature 
is staggering. Parthenogenesis (asexual reproduction) is found pervasively in 
bacterial populations, among some classes of apomictic plant species (e.g., 
some dandelions), and in certain insect, fish, and reptile populations. Many 
fish species are sequential hermaphrodites, acting as males during part of their 
life and females during the other part. Most plant populations are simulta­
neous hermaphrodites, carrying both sex organs and often indulging in self-
fertilization. However, in a number of plant varieties, incompatibility mecha­
nisms (analogous to separate sexes) compel total outcrossing. Most species of 
snails are hermaphrodites with self-fertilization prevented, but then two snails 
in reproduction act as both male and female with respect to each other. Among 
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the social insects (e.g., wasps, bees, ants) three classes of individuals are 
present: fertile males (mostly haploid), fertile females, and sterile females. For 
mammals separate sexes is the rule. 

Mating behavior can exhibit a variety of forms. By "sexual selection" 
Darwin meant the consequences of mating behavior. The phenomena of sexual 
selection complement and interact with natural selection forces in the evolu­
tionary process. 

Recombination and sex. A significant source of new variation is the phenom­
enon of recombination, in which separate (usually homologous) chromosomes 
exchange portions of DNA at reproduction (meiosis). Sexuality is a case of 
chromosomal recombination at the rate of 50%. 

Many organisms encompass in their life cycle both a sexual stage involving 
recombination events and an asexual vegetative stage. The recombination 
frequency tends to be less in males than female. Recombination is often under 
genetic control, occurring at specific recombination sites. 

Tied to the recombination process is the extent of ploidy. Fungi live most of 
their lives as haploids and take excursions as diploids. Mammals are invariably 
diploids so that a gene unit carries two doses of the genetic material determin­
ing its genotype. Higher ploidy abounds in plant populations; it is seemingly 
rare in the animal kingdom. Prokaryotes (organisms whose cells lack a distinct 
nucleus) allow recombination from time to time mediated by proccesses of 
transformation (e.g., exchange of DNA between distinct bacterial strains), 
transduction (e.g., employing appropriate vector viruses to transfer DNA 
material between species), and conjugation (a process akin to sexuality). 

Environmental factors. The interactions of natural and sexual selection 
forces, mutation and migration pressures, and environment are complex and 
subtle. Many things need to be considered, e.g., the effects of frequency- and 
density-dependent factors, the age structure of the population, behavioral 
characteristics, life history strategies, ecological variables, species abundancies, 
and historical factors. The aspect of changing environments confounds individ­
ual and population "adaptations". The undeniable fact that environments 
persistently involve both systematic and randomly changing elements adds a 
large unpredictable aspect to the study of the life sciences. But as Paul A. 
Samuelson (1976, p. 120) states, "The art of science is to infer the invariance 
aspects of that which is ever changing." 

Small population size, chance factors, historicity, and initial conditions. A 
number of geneticists place much emphasis on the importance of finite (small) 
population size in bringing changes during the evolutionary process. In a small 
population this force (known as "sampling effects" or "random genetic drift") 
refers mainly to statistical (uncontrolled) variability, that is, to chance fluctua­
tions associated with merely reproducing the population numbers over succes­
sive generations. In this situation a deleterious mutant type can be established 
purely by chance. 

There are many polemics in the evolutionary literature between those who 
emphasize the role of history, the uniqueness of events, and the existence of 
equilibrium states and those who claim that practically all population config­
urations reflect transient states and emphasize the importance of chance as 
opposed to the determinism of natural selection. 
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Some claim, on the basis of paleontological and other geological data, that 
important evolutionary changes occur at population "bottlenecks", times of 
sudden reduced population sizes. 

Chance and randomness enter into the picture independently of sampling 
perturbations by virtue of the constantly changing environment. A "realistic" 
model entails the parameters of selection, mutation, migration, and mating 
patterns as coupled random processes. The frequency outcomes are accord­
ingly also random processes, even where population size is large and "random 
genetic drift" is inconsequential. 

Multigene interactions. In a population we can consider traits determined at 
a single locus or several loci, or traits of a polygenic kind. Most red blood 
serum typings (e.g., the ABO system, Rh) and many disease susceptibilities 
(e.g., Albino trait, Tay Sachs disease) are determined at a single locus. 

Some sets of loci apparently arise from the duplication of a single gene and 
subsequently develop partially differentiated functions while retaining strong 
homology. Thus myoglobin (a protein that facilitates the storage of oxygen in 
muscles) and the multigene family of hemoglobin proteins (molecules in red 
blood cells that transport oxygen from the lungs) are both presumed to derive 
by duplication from the same remote ancestor gene complex. 

A polygenic or quantitative character refers to a trait determined by many 
loci (genes) contributing mostly small effects and commonly manifesting a 
continuous variation in the trait expression. 

The analysis of multilocus systems is essential to understanding the nature of 
epistasis (the interaction of selective effects between genes) and linkage (the 
extent to which genes influencing a given character are located together). 
Equilibrium, adaptation, speciation, development, and differentiation all nec­
essarily involve the interaction of genes. 

Sources of data. A primary source of evolutionary data is furnished by the 
fossil record; another is field observations by naturalists. In the past, polymor­
phic genes were identified mostly in visible traits, notably color, patterns, 
bands in chromosomes, and a vast array of mutant markers. Recent advances 
in molecular biology provide new means of discerning alternative forms in 
populations on the biochemical level. In particular, the use of electrophoresis, 
chromotography, cell fusion, immunological procedures, and more elaborate 
separation techniques for determining molecular weight, charge, and fluores­
cence have produced a wealth of data pertaining to molecular population 
variability. 

3. A brief look at the history of theoretical and mathematical evolutionary 
science. 

Before 1900. The scope and meaning of "evolution" and the nature of 
natural selection set forth by Darwin are often interpreted in different ways 
among humanists, theologians, philosophers, and scientists. Darwin's writings 
themselves offer an enthralling experience in observation, synthesis, inference 
and speculation. Darwinism (the theory of natural and sexual selection) is not 
a scientific law capable of rigorous proof. But there is no doubt of the 
existence of "natural selection" underlying many changes in the composition 
of natural populations at all levels. 
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The significance of Mendelism (although Mendel's celebrated publication 
appeared in 1865) comes to the fore only in the 20th century. Biological science 
prior to the mid-19th century primarily focused on introducing some sort of 
order into the classification of plants and animals. There was little quantitative 
theory and little qualitative speculation about the cause of the vast observed 
variability of forms and species. 

In the latter part of the 19th century, genetic studies concentrated on plant 
breeding (horticultural practices). Investigators were bemused by the subtleties 
and variations manifested in quantitative characters, but were curious about 
the frequency changes of continuous traits as transmitted over successive 
generations in human populations. Francis Galton (a cousin of Darwin) and 
Karl Pearson (a protégé of Galton, trained originally as an economist) devel­
oped the fundamentals of biometry, the precursor of modern statistical science, 
motivated mainly by problems of evolution and eugenics. In 1889 Galton 
proposed that human stature is inherited and calculated the parent-offspring 
correlation as .33. He also was the first to propose the use of twin studies for 
the purpose of assessing genetic and environmental correlations of polygenic 
traits. 

As a model of multifactorial inheritance Galton proposed 

(3.1) Xm+1-h%±%-+im + arH> 

where X'n and X'n' are the parental trait values in generation «, Xn+1 is the trait 
value of an offspring, £„ is an independent residual environmental contribution 
of mean 0, fin is the population mean of generation /t, h2 is the heritability 
coefficient (the regression of an offspring on the midparental value at an 
equilibrium state), and a serves as a constant scale adjusting the relative 
influence of the population to that of parental transmission. The analysis of 
(3.1) led to the principle of regression to the mean, according to which children 
resemble their parents but regress toward the population average—a concept 
apparently in contradiction to Mendelian principles. Pearson rejected Mende­
lism in a landmark publication (1904). But his work served decisively in 
connecting biometrical population genetics and Mendelian principles. 

Galton and Pearson formalized and quantified concepts such as "popula­
tion", "measures of variability", and "regression structures". They emphasized 
the fundamental existence of a variety of kinds of variability within and 
between populations, a concept difficult to comprehend in those days. The 
recognition of variability within populations led to the natural inquiry about 
the mechanisms causing this variability. 

1900-1920. The year 1900 witnessed the formal recognition and rediscovery 
of Mendel's work by three independent plant physiologists. Mendel's famous 
paper of 1865, often cited as a gem of statistical and theoretical modeling, 
presents a compelling mixture of experiment, observation, data analysis, de­
duction, and abstraction. Mendel's approach to the study of inheritance was to 
work with well-defined, clear-cut, discrete differences between members of a 
species rather than such continuous quantitative attributes as height and 
weight variations. 
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The next 10 years (1900-1910) witnessed the application of the deductive-in­
ductive mathematical statistical method to plant breeding and cytological data. 
The researchers of this time developed a renovated form of Mendelian princi­
ples and simultaneously elaborated a whole panoply of evolutionary genetic 
concepts. The concepts "expression of a gene", "genotype", "phenotype", 
"dominance", "equilibrium", "recombination", "linkage groups", "gene map­
ping", "mutation", "epistasis", "heterosis", "inbreeding", and "hybrid vigor" 
as causes and agencies of evolution were crystallized and clarified. For exam­
ple, the linear order of genes was inferred by a mixture of cytological and 
statistical analyses. 

1915-1955. Between 1915 and 1950 theoretical evolutionary genetics was 
dominated by the names of Sewell Wright (the Gibbs Lecturer of 1941), R. A. 
Fisher, and J. B. S. Haldane. 

Fisher trained as a mathematician (he was a Wrangler at Cambridge) and 
served in his early career partly as a statistical consultant for biologists. His 
first efforts in genetics produced a classic paper (1918) that embodied the 
seminal ideas of ANOVA (analysis of variance) and aspects of the design of 
experiments. 

The condition for selection balance at a single gene locus involving two 
alternative alleles, called the overdominance principle, was modeled by Fisher in 
1922. This important result provides under random mating the simplest 
mechanism for the existence of a stable polymorphism arising solely from the 
balance of differential viability effects. More precisely, for random mating 
where the hétérozygote (Aa genotype) has superior viabihty fitness to both 
homozygotes (the AA and aa genotypes) a stable polymorphism will result. 
This analytical finding has effectively been used to explain the gene frequency 
patterns of the sickle cell trait, the polymorphism of Thalassemia, and the gene 
frequency distribution of G6PD deficiency manifested in certain Mediter­
ranean populations. 

Modern statistical theory owes much to Fisher's efforts to design and 
analyze experiments to settle problems in genetics. He is the indisputable 
founder of the theory of experimentation. His efforts to understand evolution­
ary and genetic theory paralleled and nurtured his statistical exploits. Fisher's 
monograph on natural selection (1930) is still the point of departure for many 
developments in theoretical population genetics today. 

Haldane, a colorful personality whose undergraduate degree was in classics 
at Oxford, did important work in the sciences, history, and politics, and wrote 
popular science as well. He was competent in mathematics as well as in 
chemistry and genetics, and contributed significantly to enzyme kinetics, 
statistical practice, and population biology. In a famous series of papers 
entitled Mathematical contributions to the theory of natural selection that ap­
peared in the Proceedings of the Cambridge Philosophical Society in the 
1920's, Haldane set forth a variety of simple mathematical analyses concerned 
with the way natural selection might be supposed to act. He worked out the 
theoretical effects of different forms and intensities of selection and mutation 
on frequencies of autosomal (a gene not located on the X chromosome), 
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dominant, recessive, and sex-linked genes. His model of mutation selection 
balance is important today in the study of genetic diseases and medical genetic 
counseling. It gives an estimate of equilibrium values where recurrent muta­
tions of deleterious alleles are balanced by their elimination through selection. 
Through these models the first estimates of the mutation rate of a deleterious 
gene in a human population were given (Haldane (1927)). 

Wright (1923a), a zoologist by training, used equilibrium principles in 
comparing observation with expectation, rejecting a one-gene hypothesis for 
the inheritance of blue eye color in man and in a case of color inheritance in 
cattle. (Felix Bernstein, a noted mathematician, employed in 1925 similar ideas 
to reach a correct interpretation of the inheritance of the ABO blood typings.) 

Although measures of inbreeding depression were introduced earlier, it was 
Wright and Fisher who substantially extended the theory of systems of matings 
between relatives, such as those used by animal and plant breeders. 
Wright(1923b) devised a method of "path coefficients" to deduce the conse­
quences of Mendelian heredity under different systems of matings. He also 
introduced a "coefficient of inbreeding" extending the equilibrium formulation 
to include a mixture of random and regular inbreeding mating patterns. 

In a seminal paper (1931), Wright established that in small populations 
evolutionary theory should take account of the sampling effects involved in 
producing one generation from the previous. He called this effect "random 
drift". The significance of Wright's sampling force has recently become a focal 
point of a sharp controversy on the nature of the evolutionary process. 
Evolution can be considered to be a sequence of gene replacement processes, 
whereby in each such process one allele is replaced in a population by another 
allele. Classical Darwinian selectionist theory maintains that the replacing 
allele is superior to the replaced allele and that the mechanism directing the 
replacement procedure is natural selection. To the contrary, the essence of the 
neutralist theory is that a large proportion of the replacement process (espe­
cially on the biochemical level) takes place by virtue of chance phenomena 
acting on selectively equivalent alleles; that is, the new allele is no better than 
the old, but has arisen by mutation and increased in frequency because the 
individuals carrying this allele happened to leave more offspring than the 
remaining individuals. Thus, changes due to random genetic drift in a small 
population could be nonadaptive. The shifting balance theory of evolutionary 
chance (Wright (1968)) asserts that the makeup of local populations can move 
from one stable equilibrium configuration to another ("from one peak to 
another peak through valleys") just by sampling effects. 

While the theoretical constructs of population genetics were being elaborated 
in this period, experimentalists and naturalists were observing and studying 
many genetic traits in natural populations and under laboratory conditions. A 
review and synthesis of observations on Mendelian populations appeared in 
Dobzhansky (1951). Also relevant are the works of Mayr (1963), Simpson 
(1953), and Stebbins (1950), among others. 

1955-1980. The main directions of recent research in evolutionary theory 
are multilocus studies, studies of the variation of natural populations in space 
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and time, the study of stochastic genetic models, the study of mixed genetic 
and ecological systems, and studies on the population genetics of behavioral 
traits. 

Multilocus studies. The last 30 years have witnessed extensive theoretical 
studies of complex genetic systems integrating the interactive effects of several 
agents and relations among loci. For a review of two-locus cases, consult 
Hedrick et al. (1978); for studies of n-locus selection models, see Karlin 
(1979a) and Karlin and Avni (1981). 

The last decade has also witnessed a renewal of activity devoted to the 
elaboration of various dynamic models of polygenic and quantitative char­
acters. A strong motivation stems from interest in the heritability properties of 
behavioral, physiological, and medical measurements, e.g., coronary risk fac­
tors and cognitive traits such as IQ scores. The fact that selection, primarily for 
polygenic characters, acts on phenotypes, whereas segregation involves geno­
types, points up the necessity for dealing with an array including both 
genotypes and phenotypes. Recent theoretical and mathematical models of 
multifactorial transmission occur in many writings, among them Lande (1975), 
Karlin (1979b), Buhner (1980), and Turelli (1984). 

Variation in natural populations in space and time. Environmental and/or 
geographical variation in selection patterns and its coupling with gene flow are 
considered vital ingredients in speciation and differentiation. Recent literature 
has witnessed the formulation and analysis of models designed to understand 
in more precise terms the interaction between spatial and temporal selection 
variation and population structure. For reviews, references, and extensive 
modeling results, see Felsenstein (1976), Hedrick et al. (1976), Endier (1977), 
Nagylaki (1978), and Karlin (1982b). 

The study of stochastic genetic models. Many advances in the theoretical 
description of random genetic drift have been secured with the help of results 
and techniques of diffusion stochastic processes. 

First, Wright (1931) and Malécot (1948), and later Kimura (1957, 1964, 
1983) and many others extensively applied diffusion analysis to the study of 
stochastic genetic models; for examples see Ewens (1979) and Karlin and 
Taylor (1981, Chapter 15). The problems considered include the analysis of 
random sampling effects due to small population size, the balance in small 
populations of recurrent mutation and random genetic drift, calculations of the 
number of mutants maintained in a population, the time to detection of a 
mutant deleterious gene, conditioned diffusion processes and fluctuating selec­
tion intensities over successive generations due to random and/or systematic 
environmental changes. Feller (1951) was intrigued by the fact that the 
diffusions arising in genetics exhibit singularities at the boundaries. 

The neutralist selection controversy (see §4) has stimulated the study of 
many natural stochastic models including the infinite alleles model (Kimura 
and Crow (1964)), the Ewens sampling formula (1972) and its intimate 
connections with Poisson-Dirichlet processes (for an elegant treatment contain­
ing several perspectives, see Kingman (1980)), the concept of the age of a 
stochastic process and its ramifications (e.g., Kimura and Ohta (1973), Pakes 
and Tavare (1981)), charge state models (Ohta and Kimura (1973)), infinite 
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sites models (Watterson (1975)), wandering profile models (Moran (1975, 
1976), Kingman (1976)), and genealogical stochastic structures (Kingman 
(1982a, b), Tavaré (1984), Watterson (1984)). 

Mixed genetic and ecological systems. Three individuals pioneered the 
subject of ecological theory in the early 1920's: A. J. Lotka, V. Volterra, and 
V. A. Kostitzin. In 1925 Lotka described the interaction between two species 
by a differential equations system involving quadratic terms, showing that 
prédation and parasitism could be explained by periodic changes in the species 
numbers. He also considered more complex "food web models". 

Volterra was an accomplished mathematician who contributed significantly 
to the theory of integral equations before he engaged the study of some 
biological systems. He was attracted to mathematical ecology by the proddings 
of his son-in-law, a zoologist, who was anxious to explain curious variations in 
fish catches in the Adriatic. Volterra's competition models, similar to Lotka's, 
provided causal correlates for his son-in-law's observations. 

Kostitzin, of Russian birth, worked mostly in France. His interest in 
mathematics and ecology was kindled in 1930 when he heard Volterra's 
lectures on The mathematical theory of the struggle f or life, published in 1931. 
Kostitzin's textbook (1937) extends Volterra's treatment of competition and 
prédation by including models of symbiosis and parasitism, taking account 
also of some genetic factors. The work of Lotka, Volterra, and Kostitzin went 
unrecognized for a decade and was not revived as a subject for study until the 
1950's. In the late 1950's McArthur introduced the concept of resource 
utilization and production functions, which provided a class of competition 
coefficients accessible to measurement and interpretation. 

The interaction of ecological and genetic systems has become a major focus 
of recent evolutionary studies, e.g., Roughgarden (1979), Matessi and Jayakar 
(1976a), and Ginsberg (1983). 

Studies in the population genetics of behavioral traits. Attempts have been 
made to quantify the evolution of behavioral traits in the areas of group 
selection, kin selection, and the evolution of altruism. Theoretical and qualita­
tive modeling along these Unes have been done by Wynne-Edwards (1962) and 
Hamilton (1964), and mathematical formulations have been proposed by Eshel 
(1972), Boorman and Levitt (1973,1980), Matessi and Jayakar (1976b), Michod 
(1982), and Karlin and Matessi (1983). Observation, speculation, and theoriz­
ing about behavioral patterns, organizational structure, and the like by etholo-
gists and naturalists such as Tinbergen, Lorenz, E. O. Wilson, and G. C. 
WiUiams have been of great help in understanding the structure of certain 
animal and insect societies. In this Uterature the genetic basis of population 
control, mimicry, signaling and alarm caUs in prey-predator situations, com­
munication systems, and hierarchical status in groups are discussed in terms of 
strategy analysis, and the role of kin selection is underscored. The recent 
synthesis on sociobiology by E. O. Wüson (1975) has stimulated a torrid 
controversy on the reüabiüty and appücabiüty of this new framework. 

In completing this brief account of the principal developments to date in 
theoretical population genetics, we may speculate about the impUcations for 
evolutionary theory of the remarkable recent successes in molecular biology. In 
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1944 the hereditary material DNA was identified; next came the double helix 
model of the DNA replicating machinery, and 15 years later the universal code 
delineating the correspondence of nucleotide triplets to amino acid protein 
residues was firmly established. Thereafter the nature of mutation events in 
terms of DNA changes could be ascertained in concrete terms. Some of the 
enzymes involved in recombination have been isolated and purified, and a 
variety of structures of proteins and enzymes and forms of gene expression, 
particularly in bacterial organisms, have been dissected. 

Molecular biology and biochemistry deal mostly with maintenance proper­
ties of cells as exemplified by development, differentiation, regulation, and 
metabolic processes. The variety and abundance of the mechanisms, and their 
redundancies and complexities, are of a much higher order of magnitude than 
had been expected. There appear to be a host of mechanisms that can adapt to 
the same task (perhaps not always having the same efficiency), exhibiting 
malleability and flexibility in response to all kinds of genomic or external 
environmental changes. With all the advances in molecular biology, the major 
problems of population genetics and evolution remain intact. How do genes 
contribute to fitness and interrelate in function and in response to ecological 
conditions? How do we relate genotype and phenotype? With respect to 
genetic architecture and quantitative inheritance, what are the numbers of 
genes involved, where are they, and what are their relative effects? These and 
many other problems still remain. Molecular biology has pointed to new areas 
of inquiry and provided vast new resources for acquiring data with which to 
study the degrees and forms of genetic variability, to construct phylogenic 
relationships between populations, and to assess the nature of selection effects. 

Geneticists at the close of the last century were concerned mostly with 
continuously distributed traits. With the rediscovery of Mendel they took up 
the study of discrete traits induced by one or a few genes, and beginning in the 
1950's they increasingly turned to the study of multigene interactions. In effect, 
then, population genetic theory has come full circle, engaging with new vigor 
the study of the transmissibility characteristics innate to continuous pheno-
typic variation over space and time. 

4. An overview of problems and controversies in quantitative evolutionary 
theory. Two opposite tendencies operate on natural populations: natural 
selection, or the propensity to adapt to a given environment; and polymor­
phism, or the propensity to produce variation to cope with changing environ­
ments. Muller (1929) sees natural selection as a sieve that selects and retains 
the most fit type in a given environment. Dobzhansky (1951), by contrast, 
emphasizes the multifarious ways in which natural selection interacts with the 
challenges of the environment. Mutation and recombination events provide the 
system with the randomness that is needed to preserve a population in new 
environments where only recombinant or mutant types can survive. 

All we know about evolution suggests that the evolutionary process has 
opted prudently for a balance between determinism and polymorphism... or, 
in more old-fashioned terms, conservatism and change, heredity and mutation, 
stability and novelty, security and incentive. 
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Let us now consider whether the forces and agents discussed in the previous 
sections contribute to fostering increased variability or diminished variability 
in the content of the gene pool. 

Agents promoting increased variability, (a) selection favoring hétérozygotes; 
(b) mutation selection in opposition; (c) migration selection balance and 
population subdivision; (d) general multilocus selection balance (polymor­
phism resulting from interactions among genes and from recombination); 
(e) frequency-dependent selection (for example, favoring the rare type); (f) 
some forms of sexual selection (preferential matings); (g) incompatibility or 
self-sterility mechanisms; (h) varying environmental conditions including 
fluctuating selection intensities; (i) group selection in subdivided populations; 
(j) cultural transmission. 

Agents promoting diminished variability, (a) gametic haploid selection; (b) 
directed natural selection favoring a single type; (c) disruptive selection favor­
ing extreme types in a population; (d) self-fertilization and parthenogenesis; 
(e) positive assortative mating; (f) regular inbreeding systems including sibmat-
ing, parent-offspring mating, imprinting, and consanguineous mating; (g) small 
population size; (h) constant and/or stable environments. 

Table 1 presents an annotated list of current issues and controversies of 
evolutionary theory to which mathematical models have been applied. 

New molecular techniques have disclosed a great deal of hitherto unsus­
pected genetic variation on the biochemical level. Through electrophoresis, it is 
possible to detect single amino acid substitutions in proteins discriminated on 
the basis of electric charge or size. Still other genetic variations have been 
revealed by immunogenetic techniques for identifying antigen antibody associ­
ations. 

Recent advances in DNA sequencing methodology, which have led to the 
identification of more than 80 restriction enzymes that cleave DNA at specific 
recognition sites, have uncovered an abundance of restriction-fragment-length 
polymorphisms (i.e., polymorphisms with respect to DNA segments cut out by 
these restriction endonucleases). This adds a new dimension of variability, such 
that one such polymorphism is predicted to occur on average every 500 
nucleotides. 

There is another component of variability whose measurement should be 
feasible in the near future: contrasts in the actual DNA composition of 
proteins (places and numbers of changes) between species and between indi­
viduals in a population. 

The selectionist-neutralist controversy. With the explosion of data reporting 
polymorphism on the biochemical level, the long-standing problem of the 
relative importance of nonrandom and random processes in the genetic struc­
ture of populations has been revived in the form of the selectionist-neutralist 
controversy. 

The neutralists assert that most of the molecular variation in natural 
populations is selectively neutral, i.e., that the various gene products of 
alternative variant polypeptide forms (allozymes) are equally suited to the 
requirements of normal development, survival, and reproduction. Accordingly, 
there is a continuous flux of mutation occurrences kept in small populations at 
low frequencies by virtue of sampling fluctuations. 
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The neutralists do not deny the existence of cases of balancing selection 
forces, but they contend that most molecular variation has little to do with 
adaptive evolution. They recognize the evolution of one-locus polymorphic 
traits depending on disease susceptibilities (e.g., malaria promulgated by insect 
vectors), by factors of crypticness or mimicry to avoid predators, and by other 
environmental considerations. These traits include the sickle cell trait, Thalla-
semia, color forms in butterflies, banding in snails, and melanism. 

TABLE 1. Controversies and Problems of Evolutionary Theory 

1. Selectionist hypothesis vs. neutralist hypothesis 
of molecular evolution: more generally, the role of chance vis-à-vis 
determinism in evolutionary processes. 

2. The nature of evolutionary change: sudden vs. gradual; 
punctualism vs. stasis in speciation events, trends, species selection, 
adaptive vs. accidental speciation. 

3. Quantitative inheritance: major-gene effects compared 
to many-small-genes (polygenic) effects. 

4. Genetics vs. environment: nature-nurture controversy, 
biological versus cultural inheritance and interactions. 

5. The evolution of behavioral traits and altruism: 
group-kin selection vs. individual selection. 

6. Heterogeneous environment "entails more or less 
variability". What is the nature of genotypic frequency distribution 
in a varying environment (e.g., spatial vs. temporal)? 

7. Do sex and recombination accelerate or slow 
evolution? How can an even sex ratio be maintained? 

8. How much genetic change accompanies speciation? 
Rates of change within and between species. 

9. Problems of classification: systematists (phenetics) 
vs. cladists (genealogical). 

10. The puzzle of immunosystems. How do you account 
for antibody diversity? 

11. Is every mutation and allelic substitution new? 
Genomic changes, types and frequency of mutation, turnover processes. 

12. Phenotypes (expression) vs. genotypes (informational); 
homeostasis and canalization (large number of genotypes produce 
small number of phenotypes?). Linkage relationships and association 
on blocks of genes, developmental constraints, ontogenetic rules (the 
paradox of discrete classes of genotypes as against continuous 
variation in phenotypes). Can macroevolution be done on the pheno-
type level? 
Do we need to know genotypes? 

13. Are there optimization principles underlying 
evolutionary change? Is there direction to evolution, or are there 
many solutions? Are gene redundancies selected for? 
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By contrast, the selectionists believe that with concomitant advances in 
molecular biology, the selective differences among allozymes will be uncovered. 
Preliminary distinctions have already been made between the abilities of 
variant enzyme forms to exploit variable vs. specific substrates. Some argue 
that "hétérozygotes" produce enzyme forms that are better able to function 
over a wider range of temperatures, pH levels, cell conditions, etc. In the 
context of blocks of such genes, it is sometimes argued that polymorphism 
makes it possible for more than one gene (or allele) to be switched on at the 
same time or different times. In this perspective, regulation and development 
benefit from polymorphism. Suggestions on the pertinence of patterns of 
biochemical frequency-dependent selection are also put forth, e.g., by Clarke 
(1979). 

Parallel to this vast unresolved allozyme variability, molecular biologists 
have discovered extensive repetitive (satellite) DNA segments whose purposes 
are not understood. Some claim that this satellite DNA has little, if any, 
function, others that its causality relationships constitute a challenging prob­
lem. It may be, for example, that these segments provide extra insurance for an 
essential regulatory, biosynthetic activity such that if a defect in one segment 
occurs, one of the duplicate sequences takes over and accomplishes the desired 
task. Alternatively, or in addition, they may provide material and opportunity 
for evolving new genetic ways of coping with new environmental conditions 
while maintaining the old systems still programmed. In this respect, repetitive 
DNA can be seen as performing like sex or recombination: i.e., it allows for 
easy access to sufficient DNA material that may be useful for responding to a 
changed environment. Evolution is an open dynamic system that maintains a 
balance between the needs of the present and the unknowns of the future. Such 
processes as recombination, diploidy, polyploidy, repetitive DNA and DNA 
transposition interact with and supplement the previously established machin­
ery that is geared for the current environment. 

5. Background for theoretical studies of sex ratio evolution. Sex ratio evolu­
tion is under intensive study from many perspectives (for recent books, see 
Charnov (1982), Bell (1982), Maynard Smith (1978), G. C. Williams (1975)). 
The study of nonlinear dynamic systems in population genetics—e.g., Karlin 
(1978), Lessard (1984), Karlin and Lessard (1983,1984)—has made important 
progress toward describing the stable-equilibrium and dynamic properties of 
the general sex-differentiated viability model. A complete analysis is now 
possible for a broad class of sex ratio determination models. The "optimal" 
properties of an even (1:1) sex ratio have been established for a wide variety 
of models, extending previous works on the subject; these results will be 
elaborated in §7. In §6 we present previous and new pertinent mathematical 
analyses on the evolution of a panmictic (randomly mating) population subject 
to viability selection. §8 discusses some sex-determination models governed by 
a continuous phenotypic variable. 

The variety of sex-determining systems and controls is manifold. In broad 
terms these are distinguished by genotypic and environmental determinants 
subject to zygotic, parental, or population controls. Even complete genetic 
controls of sex expression can be manipulated by hormonal and physiological 
covariates. We provide Table 2 for added perspective. 
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TABLE 2. Major Modes of Sex-Determining Systems and Controls 

Form of sex determination 

I. Single gene 
(multiple alleles) 
and chromosomal 
determinants 

II. Multifactorial 
(many genes) 

III. Mixed parthenogenic and 
bisexual reproduction 
(haplodiploid) 

IV. Hermaphroditism 
(simultaneous, 
sequential) 

V. Environmental responses 

VI. Extrachromosomal and 
cytoplasmic determination 

VII. Incompatibility systems 

. _ .._ — —.. .. _ ... — 

Examples 

Chromosomal (two-allele) heterogamety vs. 
homogamety: 
(a) XY -» S (male), XX -» ? (female) (most mammals) 
(b) ZZ -* $ , ZW -* ? (birds, butterflies) 
balance systems: 
(c) XO -* $ , XX - ? (fruit flies) 
Single-gene, multiallele determinations: 
A, Ay -> mtj = probability of being male based on 
genotype of offspring or mother, wasp-Habrobracon 
(9 alleles); Platyfish (3-4 alleles) 

In some fish (Poecelid) and plant populations 
(e.g., melons and cucumbers) 

In most cases unfertilized eggs (haploids) develop 
into males and fertilized eggs can be male or female. 
Examples: ants, bees, wasps, mites. 

Most plants produce both male and female sex gametes, 
ova and pollen. Snails, earthworms, and tapeworms 
are male and female at the same time. Certain 
shrimp, and mollusks reproduce as male early in 
life and later reverse to female. Other 
fish do the opposite. 

Some reptiles (crocodiles, turtles) have 
sex expression depending on temperature at incu­
bation; the sex of nematodes and copepods can be a 
function of density of population. For parasi­
tic wasps, the sex of offspring can relate to 
size and health of the host. 

E.g., affected by viral particles, contagion, 
meiotic drive 

In some plant systems self-incompatible classes 
(multisex types) 

There are two principal approaches to the study of sex ratio evolution 
centering on (1) optimization and adaptive criteria, (2) sex-determining systems 
and controls. 

The high incidence of equal male to female numbers at birth in mammal 
populations is striking compared to the frequent deviations from a 1:1 sex 
ratio in invertebrate species. G. C. Wilhams (1979) surveys several data sets of 
the literature reporting on Utter sex ratio in mammals including deer, mouse, 
rabbit, mink, marmosets, humans, and a number of bird populations; see also 
Charnov (1982, Chapter 7). The evidence strongly supports a 1:1 Utter sex 
ratio. Although Wilhams argues that this ratio is to be expected on the basis of 
straight MendeUan segregation, he offers no satisfactory account of how it 
evolved and what selective advantages it offers. 

A mixed quahtative-quantitative argument predicting a 1:1 sex ratio is as 
follows. Consider the foUowing three generations: I, grandparents; II, parents 
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consisting of nx males and n2 females who produce an aggregate of N offspring 
in generation III. Then the average number of children is N/nx for a male of 
generation II, and N/n2 for a female of generation II. Consider a typical 
grandparent of generation I who contributes a total of m offspring comprised 
of x males and m — x females. The expected number of descendants for this 
grandparent in generation III is 

T = x \-(m - x)— = H \Nx. 

Now T is an increasing function of x when n2> nv and decreasing when 
n2 < nv Therefore the expected number of descendants of a grandparent of 
generation III increases if he (or she) produces more offspring of the presently 
rarer sex. Thus, when each grandparent imparts the same amount of genetic 
material (information) to its progeny the expected sex ratio should be 1:1. 
When males "cost" <j> compared to 1 for females (akin to a viability differential 
factor for males versus females), the adjustment of even-sex ratio is r* = 
<J>/(1 + </>), where r* is the value at which parental expenditure is equalized 
between the sexes for disparate costs in rearing (or producing) males and 
females. 

The following model of Shaw and Mohler (1953) illustrates a kind of 
heuristic structural stability analysis in the context of sex ratio evolution (cf. 
Charnov (1982, Chapter 1)). Consider a dioecious population with N + 1 
females each producing C offspring of which a proportion r are male. Each 
offspring in turn produces a total of K children (the grandchildren of the 
original females). Suppose there is a single deviant female F with progeny sex 
ratio f. The expected number of genes passed by F through grandsons is 

2 Cr + NCr 
(the 1/2 factor occurs because she only contributes half the genes, her mate the 
other half), and through granddaughters 

iJ c(i-0 
2*\C(l-r) + NC(l-r) 

If N is large, the total fitness of F assessed as the cumulative number of her 
genes transferred to the third generation is approximately 

compared to \{K/N) for a typical female. 
Elementary analysis of (5.1) shows that for r ¥= 1/2 there exists f (closer to 

1/2) which gives a greater contribution of genes to the subsequent generation 
compared to the genetic output of r. But for r = 1/2 n o f # 1/2 can secure a 
larger (reproductive) fitness. This attribute of r = 1/2 is called ESS (evolution­
ary stable strategy); compare this to Theorem 7.5 below. 

In the next three sections we set forth a more thorough study of mathemati­
cal models of balances in differential viability effects and sex ratio evolution in 
randomly mating populations. 
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6. Bisexual multiallele viability selection systems. Our objective in §§6 and 7 
is to formulate and analyze a general class of mathematical models pertainng 
to sex ratio evolution. The associated dynamical system is inherently related to 
the study of bisexual multiallelic viability selection. 

Consider a diploid sex-differentiated population characterized by r alleles 
Al9...,Ar at an autosomal locus with associated genotypes A,-A.. Under the 
effects of differential viability selection, random mating, and Mendelian segre­
gation, the parameters of the model are as follows. The viability fitness matrix 
for females is F = ||/)7||[ and for males M = ||m,7||[, respectively, where the 
quantity fu (m/y) is interpreted as the relative number of A,-Ay female (male) 
zygotes that survive to contribute to the next generation. The frequency of 
genotype A,. Ay. in the female population is denoted by 2pu when i ^ j9 and pH 

for / =y. Accordingly, the frequency of allele A, in this population is pt = 
£y-i ƒ>/ƒ. The corresponding frequencies for the male population are denoted 
by 2qij9 qii9 and qt. 

Under viability selection the results from random mating are equivalent to 
random union of gametes (e.g., see Karlin (1978, §1)) and therefore the 
collection of all A7Ay zygotes is ptqj + qtpj. Taking account of differential 
viability selection and Mendelian segregation for a 1:1 sex ratio, the genotypic 
frequencies over two successive generations obey the recursion relations 

,*u . _ mu(Pi<lj + <IiPj) , fij(Pi9j + 9iPj) 
V6-1) aa - ^ > Pu = 

where 
2w ' rtJ 2v 

w = w(p,q) = Y*™ijPAj a n d v = !LfijPi<lj-
ij ij 

The allele frequencies p- and q\ of the next generation are calculated from 
the transformation equations 

iWS^Ml^&iMll, / = 1,2, 

(«M « . i l aS^a i^aa l . ( . u 
Uj-\mi}Pi<lj 

It will be convenient to employ vector notation. To this end the Schur 
product of the vectors a = (al9... 9ar) and b = (bv... 9br) is a°b = 
(axbl9 a2b29...,arbr). The EucHdean inner product of two vectors is denoted 
b y ( a , b > = E U ^ A . 

In the foregoing notation the recursion relations (6.2) take the form 

, , ^ , l p o F q + q o / p l qoAfp + p°Mq 
(6-3) P = 2 <p,Fq> • q = 2 <p,Mq> • 

The designation p o f stands for the matrix product DpF where Z>p is the 
diagonal matrix having the components of p down the main diagonal. Rela­
tions (6.3) present a nonlinear transformation T of 2r variables ((2r - 2) 
independent ones, since LJ=1 pt = EJ_! qt = 1). 
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In the case M = F (such that selection operates on the male and female 
zygotes in the same manner), then p' = q', and in all subsequent generations 
the transformation T can be reduced to the single set 

<«> * - & - * 

where the sexes need not be distinguished. Let the simplex of frequency vectors 
P = (Pi> Pi*• • • >Pr)>Pi > 0» ^Pi = 1 be denoted by A, its interior by A0. 

The symmetric multiallele viability model. The analysis of the transformation 
(6.4), its convergence and equiUbrium properties, has received much attention 
(e.g., Kingman (1961a, b), Crow and Kimura (1970), Ewens (1979), Karlin 
(1978, and references therein)). We review several facts concerning (6.4) needed 
for our later discussion of (6.2). 

The mean fitness function 

r 

(6.5) >v(p)= £ mijPipj = (Mp9p) 
U-i 

provides a strict Lyapounov function for the mapping (6.4) such that 

(6.6) H^Sp) > w(p) with equality if and only if p' = Sp = p. 

This remarkable property is sometimes referred to as the discrete form of the 
fundamental theorem of natural selection (Crow and Kimura (1970, Chapter 5), 
Ewens (1979, Chapter 2)). 

Inequality (6.6) reduces to 

(6.7) LnijPiPjWiWj > M P ) ] 3 

where wt = £^=1 mupj9 i = 1,2,... ,r. 
An elegant proof of (6.7) appears in Kingman (1961a); see (6.10) below. A 

wider perspective derives inequality (6.7) as a special case of the generalized 
moment inequality 

, . / < C x , x ) \ * (C*x,x) 

whereC = ||cl7||[ is a symmetric matrix of positive elements, x = (xv x 2 , . . . ,x r) 
a positive vector and k a positive integer. 

Equality holds in (6.8) if and only if x e A is a principal eigenvector 
Cx = p(C)x for p(C) equal to the spectral radius of C. (The result of (6.8) is 
proved by induction with respect to the dimension r.) The subtlety of (6.8) (for 
k odd) resides in the fact that C, although symmetric with positive elements, is 
not necessarily positive definite. 

We show how to deduce (6.7) from (6.8) with k = 3. Indeed for any 
frequency vector p e A let C = D^MD*, where Dy is the diagonal matrix 
with the components y = (yv...,yr) down the diagonal (we use the notation 
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\/p = {{P\y{Pi^"^{Pr))' The left-hand side of (6.7) is (since ( \ /p, \ /p) = 
£/>/ - 1) 

(6.9) (M(poMp),poMp> = ( C V P , I / P ) « ( c V p , i / p ) / ( i / p , i / p ) 

> ( ( C v ^ , v ^ » 3 = (Mp,p>3, 

the last inequality resulting because of (6.8). Equality holds if and only if 
^VP = PCOV^P» which is equivalent to JpMp = Jpw(p) or /̂p °(Mp -
uw(p)) = 0 (u = (1,...,1) is the vector of all unit components). The latter 
equality means that p is an equilibrium point of the transformation 5 of (6.4). 

For other purposes we record Kingman's (1961a) proof of (6.7): 

(6.10) 

T,»*ijPiWiPjWj= H^ij^ikPiPjPk^j= E WijWikPiPjPki J 9 j 
I,J ij,k i,j,k 

> E mijMikPiPjPkilwjfik =l.Pi\LmijPj^j) > VLPi^tjPj^Wj] 
i,j,k i W ' \ ij ' 

V j ' V j ' 

the last inequality coming by Holder's inequality. 
For 0 < mtj < 1, we can improve on the inequality of (6.7). First, we show 

(6.11) 0 < EmtjPiPjWtWj 
'J 

-w3 < 2 ZP 
. i 

1 2 
•Wf — WZ\ 

for w = w(p). 
Indeed, we start with the identity 

(6.12) I ( 1 - mtj)plPj(\ - w,)(l - wj) - ( 1 - wf 

= 2 E/W2 ~ w2 

. i 
- E^o 

By virtue of (6.7), the left side is nonnegative and then (6.11) follows. 
Instead of the last step in (6.10), by using Jensen's inequality for a random 

variable X = wy with probability/?y, and so E[X] = TwjPj = w (E for expecta­
tion), we have 

where 

E[f(X)] >f[E(X)} + (B/2)c2(X) torf(S) = ?", 

a2(X) = VaiX = J>,w,2 - w2 = £>,(vt>, - wf = o2 

and B = 3/4 is a lower bound of /"(I) on 0 < £ < 1. It follows when all 
Wj < 1 that (Lyubich et al. (1980)) 

Y,mijPiPjWiWj > ( £ | > y w / / 2 ) 2 > ( w 3 / 2 + s^ 2 ) 2 > w 3 + 402w2-
'../ 
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Employing this inequality on the left in (6.12) with some further manipula­
tions, we get 

3 , , 3 
4' (6.13) 4 » v V = -w X>,(w, - wf 

'J 

•(1 - Wf £/>,(»n - *>f 2-\{l-wf 

(In Appendix A to this section we develop a number of information theoretic 
inequalities connected with the transformation (6.4) akin to (6.7).) 

To avoid unessential technical details we assume, henceforth, unless stated 
otherwise, that M satisfies the following genericy conditions. 

DEFINITION 6.1. The matrix M is said to be generic if: 
(a) 0 < ntjj < 1 for all i andj; 
(b) every principal submatrix of M is nonsingular; 
(c)for any submatrix of indices ix< i2 < • • • < ik the solution { yv} of 

k 

v = \ 

has 

E ^ / 0 , / ^ ^ l for a l l / o ^ ^ . 

These requirements guarantee that every equilibrium state of Sp = p, p e A 
is an isolated fixed point whose stability can be decided by a local linear 
approximation. Unless explicitly stated otherwise we assume Definition 6.1 in 
force. 

A polymorphic equilibrium p* (i.e., an internal equilibrium) of system (6.4) 
exists if the linear system of equations 

(6.14) £ mjjtj = 1, / = l ,2 , . . . , r , 

admits a positive solution and then pf = Ij/Ey.ily. This polymorphic equi­
librium is locally stable if any of the following conditions holds (Kingman 
(1961b)): 

(i) The eigenvalues of M satisfy 

(6.15) XX(M) > 0 > A2(M) > • • • > Xr(M). 

(ii) Relations (i) also obtain if the successive principal determinants Dk = 
det \\mtj\\ï strictly alternate in sign. 

An important fact in one-locus multiallele selection theory is that a locally 
stable polymorphic equilibrium is globally stable relative to all states p e A0. 

With any number of alleles s < r, an equilibrium vector P = (Pi,...9ps) 
solves the system of equations 

(6.16) wj = (MP)j - t m.jpj = w(fi) = (p, MP), / e /(£), 
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the equations applying for those indices l(P) where ̂  > 0. The equilibrium p is 
internally stable provided the reduced matrix M of M restricted to the rows and 
columns of l(P) satisfies (6.15). 

External stability of a boundary equilibrium prevails if any new allele, 
introduced in small frequency, is ultimately eliminated under iteration of the 
transformation S of (6.4). This is equivalent to the condition 

(6.17) w(p) > (MP)k applies for all k wherepk = 0, i.e., for k £ l(P). 

The attributes (6.15), p e a 0 and (6.14) can apply together yielding a 
globally stable polymorphism or (6.14) without (6.15) presenting an unstable 
polymorphism or (6.15) without (6.14). In the latter event we have proved that 
a unique stable equilibrium (possibly on the boundary of A) exists. 

The fact that w(p) is a strict Lyapounov function for the transformation (6.4) 
leads to the standard result. 

PROPOSITION 6.1. The iterates Snp converge for every p e A. Let p be an 
equilibrium (Sp = P). Ifw(p) is a strict local maximum ofw(p) (relative to A), 
then p is a locally stable equilibrium for the transformation S of (6.4). 

Actually global convergence can be proved without the need of the genericy 
Definition 6.1 (Lyubich et al. (1980)). 

PROPOSITION 6.2 (KINGMAN (1961b)). An interior fixed point p* is locally 
stable if and only if 

(6.18a) (M£, 4) < 0 for alli^O satisfying (£, u) = 0, 

i.e., M is negative definite on the linear manifold orthogonal tou:J?u= { £|(£, u) 
= 0}. Moreover, p* is locally stable if and only if p* is globally stable in that 
Snp -» p* for every p e A°, and 

(6.18b) w(p*) is a strict maximum ofw(p) with respect to all p e A. 

Consider the gradient map S'(P) (i.e., the local linear approximation to S at 
p). We find for p interior to A, 

(6.19) S'<p)« = i ^ E + £ ! ^ - ! < ^ E 4 p o MP. 
V } W * W(p) W(p) [w(p)]2 F 

When p* is an interior fixed point of S then (6.19) reduces to 

(6.20) S'(p*)£ = (+(p*»M()/w(p*) = ( / + M*)i 

with £ restricted to satisfy (£,u) = 0 , u = (1,1, . . . , 1). The eigenvalues of 
S'(p*) are 1 + yf., i = l ,2 , . . . ,r , where y, are the eigenvalues of the matrix 
M* = p* o Af/w(p*). Moreover, yx > |y, |, i = 2, . . . ,r, owing to the Frobenius 
theorem on positive matrices. Since uAf* = u, it follows that yx — 1. Global 
stability (with respect to A0) is guaranteed if |1 + yt\ < 1 or y, < 0 for i > 2. 

Appendix B describes some ancillary consequences of the internal stability 
conditions (6.18a) of independent interest. 

We next describe a new characterization for equilibrium states and stability 
for the dynamical system (6.4) that will play an important role in our analysis 
of the dynamical equations underlying sex ratio evolution expounded in §7. 
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For each p in A0 we form the matrix 

(6.21) B(p) = DpM + DMp (Dp is the diagonal matrix with the 

components of p down the main diagonal). 

If the matrix M (and therefore 2?(p)) is positive, we know by the Perron-
Frobenius theory that the eigenvalue of largest magnitude for B(p) is positive, 
admitting a unique (apart from a scale factor) strictly positive right eigenvector 
y > 0. We denote by p(p) the spectral radius of the matrix B(p) and take the 
associated positive eigenvector y satisfying E,r=1 yt = (y, u) = 1. Then y = y(p) 
and p(p) vary continuously (actually analytically) as a function of p in A0. The 
principal eigenvalue-eigenvector identity is 

(6.22) 5(p)y(p) = p(p)y(p). 

The spectral function p(p) can be extended by continuity to the boundary of 
A. 

THEOREM 6.1 (KARLIN AND LESSARD (1983)). Let M be a positive symmetric 
matrix and generic in the sense of Definition 6.1. Let p(p) be the spectral radius 
of the matrix B(p)for p e A0. 

(i) p* is a polymorphic equilibrium of (6.4) if and only if p* is a critical point of 
the function p(p), meaning that the derivative of p(p) in every direction at p* 
relative to the simplex A0 is zero. 

(ii) p* is a stable polymorphic equilibrium if and only if p(p) achieves a strict 
local maximum with respect to A at p*. 

For a boundary equilibrium frequency vector, the corresponding result is 

THEOREM 6.2 (KARLIN AND LESSARD (1983)). Let M be generic (in the sense 
of Definition 6.1). 

(i) A boundary equilibrium $ of Sp = p is stable if and only if p(p) is a strict 
local maximum ofp(p) with respect to pin A. 

(ii) The local maxima ofp(p) and the mean fitness function w>(p) = E/y- m^p^. 
are achieved at the same points which are the stable equilibria of the transforma­
tion (6.4). An interior local maximum is actually a global maximum. 

The proof of Theorem 6.1 is given in Appendix C to this section. 
The two-sex viability model. For the general sex-differentiated model (6.3) 

(allowing M # F) there can exist multiple interior equilibria in A ® A and, 
therefore, any associated Lyapounov function cannot be a multivariate 
quadratic polynomial or a ratio of quadratic forms. Numerical studies per­
sistently exhibit global convergence of the iterates of (6.3). Nevertheless, the 
ascertainment of a Lyapounov function for the general sex-differentiated 
viability model remains an open problem. 

The case of 
(6.23) F=aU+bM 

(where U is the r X r matrix of all unit entries, a, b are constants) in (6.3) is of 
special interest since any equilibrium p* of (6.4) engenders an equilibrium pair 
for equations (6.3), 

(6.24) {q,Ê} = {p*,P*}, 
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referred to henceforth as a symmetric (in the sexes) equilibrium. There may also 
exist (and often do) nonsymmetric equilibrium combinations (q, p} with q # p. 

Let {PA} be a polymorphic fixed point of (6.3), so that p^j > 0 for all /, j . 
The gradient matrix at {£, 4} can be standardly determined to obtain, for the 
corresponding gradient matrix mapping, 

(6.25) , , _ r , KS,*3) , r P(%Fp) 
* - CF**- ~(PTW + CF»*- ~WW' 
w-c i *<*'**> • r „ Üt>Mti 

where 

(6.26) C ^ ~ 2 (p,F%) ' 

with the matrix transformations CF^ CM^, CM$ determined analogously. We 
can write the linear approximation of Tin (6.3) near {p9 q} as 

(î)-(a m 
where Pt and Qt are appropriate r X r matrices depending on (p, Q} and the 
viability matrices F and M (e.g., Pxi = CF ̂  - (£, ^ ) f l / \ k *?))• The 
equihbrium {fl, Q} is locally stable if the magnitudes of the eigenvalues for the 
transformation (6.27) on the invariant subspace^= {£, t\: ( t ,u) = (TI,U) = 
0} are less than unity. It is useful to record some facts concerning (6.27) in the 
special case Px — P2 and Qx = g 2

 s u c^ ^ a t ^ gradient matrix transformation 
has the form 

(Ï)-(S SXiMi)-
The following lemma is known and elementary. 

LEMMA 6.1. Consider a matrix mapping of the form (6.28), with £ and r\ in Er. 
The eigenvalues of T are those of R = P + Q plus the eigenvalue 0 which occurs 
with additional multiplicity r. 

EXAMPLE I. Consider viability matrices satisfying the relation M = aU + bF, 
a, b > 0, with general F, where U = ||wiy||i, utj = 1, for all ij. 

If there exists p* such that Fp* = yu, p* a positive vector and y > 0, then 
{p*,p*} is a polymorphic equihbrium for the bisexual transformation associ­
ated with F and M = aU + bF, and the gradient matrix r'{p*,p*} has the 
form (6.28) with 

1 1 p*<>n • nr_ l f , lp*oM£ 
^ T* + ^ — 7 - T T and g£ = TT£ + - —-r-r-. 

2 2 >vF(p*) 2 2 wM(p*) 
Further, ^ ( p * ) = a + MvF(p*). 
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(we use the notation x/y = {xx/yx, x1/y1,... ,xr/yr)) and note that 

M(p)p = p. 

Since for p e A0, M(p) is a positive matrix, we can conclude that 1 is the 
spectral radius of M(p). Because M(p) is symmetrizable (differs from a 
symmetric matrix by a multiplicative positive diagonal matrix) it follows that 
ƒ + Af(p) is invertible and also DMp(I + M(p)) = 2?(p) is invertible. 

Recall the fact that if M is a symmetric matrix and D a positive diagonal 
matrix, then M = DM acts as a symmetric matrix with respect to the modified 
inner product 

<x,y>d = E^^>;/ = ( ^ y ) 

where dt are the diagonal elements of D. 
We further note, when p* is a polymorphism of M, since u is a simple left 

eigenvector of eigenvalue 1 for Af(p*), that / + M(p*) (and also ( I - Af(p*))) 
is invertible on i f = {z; (u,z) = 0} onto itself. Finally, we record 

LEMMA C.l. The frequency vector p e A0 is a polymorphic equilibrium of S in 
(6.4) if and only if B(p*)p* = \*p* and then X* = 2w*, H>* = (Mp*,p*), i.e., 
p(p*) = 2>v(p*). 

PROOF. If p* is a polymorphism we have Mp* = w*u. Then M*p* = 
(p* ° Mp*)/w(p*) = p* and, also, 2?(p*)p* = 2w*p*. Conversely, suppose 
2?(P*)P* = A*p* for p* e A0. This requires that p* o Mp* = X*p*/2, and since 
/?* > 0 for all indices, it follows that Mp* = A*u/2, implying p* is a polymor­
phism with X* = 2vv*. 

PROOF OF THEOREM 6.1. We first develop some preliminaries. Let p* e A°. 
Choose a direction T| = (T^, TJ2,...,TJ,.) in A0, that is, TI satisfying (T],U) = 0 
and s small enough obeying ip(s) = p* + st\ e A°. The Frobenius theory of 
positive matrices affirms that the spectral radius p(s) = p(p(s)) of B(s) = 
B(p(s)) is a simple eigenvalue of B(s) analytic in s and that the components of 
q(s\ the unique right eigenvector in A0 of B(s) corresponding to p(s% are also 
analytic functions of s. We display these quantities by the relation 

(C.l) B(p(s))q(s) = p(s)q(s) where p(s) = p(B(s)). 

We hereafter use the notation 

dp(s) _ (dp^s) dpr(s) \ 
ds \ ds ' * " ds y 

(dqi(s) dqr(s) \ 
{ ds '•*•' ds J9 

^ f ( j ) and , ( , ) - ^ l ( , ) , 
ds ds1 

which we abbreviate to p, q, p and q at s = 0. 
Since (p(*),u) = (q( j ) ,u) = 1, we have 

(C.3) <p(*),u> = <lK*),u> = <q(*),u> = <q(*),u> - 0. 

p(s) = 

(C.2) q(s) = 

IK*)-
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Observe that the transpose matrix 2?(p)' of 2?(p) applied to £ is 

iB(p) = B(j>)'i = Mpo i + M(po | ) . 

Choosing £ = z = q/p with p = p(j) and q = q(s) verifying (C.l), we get 

(C.4) zi?(p) = p(p)z. 

Indeed, 

zi?(p) = ( M p ) o - -I- Afq = - o(Mpoq + p<>Mq) = - °2?(p)q = p(p)z. 

Furthermore, we have 

(C.5) (l/z)B(q) = p(p)u. 

In fact, 

^ ( q ) = 5 ( q y i = M q o f i + M ( q o £ ) 

= — ©[poMq + Mpoq] = — °2?(p)q = p(p)u. 

Differentiating the identity (C.l) in s produces 

B(p(s))q(s) + 2?(p(*))q(*) = p(s)q(s) + p(*)q(*), 

which reduces to 

(C.6) B(q(s))p(s) + B(9(s))q(s) = p(s)q(s) + p(s)q(s). 

On account of (C.4), we obtain, with z(s) = q(s)/p(s), 

(z(s)B(q(s)),p(s)) + p(s)(z(s),q(s)) 

= p(s)(z(s),q(s)) + p(s)(z(s),q(s)) 

or 

(C.7) (z(s)B(q(s)),p(s)) = (>(s)(z(s),q(s))-

Note also, on the basis of (C.5), that 

(C.8) ({l/z(s))B(q(s))Ms)) = p(s)(u,P(s)) = 0, 

the last equation resulting from (C.3). 
We are now prepared to prove Theorem 6.1. 

I. Characterization of an equilibrium. 
Necessity. Let p* = p(0) be an equilibrium of (6.4) in A0 so that M p* = w*u. 

Then because M is positive, equation (C.l) for s = 0, namely 2?(p*)q* = \*q* 
where q* = q(0) and X* = p(0), requires q* = p* and X* = 2w* = 
2(Afp*,p*). Thus, we have z* = q*/p* = u, implying uB(p*) = 2w*u, and 
(C.7) for s = 0 indicates that p(0) = 0. 

Sufficiency. If p* e A0 furnishes a critical point for p(p), i.e., p(p*) — 0, 
equations (C.7) and (C.8) for s = 0 reduce to 

(C.9) <z*2?(q*),T|>=0 and <(l/z*)2?(q*), i|> = 0, 
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A direct analysis reveals that a sufficient condition for the polymorphism 
{P*> P * } t o be locally stable is that it satisfy the inequality 

(6.29) | 1 + f l !>*,&) | J < 1 

for all eigenvalues A different from unity of the matrix transformation 

D*°F 

MP*) 
If (6.29) is strictly violated for one of the A, then {p*,p*} is not stable. 

Appendix A. For positive vectors we use the notation x /y = 
(xi/yvx2/y29--9xr/yr) anc* ^* = ({x[,jxl,...,{x~r). Let p be a positive 
frequency state (p e A0) and consider the functional 

r ( x \Pi r 

^ ( x ; p ) = n —-rr] > H>(X) = Zr"ijxj 
I - l \ W l V X / / y = l 

for x > 0 and M = ||m/y|| a symmetric positive matrix. We define 
r x 

(A.l) <p(p) = max E / 7 / 1 ^ - T T = m a x logG(x,p). 
x>0 /==1

 wi\x) x > 0 

The Donsker-Varadhan theory (1975), or, equivalently, the results of Friedland 
and Karlin (1975), affirms that for each p the maximum of (A.l) is unique (up 
to a scale factor) achieved for x(p) e A0 provided D^X)MDX has p as a left 
eigenvector of eigenvalue 1. This relationship is a homeomorphic (actually 
analytic) mapping p -* x(p) of A0 onto A0. 

Observe that D^X)MDX has u = ( 1 , . . . ,1) as a right eigenvector for eigen­
value 1. We may inquire if there is a fixed point 

(A.2) p ^ x(p) = p. 

LEMMA A.l. p* is a fixed point of the mapping (A.2) if and only if p* is a 
polymorphic equilibrium of (6.4), i.e., Mp* = M>*U with w* = (Mp*,p*). 

PROOF. Suppose p* = p*(l/Mp*)M °p* or, equivalently, Af(p*/Afp*) = u. 
Consider now the vector w* having coordinates wf = (Mp*)y. By concavity 

of the square root function we have 

(A.3) L m 

with strict inequality unless wf = constant. If w* is not a constant vector, we 
deduce from (A.3) that p(M°p*/Mp*) < 1. However, p*(Af °p*/Mp*) = p*, 
so p(Z>^J*MDp,) = 1. This contradiction can be averted only if {wj*}[ is a 
constant vector or Mp* = w*u, indicating that p* is a polymorphism, as was to 
be shown. 

The analysis of the concave function 

^(p)=m in( lA i^) 
x > 0 \ ,. X, / 
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parallel to (A.l) shows that for p e A0 the minimum is uniquely attained at x 
that satisfies pD~lMD^D^\ = p. In the case that M is symmetric we directly 
verify that x = -y/p, which implies 

(A.4) *Hp)= E ^ O V ^ V ^ 

is a concave function of p. Moreover, for M symmetric with one positive and 
r - 1 negative eigenvalues we deduce in the presence of (6.18a) that g(p) = 
X£y=1 rriijPiPj is also concave on A. 

When p* is a stable polymorphism we find that nJ"» x ( wf (p)/wi* ) ̂ * exhibits a 
local strict maximum at p = p* relative to A. Indeed, 

i W < i p>i = <p*> MP> = <P*M,P> = w* = f\ (wryT. 
i - i / = i i - i 

Consider next the feasibility of the inequality 
r r r 

/ = i , - . 1 i - i 

when p* is a stable equilibrium of (6.4). 
Passing to logarithms this inequality reduces to 

(A.5) £ p* log wt - log £ / w > 0. 
/ = i \ i - i / 

Writing p = p* + £, stipulating (£,u) and ||£|| small, we expand both 
logarithms, noting w,-(p) = H>* + TJ„ TJ, = wt(£) and (p*,T|) = (p*, Mi) = 
w*(u9 Ç) = 0, to obtain 

E/>* fog rç-log E Piwi\ 
(A 6) l'"1 * 

- - - ^ t r f ( w ( ( « ) ) 2 - ^ + 0(|«|s). 
2(w*) i - i ^ 

Now set C = /p*^oMo/p*. This symmetric matrix has its maximal eigen­
value equal to w* with corresponding eigenvector Jp*. We denote the other 
eigenvalues by /iy, and corresponding orthonormal eigenvectors by «p., y = 
2,... ,r. Using the expansion, with the cognizance of (4, u) = 0, 

leads to the identities 

and 

-,n-lrwr&"\&-"r ~<»-{ciï-^)-zA^ 
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Combining into (A.6) yields 

— É P*W (4)2 - - ^ = — E tf 
< 

Since |/i -| < w* (by the Frobenius Theory of positive matrices) and all juy < 0, 
j = 2, . . . ,r (by virtue of (6.18a)), the above quantity satisfies the inequality 

> c||£||2 for some c > 0 valid for all £ in the linear manifold (£, u) = 0. 

Examination of the proof reveals more. For a stable polymorphism the 
quadratic form 

-Hi)-è;ipT(»M))2 

is strictly positive definite over the linear manifold^ = { £, (£, u) = 0}. 
The foregoing analysis shows that in the vicinity of a stable polymorphism 

p*, H(p) = nj»i(/7/K* constitutes a local Lyapounov function for the trans­
formation (6.4). In terms of the coordinates/?^ = /w(p)/w(p), the inequality 
7/(p') > H (p) reduces to 

(A.7) nh(p)],f>w(p)-n[w(p)]'?, 
i * l * - l 

valid for p near p*, p # p*. The same result applies in the neighborhood of a 
stable boundary equilibrium. It is conjectured that H(p) is a global Lyapounov 
function. The result is correct for r = 2. 

An interesting consequence of (A.6) is that for a stable polymorphism p* we 
have 

r 

Y\m$>mkk, fc = l,2,...,/\ 
/= i 

Appendix B. Some consequences of the internal stability conditions (6.18). 
Let M = ||m/y||[ be a viability matrix obeying 

(B.l) (Mi, i) < 0 for all £ # 0 satisfying (£, u) = 0, 

Define 

(B.2) m/y = rriij - mir - mrj + mrr9 1 < /,y < r - 1, 

and enlarge M to an r X r matrix M by the assignment mry = m/r = 0 for all /, 
j . Let TJ = (T71? ry2,... ,T7r_1) be an arbitrary nonnull (r - l)-vector and extend 
T) to i (i?i,i?2»---»Vr-v Vr) bY setting Tjr= -L-ZlVi so that ( t u ) = 0 . 
It is easy to verify (M£9 £) = (M£9 %)9 which in turn is equal to (Mr), TJ). 

These identifications in conjunction with (B.l) imply M is negative definite. 
Therefore the diagonal elements of M are negative. Since the foregoing analysis 
is invariant under relabeling of the indices, we may conclude that 

(B.3) mu + nijj < Im^ for all i #y . 
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(B.4) Whet= / , w , L rntj > Whom= - £ mkk9 

Summing (B.3) over all i ¥= j , we obtain 

that the average hétérozygote fitness exceeds the average homozygote fitnesses 
(Ginsburg(1979)). 

Using the fact that the mean fitness function w(p) = Hm^p^j is strictly 
concave over the frequency simplex attaining its maximum at the stable 
polymorphic point, the weighted average comparison 

(B 5) Z^m^pfp* > ZUimkk(ptf 
L^pfp* LUi(pt)2 

for a stable polymorphic frequency state p* = (/?f, /?*»••• >P?) obtains. 
Another variant of (B.5) is as follows. Let <p = (<pv <p2,. •. ,<pr) be the unique 

positive eigenvector Afcp = A*q> (normalized so that E{'!a,1<p? = l) corre­
sponding to the maximal eigenvalue X* of M. If M satisfies (B.l) we also have 

(B.6) H B . f a â + ^ " ^ < 0 > ,-1,2,...,,. 
EUv* (EU*-*)2 

Averaging with respect to <pi9 we obtain 

(B.7) ( ! > , ) ( £ ««*,]< I »>,yWy. 
\ / = l / \ / = l / i , y - l 

The existence of a stable polymorphism p* = (ƒ?*,...,ƒ?*) implies that 
hétérozygote fitness values cannot differ too much. In fact, Lewontin et al. 
(1978) established the following triangle inequality. For each hétérozygote 
AtAj (/ * j) there exists some index k (not necessarily all) with the property 
that mtj < mik + mkj. From this fact it follows that the maximal fitness 
coefficient cannot exceed twice the next largest fitness value. In general, this 
inequality cannot be improved. However, when 

(B.8) mm(mkl) > max(m. /), 
k*l i 

it is easy to prove: 
If M satisfies (B.8) and a stable polymorphism exists, then for each i ¥= j and 

every k9 

(B.9) mtJ + min(m„., mj}) < mik + mkJ. 

Appendix C. Proof of Theorem 6.1. We start with some preliminaries. For a 
polymorphic equilibrium p*, since Mp* = w*u, H>* = w(p*), we have S"(p*) = 
ƒ + M* where M* = (p*° M)/w*. Observe that Af*p* = p* and uM* = u, 
and since M* is strictly positive, the spectral radius of M* is 1. It is convenient 
to define 

M P ) = (V/Mp) * M 
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valid for every t| e «£?, i.e., for all r\ satisfying (T|, U) = 0 . Since & is (n - 1) 
dimensional, equations (C.9) are compatible only if z*2?(q*) = a(l/z*)2?(q*) 
for some positive constant a. Recall that B(q*) is invertible, implying that 
z* = a/z*; but this is feasible only if q* = v^p*, actually q* = p* since both 
are frequency vectors, and then Lemma C.l yields the conclusion. 

II. Stability criterion of an internal equilibrium. Let p* = q* = p(0) = q(0) be 
a critical point of p(p). Another differentiation of (C.6) evaluated at s = 0 
produces, under the notation of (C.2), 

(CIO) £(p*)p + £(p*)q + 2j>o Mi\ + 24o Mp = p(0)q + p(0)p* 

(p(0) is the second derivative of p(s) in the direction of T| evaluated at s = 0). 
In this case, since Afp* = w*u9 we have B(p*) = W*(I + M*% where we have 
introduced the notation 

( C i l ) M* = ( p * o M ) / V . 

Reference to ui?(p*) = 2w*u, after taking the inner product of (CIO) with u in 
view of equations (C.3), gives 

(C.12) p(0) = 4(p,M4>, 

and expressed in terms of the generalized inner product ( , >d with d = p*/w* 
we have 

(C.13) p(0) = 4(i>,M*q)d. 

We next rewrite (C.6) at s = 0 in the form (using (Gil)) 

(C14) ( / - M * ) 4 = ( / + M*)£. 

Both / + M * and I — M* are invertible on & = { £; ( £, u) = 0 } and leave this 
linear manifold invariant. Moreover, M * is symmetric in the inner product 
( , ) d . Thus, every vector x in «£? can be represented, using the orthonormal 
basis {<pf} of eigenvectors of M* inJ?9 as 

r - l 

x = £ (x,<P/>d<P,. 

In particular, 

( c i s ) 4 - L (4, <P,)d<P„ P - L <*, <p,)ë«p,. 

Equation (C14) with Af *¥,- = X^, imphes 

(C.16) (1 - X,)<4, <p,.>d - (1 + A,)<fc <p,.)d, 

where X,. are all real and |X,| < 1. Expanding (C.13) via (C.15) and using (C16) 
we get 

(C.17) p(0) = 4l1X/[(^q,,.>d]2|4Ti-
/ = 1 ' 
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As p = i| is an arbitrary vector in «£?, we may conclude that p(0) < 0 for all 
directions if and only if X, < 0, / = 1,2,... ,r - 1. Thus, p* is locally stable if 
and only if p(p) exhibits a (strict) local maximum at p*. 

This completes the proof of Theorem 6.1. 

7. Mathematical models of sex ratio evolution. The results of this section 
were developed in collaboration with Sabin Lessard; see Karlin and Lessard 
(1983,1984) for elaborations, proofs and extensions. 

Sex determination governed at a single autosomal locus with probabilities of 
being male or female depending on the zygote genotype was first given a 
theoretical formulation in Shaw (1958). A two-allele model was studied by 
Eshel (1975). A variant of this model, dealt with in Nur (1974) and Uyenoyama 
and Bengtsson (1979), admitting maternal (or paternal) genotype controls on 
the expected brood sex ratio, led to similar qualitative conclusions. Eshel and 
Feldman (1982) considered generalizations to multiallelic cases (see also refer­
ences therein). 

In this section we will elaborate, for panmictic populations, a series of 
sex-determining genetic models controlled at an autosomal locus entailing 
multiallelic variants allowing for sex expression to depend on the zygote 
genotype, or one or both of the parental genotypes. 

MODEL I. An autosomal multiallele sex-determination system based on the 
genotype of the offspring. Consider a bisexual infinite population with r possible 
alleles A 1 ,A 2 , . . . ,A r at an autosomal locus primarily responsible for sex 
determination. We denote the frequency of genotype AtAj in the female 
population by 2ptJ when i # j , and by pu when i = j . The frequency of allele 
A, is Pt = Ey_x Pij. The quantities 2qiJ9 qit and qt are defined analogously with 
respect to the male population. We assume discrete generations, random 
mating, Mendelian segregation and equal fertility for all mating types. Let mtj 

be the probability for an A,. Ay individual to be a male and, concomitantly, 
1 - mij that of being a female. Clearly, 0 < mtJ = mjt < 1. We refer to 
M = ||#fif- -IIJ" -—1 as the sex-determination coefficient matrix. 

The case of 0 < mtj < 1 may reflect the effects of modifier genes coupled to 
prenatal and/or neonatal interactions. Where m^ = 1 or 0, the sex phenotype 
is exactly determined such that the collection of all genotypes At Ay- partition 
into two groups &m and &f where every individual of types @m and &f is 
unambiguously male and female, respectively. We refer to this situation as 
dichotomous (exact) genotypic sex determination. Corresponding multitype de­
compositions are appropriate for studies of incompatibility systems in plants 
and in elucidating consequences of nonrandom mating patterns. 

Returning to the general model, the genotype frequencies over two succes­
sive generations obey the recursion relations 

, v _ mjj{Pi<lj+Pj<li) __ (l-mijXPiqj+Pjqi) 
(7-1} *> 2 ^ — • *J ^ r ^ ô — ' 

where w = ^r
iJXBlmijPiqj is the proportion of males, the sex ratio in the total 

population for the given allelic frequency state. 
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System (7.1) can be converted into the following recurrence equations for the 
frequency vectors p = (pl9 p2,... 9pr) and q = (ql9 q2,... ,qr) and those of the 
subsequent generation p' and q'. 

(7.2a) 

(7.2b) 

where 

p' 

q 2w 
_p°(U- M)q + q ° ( t / - M)p _ p + q - q'2w 

2(1 - w) ~ 2(1 - w) 

r r 

>v = <p, Mq>= X > , ( M q ) , = £ mijPtQj 

and (/ denotes the matrix with all unit entries. 
At equilibrium for (7.2) q' = q, p' = p, we immediately have from (7.2b) 

(7.3) (1 - 2H>)q = (1 - 2W)p. 

An equilibrium with q* = p* is called a symmetric equilibrium exhibiting 
identical allelic frequencies in the male and female populations. (Symmetric 
equilibria are also called genotypic equilibria.) An even-sex ratio equilibrium 
(also called phenotypic equilibrium) has w = 1/2, that is, maintains an equal 
representation of males and females in the population. 

The transformation equations (7.2) are recognized as a case of the dynamical 
system (6.3) describing the allele frequency changes for a two-sex viability 
model. Formally the sex-determination model where an offspring of genotype 
AtAj is male (female) with probability mtj ((1 - mtj)) is equivalent to a 
sex-differentiated viability model with viability matrices M =\\mij\\ and F = 
111 ~ mij\\= U - M îor males and females, respectively. The fact that M and 
F = U - M in the sex-determination model are generated from a single 
generic matrix M allows a more tractable analysis of the system. 

The following facts are fundamental to our later analysis. A symmetric 
equilibrium {p*, p*} of (7.2) (abbreviated by p*) must verify Sp* = p*, where 

(7.4) 5p = poMp/<p,Mp>, 

that is, S is the transformation for the classical one-locus multiallele viability 
model with M as a viability matrix (see (6.4)). An even-sex ratio equilibrium 
state (q, p} is characterized by the relation 

(7.5) q = p° Afq + q<> Mp. 

This relation entails a one-to-one sex ratio. The proof of this statement is as 
follows. Summing over the coordinates in (7.5) we get 1 = (u, q) = 2(p, Afq), 
where u is the vector of all unit components and therefore w = (p, Afq) = 1/2; 
the equations in (7.2) exhibiting q' = q = q and p' = p == p obtain on account 
of (7.5) and the fact that w = 1/2. 

Recall the matrix ((6.21)) 

(7.6) B(p) = DpM+DMp 

and the eigenvalue-eigenvector identity ((6.22)) 

(7.7) * ( P M P ) - P(p)y(p). 
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Comparing with (7.5), an even-sex ratio equilibrium represented by {q,p}, 
having both q and p interior to A, exists if and only if p(p) = 1, and then the 
corresponding y(p) is q. These conditions can be extended by continuity 
allowing p and q on the boundary of A. 

We next describe the stability conditions for the symmetric and even-sex 
ratio equilibrium states. 

Symmetric equilibria. Consider a symmetric equilibrium {p*,p*} for the 
sex-determination model (7.2) represented by p* for brevity. To avoid situa­
tions involving special relations among the parameters {/wïy} of no special 
import, it will be appropriate, unless indicated otherwise, to impose the 
following genericy assumption. 

DEFINITION 7.1. A sex-determination matrix M is said to be symmetrically 
generic if: 

(i) M and U — M are each generic (in the sense of Definition 6.1); 
(ii) (p*, Mp*) # 1/2 for every symmetric equilibrium {p*,p*} of (7.2). In 

particular, mH # 1/2 for every i. 
Requirement (ii) guarantees that a symmetric equilibrium state does not 

confer an even-sex ratio. 
The next theorem indicates when a symmetric equilibrium is locally stable in 

the sex-determination model. 

THEOREM 7.1. A symmetric interior equilibrium {p*, p*} with w* 
= (p*, Mp*) < 1/2 is stable in the sex-determination model (7.2) if and only if 
p* is stable for the one-locus viability matrix M of the dynamical equations (6.4). 

Analogously, if w* > 1/2, {p*,p*} is a stable symmetric equilibrium for the 
sex-determination model (7.2) if and only if p* is stable for the viability matrix 
U- M. 

COROLLARY 7.1. Where p* is stable for the one-sex random mating selection 
system (6.4) with associated viability matrix M and w* > 1/2, {p*,p*} is 
unstable in the sex-determination model (7.2). 

The proof of Theorem 7.1 is quite simple by appealing to the analysis set 
forth in (6.25)-(6.28). In the case at hand, the equilibrium point {p*,p*} is 
stable if and only if the dominant eigenvalue of the gradient matrix of the 
system (6.3) at (p*, p*} which is the 2r X 2r matrix 

( S S ) 
with 

1 1 poM n _ l ¥ . lf>*°(U-M)\ 
2 i + 2 w* ' u 2 i + 2 ( 1 - w * ) ) 

has all its eigenvalues relative to the domain 3?®Sâ'= {{£, i|}, (£,u) = 0, 
(t| ,u) = 0} of magnitude less than one. The relevant eigenvalues (by Lemma 
6.1) are those of 

(1 - 2w*) 
2(1 - w*)w* p 
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The above matrix resembles the gradient matrix at p* for the one-locus 
selection model associated with viability matrix M except for the constant 
multiplier (1 - 2w*)/2(l - w*) (compare to (6.20)). It follows that if p* e A° 
is a stable equilibrium of (6.4) provided that M* = (/?*<> M)/w* has only 
negative eigenvalues of magnitude less than 1 with respect tOc$£ and w* < 1/2, 
then all eigenvalues of P + Q are also of magnitude less than 1 relative to 
«S? ® J?9 and conversely. 

The stability analysis for a symmetric boundary equilibrium {P, P] of system 
(7.2) is as follows. 

THEOREM 7.2. A symmetric equilibrium {P, P] with w < 1/2 is stable for the 
sex-determination model (7.2) if and only if: 

(i) The eigenvalues of (p° M)/w in the face of P, i.e., with respect to J% = 
{ £: E/e/0) it = 0} are all negative, and 

(o\ (MP)J au-j^h 
( u ) " 1 ^ " + 2(1 -w) <l' j€l{P)' 

or, equivalently, since w < 1/2, 

(7.8) (MP)J<W forjtlb). 

When w > 1/2, then the ascertainment of stability for {P, P} in the sex-de­
termination model (7.2) corresponds to the stability criteria for the one-locus 
viability matrix U — M instead of M. 

Thus, a symmetric equilibrium (boundary or interior) of sex ratio w < 1/2 
(w > 1/2) is stable for the sex-determination model of (7.2) if and only if it is 
stable for the one-locus random mating multiallele system with viability matrix 
M(U — M), respectively. 

Properties of even-sex ratio equilibria of the sex-determination model We 
stipulate the genericy assumption of Definition 7.1 in force. Let {q, p} be an 
equilibrium for the sex determination (7.2) with 

(7.9) (q, MP) = 1/2. 

We pointed out in connection with (7.5) and (7.6) that an interior even-sex 
ratio equilibrium is completely characterized by the eigenvalue-one equation 

(7.10) B(p)q = q, 

where the matrix l*(p) = DMp + Dp ° M is specified in (7.6). When (7.9) and 
(7.10) prevail, necessarily q # p, owing to the genericy postulate of Definition 
7.1. A boundary even-sex ratio equilibrium {q,p} segregating alleles of indices 
/(p) also satisfies (7.10) with q interior to the same face as p. 

From the discussion of (7.2) and (7.7), we know that an interior even-sex 
ratio equilibrium exists if and only if p(p) = p(B(p)) = 1 and q is the corre­
sponding unique normalized positive right eigenvector for B(p). The basic 
result reported next concerns the existence of even-sex ratio equilibrium states. 
Such equilibria comprise a continuum when present as indicated in the 
following theorem. 
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THEOREM 7.3. Suppose M is symmetrically generic, i.e., the conditions of 
Definition 7.1 hold. 

(i) Even-sex ratio equilibria of the sex-determination model (7.2), when they 
exist, are part of an equilibrium surface (one or several) each of dimension r - 2 
in the simplex A of dimension r — 1. Only in the case of two alleles are the 
even-sex ratio equilibria isolated points. 

(ii) A stable symmetric equilibrium (interior or on the boundary) which is 
stable for the corresponding viability model (having the transformation equations 
(6.4)) cannot coexist with any even-sex ratio equilibrium segregating the same 
alleles. 

(iii) There may coexist one or several surfaces of even-sex ratio equilibria. 
(iv) Two symmetric equilibria Pa and pp with sex-ratio wa < 1/2 and wp > 1/2, 

respectively, are separated by at least one even-sex ratio equilibrium surface, 
which by (ii) cannot intersect the interior of l(pa) (the index set of pa) if pa is 
stable and analogously for Pp. 

COROLLARY 7.3. If there exists a stable symmetric polymorphic equilibrium p* 
for the model (7.2), Then no even-sex ratio equilibrium exists and p* is the unique 
stable equilibrium for the sex-determination model. 

An analytic formula for the surface (or surfaces) of even-sex ratio equilibria 
is described as the set of all p e A satisfying 

(7.11) 9(p) = det = 0 

(8/y- = 1 if i = y; 0 when i #7) . Note that the determinant is an algebraic 
function of degree r in the variables (pl9 p2,... ,pr). 

Note that if there exists a stable symmetric polymorphic equilibrium p* then 
no even-sex ratio equilibrium can exist and p* is the unique stable equilibrium 
for the sex-determination model. It is worth emphasizing that stable symmetric 
equilibrium states and even-sex ratio equilibria can coexist, but then the 
symmetric and unsymmetric equilibrium states do not represent the identical 
set of alleles. 

Stable equilibrium possibilities for dichotomous sex ratio determination. The 
following general result underscores the central role of the one-to-one sex ratio 
when the sex phenotype is controlled at a single multiallele locus with exact 
genotypic sex ascertainment. 

THEOREM 7.4. Suppose all genotypes involving r alleles at a single locus divide 
into two groupings (all genotypes <€m become males unambiguously, while all 
genotype zygotes of ^ become females). Assuming random mating in this 
population, the only stable equilibria (or equilibrium surfaces) entail one-to-one 
sex ratio, i.e., the frequency of a stable equilibrium phenotype has freq(#w) = 
freq(^) = 1/2. 

It should be emphasized that with probabilistic (0 < mtj< 1) sex de­
termination, non-even-sex ratio stable equilibrium states are possible. This 
perhaps makes sense if the probabilistic mechanism is associated with endoge­
nous or exogenous genetic and environmental covariates. 
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TABLE 7.1. Comparisons Between the Occurrences of Symmetric 
Versus Even-Sex Ratio Equilibrium States 

Number of alleles 

Convergence to 1:1 sex ratio 

Matrices leading to : 
(i) 1:1 sex ratio only 
(ii) symmetric equilibria only 
(iii) either 

2 

.39 

.36 

.25 

3* 

.69 

.55 

.17 

.28 

4+ 

.83 

.72 

.06 

.22 

5+ 

.90 

.74 

.02 

.24 

6* 

.93 

.85 

.02 

.13 

* Numerical simulations from 200 random sex-determination matrices with 10 
random starting points for each. 

TABLE 7.2. Comparisons Between the Rates of Convergence* 

Number of alleles 2 3 4 5 6 

Convergence to 1:1 sex ratio 134 151 208 215 

Matrices leading to : 
(i) 1:1 sex ratio only 115 145 191 204 
(ii) symmetric equilibria 413 679 1028 3351 
(iii) either 1114 1027 1623 2161 

*Average numbers of generations for attainment of an equilibrium state. The 
iterations on (7.2) were terminated when no change in the sixth decimal place 
occurs for two successive generations. 

The relative occurrence of symmetric {non one-to-one) versus even-sex ratio 
equilibria. In order to contrast the extent of stabihty for symmetric versus 
even-sex ratio equilibrium states, we constructed 200 random sex-determina­
tion matrices (each entry independently uniformly distributed on [0,1]). In 
each case we iterated the transformation (7.2) until an equilibrium was 
attained. The computer output is recorded in Tables 7.1 and 7.2. 

As the number of alleles involved increases, even-sex ratio equilibrium 
surfaces are more likely to occur and their numbers to increase. It is worth 
noting that convergence to a one-to-one sex ratio is, in general, faster than 
convergence to a symmetric equilibrium (from three to ten times in our 
simulations). The difference is accented with more alleles. 

Optimality of one-to-one sex ratio realizations. The property of ESS (evolu­
tionary stable strategy) introduced by Maynard Smith and Price (1973) has 
been cogently applied in many studies of behavioral genetic models including 
sex ratio evolution (Charnov (1982)), genetics of altruism (Charlesworth (1978)), 
optimal dispersal rates (Motro (1982)) and in models of frequency dependent 
selection (Lessard (1984)). See also Zeeman (1980, 1981). It is widely conjec­
tured that an even-sex ratio is optimal "ESS" (see §5). In the framework of the 
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sex-determination model of r-alleles ((7.2)), the optimality property is under­
stood to mean that with the introduction of a new allele from r to r + 1 alleles, 
all possible stable equilibrium states for the extended model cannot attain a 
sex ratio farther from one-to-one than exists in the r-allele subsystem. This 
expresses an evolutionary tendency toward an even-sex ratio. 

In this framework, we consider a symmetric equilibrium {p*,p*}, p* > 0, 
i = l , . . . ,r , for the r-allele model with w* = (Afp*,p*) < 1/2. With a new 
allele Ar+1 , let mt r+1 be the probability for a zygote of genotype A /A r + 1 to be 
a male and (1 - mÉ r+1) to be a female, respectively. The marginal fraction of 
male progeny carrying allele A r + 1 at the equilibrium state p* is w*+1 = 
E/-i/Jftf^r+i. A symmetric equilibrium {p*,p*} stable for the /--allele sex-de­
termination model becomes unstable with the introduction of A r + 1 if and only 
if 

(7.12) w*+1 > w* provided w* < 1/2. 

(The condition for local instability at p* is w*+1 < w>* if w* > 1/2.) These 
conditions do not require that the marginal sex ratio w*+l at p* should be 
closer to 1/2 than w*. However, in case of instability, it was conjectured that 
the augmented system in the long run would attain a sex ratio closer to 
one-to-one than existing at the previous equilibrium. 

We can prove 

THEOREM 7.5. Let p* be a stable symmetric equilibrium of (7.2) with sex ratio 
w* = (p*, Mp*) which becomes unstable following the introduction of a new 
allele Ar+1. Then, for the augmented (r + \)-allele system with genericy condi­
tions {Definition 7.1) in force, either: (i) there exists a unique stable symmetric 
equilibrium whose sex ratio is closer to 1/2 compared to w* and which does not 
coexist with any even-sex ratio equilibrium, or (ii) {p*,p*} is enclosed by a pair 
of even-sex ratio equilibrium surfaces containing no stable symmetric equilibria. 

Under the conditions of the above theorem, the only stable equilibrium 
points attainable from p* entail sex ratio closer (compared to w*) to 1/2 or 
equal to 1/2. 

Part (ii) has independent interest from an evolutionary perspective if it is 
assumed that new alleles are introduced singly. The proof decisively relies on 
the fact that w(p) is a quadratic form. 

Theorem 7.5 proposes that if p* is unstable, then ultimately an equilibrium 
state will be reached closer (compared to w*) to 1/2 or equal to 1/2. We can 
also interpret Theorem 7.5 as expressing an "optimality" property in favor of 
an even-sex ratio determination. On the basis of this result we surmise that with 
increasing allelism the population sex ratio is inclined toward an even-sex 
ratio. Any perturbations on a sex ratio equilibrium state render it unstable, 
ultimately achieve a sex ratio closer to 1/2. Moreover, an even-sex ratio 
equilibrium persists as stable with the introduction of any additional allele 
involved in sex determination. 

Although the predicted evolutionary sex ratio, by virtue of Theorem 7.5, 
tends toward one-to-one, nevertheless, for any finite allele sex-determination 
model as in (7.2), there can coexist a stable symmetric equilibrium with biased 
sex ratio and a stable surface of even-sex ratio equilibria. 
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MODEL II. Multiallelic sex ratio determination model under maternal {or 
paternal) genotypic control. In concluding this section it is illuminating to 
briefly consider the model where sex ratio determination depends on the 
maternal genotype. 

Consider a dioecious population with a sex-determining mechanism entailing 
r alleles A1,A2,...,A r where the sex of the offspring is governed by its 
maternal genotype. Documentation and interpretations of this mechanism are 
amply illustrated in Charnov (1982). In the present context we prescribe mtj as 
the expected proportion of males in the progeny of an A,Ay female parent. The 
symmetric matrix M = H/ŵ HÏ will be called the maternal sex ratio determination 
coefficient matrix. 

Probabilistic sex determination with 0 < mtj < 1, subject to mother control 
can result from influences of modifier genes with interactions to the cyto­
plasmic millieux. The maternal physiological capabilities and neonatal re­
sponses to environmental conditions can be contributory factors. The maternal 
control can be latent or facultative. 

Let ptj and qtj be the frequency of the ordered A, Ay genotypes (the first 
allele Ay deriving from the maternal side and Ay from the paternal side) in the 
female and male populations, respectively. The corresponding frequencies of 
the unordered A, Ay genotype are 2ptj = ptj + pjt and 2qtj = qu + qjt for i ¥= j 
(pu and qu when /=y) . 

An At gamete is contributed from a maternal parent of genotype A, Az with 
probability (ptl + pH)/2 = pn. Note that \Zj{pjk + pkj) = pk9 k = 1,... ,r, is 
the kth allele frequency in the female population and the corresponding male 
allele frequency is \"Lt(qkl + qik) = qk. 

Under random mating the expected fraction of male offspring in the next 
generation with sex determination subject to mother control as deuneated 
above is 

(7-13) ft-E Em/" \ h '*:*«. 
k I L L 

It is convenient to introduce the quantities zt = E/ mupil9 ir = 1,... ,r, such that 
Zi/Pi> * = l>--->>'> can be interpreted as the probabilities that an offspring 
receiving a maternal allele A, is a male. Obviously, 

r 

(7.14) w = £ zt = Y,mupu 
/ = 1 i,l 

is the sex ratio of the next generation. 
The recursion equations can be compactly written in the form 

( 7 - 1 5 a ) 4ij-—— - 2w 

and 

(7.15b) PlJ ^ - ^ 
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The above system can be reduced to the component variables of p, q, and z, 
since only these variables appear on the right of (7.15), leading to 

(7.16a) q' = q/2 + z/2w, 

(7.16b) p' = q/2 + (p - z)/2(l - w)y 

( . (p-z)oMq-f qoM(p-z) 
(716C) Z " 2(1^0 ' 
withw = LJ»!^. 

At equilibrium it is easy to deduce the relationships 

(7.17) w(\ - 2w)p = (1 - 2w)z, q = z/w. 

Thus, at equilibrium either w = 1/2 or z = wp, and then p = q. As in Model I, 
there are two equilibrium types, the symmetric equilibria and the even-sex ratio 
equilibria having w = 1/2. For a symmetric equilibrium state {q*,p*,z*} with 
p* = q*, z* = w*q*, the recursion (7.16) reduces to 

p' = (p°Mp)/(p,Mp) 

as in the classical one-locus viability system, and p* is an equilibrium for the 
one-locus viability recursion (6.4). 

For a nonsymmetric (even-sex ratio) equilibrium (confining attention to the 
symmetrically generic case, i.e., p =£ q and w = 1/2), a little manipulation of 
equation (7.16) gives q = B(p — z)q, where the matrix B(p) is defined as in 
(7.6), so q = 2z is the principal right eigenvector of B(p - z) of eigenvalue 1. 
Setting t = 2(p - z), t is a frequency vector for which q is a right eigenvector 
of eigenvalue 1 of B(t) and q = 2z. The above discussion can be summarized in 
the following statement. 

THEOREM 7.6. The maternal control sex ratio determination model (7.16) with 
M symmetric generic (in the sense of Definition 7.1) admits as symmetric 
equilibria the equilibria of the one-locus viability model with matrix M, and as 
even-sex ratio equilibria, {p,q,z} with z corresponding to the eigenvector p(2?(s)) 
= 1, s = 2(p - z), where p(B(s)) is the spectral radius of B(s) = DMs + s<> M 
defined on A and q = 2z. 

Thus to find an even-sex ratio equilibrium we determine a frequency vector s 
for which p(B(s)) = 1. Let its principal right eigenvector be q. Then q/2 = z 
and p = s/2 + z, providing {q, p, z}. 

The characterizations of the equUibrium forms for maternal sex determina­
tion and transformation equations (7.16) are akin to those described in relation 
to model (7.2). 

We formally state the results: 

THEOREM 7.7. (i) The maternal control sex ratio determination model (7.16) 
with M symmetrically generic (in the sense of Definition 7.1) admits as symmetric 
equilibria the equilibria of the one-locus viability model with matrix M9 and as 
even-sex ratio equilibria {p,q,z} as determined from the matrix B(s) described 
after Theorem 7.6. 
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(ii) A symmetric equilibrium {p*,q*,z*}, z* = w*p*, p* = q* with w* < \ 
(w* > \) is stable if and only ifp* is stable for the one-locus viability model of 
viability matrix M (U - M). 

(iii) If an even-sex ratio equilibrium exists, it is embedded in an (r — 1)-
dimensional surface of even-sex ratio equilibria. 

(iv) Stable symmetric and even-sex ratio equilibria cannot coexist segregating 
the same alleles. 

(v) The only stable equilibria resulting with the introduction of a mutant allele 
have a stable sex ratio representation the same or closer to one-to-one. The 
symmetric equilibria are the same for zygotic or maternal genotypic sex ratio 
determination but the rates of convergence to the stable equilibria generally differ. 

We conclude this section with some concrete examples of the equilibrium 
realizations to the sex-determination model (7.2). Analogous results are 
available under maternal control sex determination and haplodiploid systems. 

A complete enumeration of the stable equilibrium states of genotype sex ratio 
determination involving r = 2 alleles. The model of sex ratio determination of 
§2 involving r = 2 alleles was studied in Eshel (1975). The parameterization is 

a = probability that an Ax Ax zygote is male, 
(7.18) M = I R I, j8 = probability that an AxA2 zygote is male, 

^ ' y = probability that an A2 A2 zygote is male. 

The transformation equations (7.2), in this case setting qx = q,px = /?, reduce 
to 

(7.19) 
q' -±[2(a- fi)pq + P(p + q)]9 

P' = 2(1 - w) [ 2 ( / ? " a)pq + ( 1 " P){P + q)] 

and w = (a - 2)8 + y)pq + (0 - y)(p + q) + y. 
We provide an exhaustive accounting of the equilibrium alternatives for this 

model summarized in Table 7.3. The validation of global stability derives from 
the monotonicity endowments (increasing in each of the variables p and q of 
the transformation equations (7.19)). 

TABLE 7.3. Stable Equilibrium Alternatives for 1/2 < /? < 1 

(When ft < 1/2 the results are identical with a, /? and y replaced by 1 - a, 
1 - /}, and 1 - y, respectively.) The symmetric equilibrium/?* when extant has 
the formula q* = p* = (ft - y)/(2/? - a - y). The two possible even-sex 
ratio equilibria are denoted by {q, p) and {q, p}. These are obtained as the 
solutions/? of the quadratic 

x2[j8(a + y - 2 ) 8 ) - 2 ( i 8 - y ) ( a - ) 8 ) ] 

+ x[(P - y) + ( a - /*)(! " 2y)] +((1 - j8)/2)(2y - 1) = 0 

with q = (pfi)/(l - /? - 2(a - fi)p). When two unsymmetric equilibria exist, 
we label them by ordering q < q. If a single nonsymmetric equilibrium exists, 
we denote it by {q, /?}. 
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TABLE 7.3 (continued) 

Parameter Description 

I: j 8 < y < l , 0 < a < f 

II: p<y<l,\<a<p 

III: p<y<l,P<a<l 

IV: \ < y < P, 0 < a < \ 

V: \<a<P,\<y<P 

VI: \ < y < p, P < a < 1 

VII: Y < i « < i 

w* > \ 

VIII: 0<y<\,\<a<P 

IX: 0<y<\,P<a<l 

X: a < i y < i 

w* < \ 

Stable Equilibrium 

A unique even-sex ratio 
{ q, p } exists 

Even-sex ratio equli-
bria do not exist: the 
pure symmetric state 
{1,1} is uniquely stable 

{/?*,/?*} uniquely stable 

{0,0} and {<?,ƒ?} stable 

Both corner symmetric 
equilibria {0,0} and 
{1,1} are stable 

{0,0} uniquely stable 

{ qy p } and { q, p } are 

both stable 

{1,1} and {q,p) are 
stable 

{ k-> P } uniquely stable 

{p*, p*} uniquely stable 

Domains of Attractions 

globally stable 

globally stable 

globally stable 

{/?*, /?*} exists but is 

unstable; 0 < p* < q 

{ P*i P*} exists but is 
unstable. 

globally stable 

{p*,p*} exists and is 

unstable; q < p* < q 

{p*,p*} exists; 

q<p*<l 

globally stable 

globally stable 

(The parameter w* = (ay - P2)/{a + y - 2/3).) 

8. Quantitative models of sex ratio theory (environmental sex determination). 
Bulmer and Bull (1982) introduced a series of models with sex determination 
responding to environmental conditions interacting with many genes of small 
effects. They note that among several reptile species (e.g., crocodiles and 
especially turtles; see Bull (1981) and Charnov (1982, Chapter 11)) the sex of 
an offspring may depend crucially on incubation temperature. Other environ­
mental sex determinants (ESD) can be related to prenatal or neonatal birth 
size, physiological conditions, resource availabilities of host and other ecologi­
cal environmental factors. 

Consider a population in which the sex is determined (at conception) in the 
zygote through multifactorial effects. The simplest model of this kind is to 
assume that the sex response trait is governed by a continuous phenotype 
variable X (e.g., size, food resources, degree of exposure to sunlight), such that 
an individual X = x becomes a male with probability p(x\ and a female with 
probability 1 - p(x). For the special case 

(8-i) />(*)-(!' xlv' 
v ' ry ' 10, x^v, 
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the sex response in favor of maleness versus femaleness depends on the 
phenotype value exceeding the threshold level v or not. Let the population 
distribution of the phenotype values at the current generation be ƒ(*), i.e., the 
fraction of the population of trait value between (x, x + Ax) is approximately 
f(x) Ax. The sex ratio at conception is 
(8.2) r = p(x)f(x) dx. 

The density of phenotypes in the male population is 
(8.3a) r(x)-p(x)f(x)/r, 
and that of females 
(8.3b) ƒ**(*) = [l - p(x)] f(x)/(l - r). 
For compactness, we denote the associated random variables as X* and X**, 
respectively. At the adult stage the proportions of males and females can be 
adjusted in several ways. We will focus in the present discussion on the 
following case. At mating, that is, as adults, the sex ratio of males to females 
equalizes with trait distribution that of (8.3). 

We assume random mating with the offspring phenotypic expression a blend 
of the parental trait values plus an individual residual addend. More explicitly, 
the random variable of the offspring X* is taken to be 

(8.4a) X-hA Y +{, 

where h can be construed as a heritability factor, and £ is an independent 
environmental contribution to the trait value governed by a density function 
e(x) independent of the generation epoch. 

More general formulations allow p(x) to vary systematically or stochasti­
cally in time and/or space where also the perturbation terms £ can be taken as 
a random process involving some dependence over time. 

For the analysis in this paper we focus on the case of (8.4a) with h = 1, 
£ = 0 so that the offspring trait value is X and 

(8.4b) X= (X* + X**)/2. 

The mean value of X is 
1 — 2r e (8.5) m = m + _ J (x - m)p(x)f(x) dx. 

By virtue of the Tchebycheff rearrangement inequality (since p(x) and x - m 
are both increasing functions of x) we have 

f(x - m)p(x)f(x) dx > (ƒƒ>(*)ƒ(*) </*)(ƒ(* - m)f(x) </x) = 0, 

and therefore, 

, v m - m > 0 when r < 1/2, 
^ ' ' m - m < 0 when r > 1/2. 

We could expect that the mean m over successive generations tends mono-
tonically to 1/2. This is generally not true. 
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The distribution of X is 

(8.7) f(x) « 2 ƒ °° f*U)f**(2x - {) dx. 

Comparisons of sex ratio over two successive generations. For the sex threshold 
model (8.1) with threshold level v and transformation relation (8.4b), where the 
total population phenotype density is ƒ(*), the sex ratio of the following 
generation is 

' - *(—T— > V) - Ll^[ l-F(v) J di 

!?f(2v-j)[l -F(j)] dj 
F(v)[l - F(v)] 

We investigate the question: For r < 1/2 under what conditions do the 
relations 

(8.8) r' > r and r' < 1/2 

hold? and, of course, the reverse of these. 
These questions motivate a number of interesting comparison inequalities 

for random variables. We have 

THEOREM 8.1. If f(x) is a symmetric log-concave density then r' < 1/2 for 
v > Oandr' > 1/2 for v < 0. 

This theorem relies on the fact (Proschan (1965); see also Karlin (1968, p. 
384)) that for ƒ a symmetric log-concave density, 

(8.9) ( Zx + Z2 ) / 2 is more peaked than Z, 

meaning that 

/7(2)U) dS > ff(i) dk for all a > 0 

where 

is the density of (Zx + Z2)/2, each Z, independently distributed following the 
density/(£). 

The result of Theorem 8.1 is not correct for a general even density. 

THEOREM 8.2. Let X be a symmetric random variable with density f. Let Xv 

X2, Zv Z2, Z3 be independent realizations based onf. 
if 

more peaked 

(8.10) median( ZX,Z2,Z^) > (Xx + X2 ) / 2 , 

then for r < 1/2, we have r' > r. A sufficient condition that (8.10) holds is that 
ƒ(£) be an even-PF^ density (i.e.9f(x) has a Laplace transform <£(z) such that 

<t>(z) ,_i 
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with y > 0, at real, and LfLiaf < oo so that <j>(z) * is an entire function of 
order 2 of Pólya-Laguerre type; see Karlin (1968, Chapter 7)). 

The class of PF^ densities includes the normal density, the double exponen­
tial density f{x) = e-1*1 and all convolutions of translation and scale changes 
of these special densities. 

REMARK. Inequality (8.10) is not correct for arbitrary symmetric log-concave 
densities. For example, take ƒ(£) = Ce"1*1", C"1 = S^ooe~M°d^ w h i c h i s 

log-concave for all a ^ 1. For a large enough (even a > 4) (8.10) cannot hold. 
In view of (8.10) the peakedness comparison of the densities of 

median^ , . . . ,X 2 n _ 1 ) versus (Xx + • • • + Xn)/n is of interest. We have the 
following by-product of mathematical and statistical interest emanating from 
our studies of quantitative sex ratio evolution. 

THEOREM 8.3. Iff(x) is a symmetric PF^ density, then 
X .j. . . . + x 

(8.11) median(jfl9 X2,...,X2n-i) is more peaked than — - , 

where Xt are independent identically distributed with density f (x). 

In particular, for In - 1 independent observations from a normal density of 
mean zero, the density of median(Z1,...,A2lI_1) is more peaked than the 
density of (Xx + • • • + Xn)/n. 

We conclude with a very general theorem on the evolution of the phenotype 
variable underlying sex expression governed by the equation 

Xi+1-(X* + Xr)/29 

where X* (X**) is the male (female) adult sex ratio of generation t, and Xt+1 

the offspring value. Assume the threshold ((8.1)) criterion underlying sex 
expression. 

THEOREM 8.4. Iff(x) is a log-concave density then Var Xt -> 0 at a geometric 
rate and the sex ratio rt approaches 1/2. 

The proof of Theorem 8.4 uses the result that if U is a real random variable 
having a log-concave density, then the conditional variances Var[(/ | U < b] 
and Vai[U \U > a] are decreasing as a increases and b decreases (Karlin 
(1982a)). 

The convergence analyses of the transformation equations 
(8.12) Xt+l = aXf + PX?* + É, 

are also accessible. Detailed analyses of the above recursion system and further 
studies of polygenic sex ratio models under mother control and for haplo-
diploid organisms will be presented elsewhere (Karlin and Lessard (1984)). 

9. Perspectives and future prospects of mathematical evolutionary theory. 
This section starts with a brief discussion of how evolutionary biology differs 
from physics in concepts, issues, and methodology. Several surprising dis­
coveries emanating from the genetics of the past decade are noted. We then 
highlight a number of prominent current research areas in quantitative evolu­
tionary theory, and consider the kinds of mathematical and statistical analyses 
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that can play an important role in dealing with these areas. In all likelihood the 
new genetics emanating from the recombinant technology, like the genetics of 
the past (see §3), will lead to new interesting mathematical structures that will 
also be of value to other sciences. 

Evolutionary biology and physics. A main goal of physical theory is to 
delineate a set of basic laws that provide a coherent description of the forces 
acting on matter, and their consequences. Physicists see these laws as being 
comparatively few; their main effort is to synthesize rather than classify. 
According to Feynman (1964, Vol. 1, Chapter 38), "The most dramatic 
moments in the development of physics are those in which great syntheses take 
place, where phenomena which appeared to be different are discovered to be 
the same. The history of physics is the history of such syntheses and the bases 
of success of physical science is that we are able to synthesize." 

Many physicists and chemists would contend that from understanding the 
properties of particles responding to various forces and interactions, we will 
know the basic principles governing all phenomena. For example, Eigen (1971) 
states: "If we want to close the gap between physics and biology we have to 
find out what selection means in precise molecular terms which can ultimately 
be described in quantum mechanical theory. We have to derive Darwin's 
principles from known properties of matter." This reductionist viewpoint is 
inappropriate to evolutionary theory and most of organismal biology for 
reasons implicit in our later discussions. 

Biological phenomena divide into two main categories depending on the unit 
under study. The first category, organismal biology, includes the fields of 
evolution, ecology, ethology, biogeography, systematics, paleontology, and the 
new sociobiology. Possible units of study are the individual, a population, a 
species, an ecosystem, and more complex organizational forms. A population 
or an ecosystem cannot be summarized by simply listing its component parts; 
also entailed are the many complex interactions between parts. 

The second category, molecular biology, encompasses molecular genetics, 
biochemistry, biophysics, and a myriad of specialties such as immunology, 
morphogenesis, cytology, and embryology. Typical areas of study are biologi­
cal molecules, macromolecules, cell constituents, enzyme processes, regulation 
mechanisms and energy systems. 

The levels of biological processes range from cell component mechanisms, to 
the complexity of multicellular workings, to the whole organisms, to the 
relations of individuals within and between populations, to the organizational 
structure of ecosystems, and beyond. Perhaps for anthropomorphic reasons 
this hierarchy is usually seen as culminating with man, as distinguished by 
self-awareness and the ability within limits to control his own destiny. Biologi­
cal structures involve elements and functions of life processes from the simple 
units of DNA replication, transcription, and translation to the complex 
attributes of cognition, learning, purpose, and behavior. Diversity and com­
plexity in forms, mechanisms, and processes significantly increase with each 
level. 

I will now suggest several comparisons between physics and evolutionary 
biology relative to methodologies and concepts. Although for convenience of 
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exposition the discussion that follows tends to be dichotomized, in reality the 
differences discussed are ultimately of kind and degree. 

The nature of the questions asked. Evolutionary theory tends to ask the 
questions why and what for in a nonteleological sense. For example, what 
maintains a species in a given environment? What value does a given behavior 
pattern provide a particular organism? Why do some populations vary more 
than others? What accounts for different Hfe history strategies in form or 
frequency among similar species? Why do migration patterns differ signifi­
cantly between two closely related bird populations? 

Physics tends to ask the question how. How does the mechanism work? What 
are the basic particles, and how do they interact under different conditions? 
Physicists regard questions like "Why does matter exist?" as metaphysical. 
Even such a question as "Why are certain patterns mostly found and not 
others?" would be dispensed with by an appeal to stability considerations or 
minimum principles. Things just are the way they are; the interesting question 
is how they work. To be sure, there is evolution of a sort: stars are being born 
and going extinct, galaxies are changing, there is geological movement in plate 
tectonics. But this is very different from the dynamic biological evolution of 
our earth. 

Asked "Are the laws of physics changing?", the physicist Dirac responded 
"No", with the qualification that the strength of electromagnetism may be 
changing. There is radioactive decay and changes among atomic and sub­
atomic particles. This concept of change is very different from the biologist's. 

Experiment and repeatability. Physicists constantly affirm that the ultimate 
test of all physical theory is observation. Eddington asserts that "qualitative 
theory is no theory", Lord Kelvin that qualitative theory is bad quantification. 
Qualitative theory may be the real (and paramount) stuff of ethology and 
sociobiology. 

Physics generally aims for controlled experiments in which environmental 
and background conditions are judiciously manipulated. Such experiments are 
impossible in studying processes in vivo, and all but impossible in studying 
ecological or evolutionary phenomena. Even to describe the environment in a 
field study is a formidable, if not prohibitive, task. Various efforts to dis­
tinguish systematically between environments by using climatic parameters, 
demographic parameters, ecosystem dimensions, geological or chemical varia­
bles, hfe history attributes, etc. are often controversial. 

Physics and chemistry experiments possess a substantial degree of repea­
tability, whereas biological observations (molecular biology excepted) are 
mostly nonrepeatable. Moreover, evolutionary events often involve significant 
historical (unique) factors that obviously vary over time. Populations come and 
go. No two individuals or populations are alike, and no individual in his Hfe 
cycle remains the same. AU organisms result from a blueprint of genetic 
information, but the program develops from interaction with environment. 
Where experiments are neither controUable nor repeatable, the doctrine of 
falsifiabiHty, so important in physics, has Uttle application. 

Randomness and determinism. There is the old dictum of Laplace that 
randomness does not exist, it merely reflects our ignorance. Nevertheless, I 



EVOLUTIONARY THEORY 267 

would like to divide random phenomena into two types: randomness by design 
and randomness by complexity. In our discussion of evolutionary theory we 
contrasted the determinism of natural selection versus the randomness inherent 
to the events of mutation and recombination. Sexual crosses and incompatibili­
ties in mating systems genuinely effect a shuffling of gene types. This is 
obviously a case of designed randomness acting by the evolutionary process on 
the biological systems. (The evolution of sex can perhaps be attributed to 
randomness by complexity; but having entered into the evolutionary dynamics, 
it now expresses randomness by design.) On the other hand, the interaction of 
genetic forces with the environment entails complex nonlinear effects with 
outcomes exhibiting irregular ergodic or chaotic behavior; and this appears to 
be randomness by complexity, the kind that Laplace probably had in mind. 
Mutation events may be of this kind. 

The randomness of physical systems is mostly of the Laplace kind, i.e., 
randomness by complexity. The Fermi-Dirac and Boltzmann-Einstein statis­
tics, based on the simple notion of throwing balls into boxes, serve only as 
theoretical models to study different conceptions of ensembles of particles. 

Many different levels and forms of randomness are embedded in biological 
processes, among them degeneracies (e.g., genetic code), redundancies (e.g., 
multicopy DNA, multimeric proteins), and balance and flexibility in function 
(e.g., the induced-fit principle, the multitude of allozymes). 

In physics, quantum theory sets forth a "probability language" designed to 
allow interpretations of mainly atomic or subatomic phenomena. This lan­
guage is not consonant with that of mathematical probability theory. Probabil­
ities for various states are not added directly; but rather the wave functions are 
added, reflecting the wave-particle dualism underlying interference patterns. 
Statistical mechanics uses the standard calculus of probabilities to describe the 
distributional properties of large numbers of colliding particles in various 
states, and transitions between them. 

The uncertainty principle expresses an inherent fuzziness that must exist in 
any attempt to describe matter at the microscopic level. The fuzziness is mainly 
man-made, the result of disturbances imposed from outside the system. The 
uncertainty is embedded in the interference pattern induced by measurement 
with physical apparatus. It is not that physical processes are intrinsically fuzzy 
—in themselves they are completely determined by a full prescription of initial 
conditions—but rather that complete information to human observers is 
impossible. Since the possibihty of precise measurement is even smaller in the 
biological and social sciences, we may legitimately call for the development of 
a (qualitative) statistical theory appropriate to those disciplines. 

Laws, principles, theorems. The enunciation of physical laws is at the core of 
the physical sciences. Physical theory constantly strives to attain an economy 
of principles and fundamental entities. By contrast there are virtually no 
theorems for evolutionary or ecological phenomena, since exceptions are 
ever-present. There are, to be sure, universals (e.g., Mendelism, the DNA-RNA 
protein complex, recombination), but they are characterized by enormous 
variability. There are few unique spatial and temporal stable frequency pat­
terns of alternative gene forms and species types; and at the same time there 
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are many different possible stable states, such that which state occurs in a 
particular case may depend on historical factors or sampling fluctuation effects 
rather than deterministic selection forces. 

A severe limitation in developing biological theory is that often we cannot 
begin to conceive of the array of alternatives. The present array of organisms 
resulting from DNA coding represents only a miniscule fraction of all possible 
organisms. Even for molecular biologists, who deal with problems seemingly 
more closely related to physical and chemical processes, the investigation of 
regulating and structural mechanisms when passing from viruses and bacteria 
to multicellular organisms involves coming to terms with far more possibilities 
than were contemplated two decades ago. These difficulties may be attributa­
ble partly to the intrinsic randomness of recombination and sex, and partly to 
the exceedingly complex nonlinearities embedded in the life process owing in 
part to changing environmental conditions. 

Predictability and causality. Physics constantly strives for predictability. A 
classic example of excellent predictions without controlled experiments is the 
work of astronomers, and there have also been successful predictions of the 
existence of theretofore unknown subatomic particles, notably Dirac's predict­
ion of antimatter and more recent predictions relating to meson particles. In 
history, by contrast, prediction is never feasible, although given a succession of 
historical events one can often explain the causal relationships between them. 
In a similar vein, evolutionists, ecologists, ethologists, and taxonomists tend to 
agree that prediction is rarely possible in their fields, even in a statistical sense. 
Theories in these fields are proposed strictly for the analysis of causes or for 
descriptive purposes. 

The new genetics. The powerful new recombinant technology and the rapid 
DNA sequencing methodology developed over the past decade has brought us 
new perspectives on the nature and workings of genes. We were greatly 
surprised to learn of the existence of interrupted gene parts (exons-introns) 
having DNA segments that are transcribed but not translated into protein, the 
existence of mobile genes (transposons), the high order (106) of repeated 
tandem DNA pieces, and the presence of thousands of direct repeats widely 
interspersed through the genome (the DNA content of all the chromosomes). A 
new dimension of variability involves restriction length fragment polymor­
phism (RLFP) in populations, i.e., variability with respect to the length of 
pieces where specific restriction enzymes cut DNA. Because RLFP are so 
widely distributed over the genome, these polymorphisms may help make it 
possible to identify the locations of important genes. 

Another conundrum arising from the recombinant technology present in 
most higher organisms, as distinguished from viruses and bacteria, is the fact 
that 80%-90% of the genome is not transcribed and perhaps largely nonfunc­
tional. We have still to assess the implications of these new findings for 
evolutionary theory. 

Homologous recombination, involving the exchange of genetic material 
between homologous chromosomes at corresponding positions, is part of 
classical genetics. The recent discovery of abundant nonhomologous recombi­
nation is somewhat startling. Its mechanisms and implications are still being 
worked out. 
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Another area of potential advance is the study of moderately large and large 
multigene families as distinguished from the study of unique genes. The 
component genes of a multigene family usually function approximately the 
same way as the family as a whole, but are differentially expressed in different 
life stages (e.g., as in the globin genes). An interesting class of multigene 
families is the immunoglobulin genes, which are fundamental in processes of 
immune response. The recombinant technology has significantly assisted in 
explaining how antibody diversity is generated. 

Mathematics and the new genetics. Nucleic acid sequencing, engaged in by 
biochemists throughout the world, has been used to generate a data base 
currently totalling an estimated 2.5 million nucleotides. To search a large 
sequence or many smaller sequences and identify relevant features and struc­
tures, we need innovative computer programs coupled with rigorous statistical 
procedures. The problem of classifying patterns and homology relationships 
among DNA sequences within and between species is also worth the attention 
of mathematicians. The application of suitable mathematical techniques to the 
DNA data base may also help to resolve the old questions about the number of 
primordial genes. 

The construction of evolutionary trees based on DNA sequences rather than 
protein sequences presents new opportunities and potentially new insights. The 
investigation of similarities and differences between individuals, populations, 
and species requires attention to genetic, environmental, and cultural factors. 
The issue and definition of species selection is relevant. The need for refined 
statistical procedures in this area is well recognized (see Nei and Roychoud-
bury (1982), Karlin et al. (1979)). 

There are at least three forces that alter and shuffle DNA sequences: One is 
the process of homogenization (also called concerted evolution), which trans­
forms certain DNA segments within and between chromosomes to the same 
condition as others. Another is the constantly occurring mutation events that 
create variation and speciation. The third, broadly speaking, is selection forces 
favoring certain types. Clearly, we need to develop quantitative models that 
accommodate the interplay of these forces. 

Other problem areas that will need mathematical input are the classification 
of growth and extinction patterns, evolutionary rates, models for the descrip­
tion and classification of nonrandom mating dynamics, and the difficult 
problem of uncovering principles that may help explicate the nature and 
incidence of diversity and unity in biological systems. 

Evolutionary theory is important to a proper understanding of living popu­
lations at all levels. Thus the analysis of gene frequency arrays assuredly has a 
part to play in anthropological comparisons and observations of animal 
behavior patterns that may lead to a better quantification of the genetics and 
environmental components of behavioral traits. Mathematics, as the language 
of quantitative measurement, is clearly central to these pursuits. The relevant 
mathematics undoubtedly requires hybridization of nonlinear analyses, com­
pounded stochastic processes modeling, innovative statistical analysis of com­
plex data, and the creative implementation of the gigantic computer methodol­
ogy and all its ramifications. 
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