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FAST RECURSION FORMULA
FOR WEIGHT MULTIPLICITIES!

BY R. V. MOODY AND J. PATERA

The purpose of this note is to describe and prove a fast recursion formula
for computing multiplicities of weights of finite dimensional representations of
simple Lie algebras over C.

Until now information about weight multiplicities for all but some special
cases [1, 2] has had to be found from the recursion formulas of Freudenthal [3]
or Racah [4]. Typically these formulas become too laborious to use for hand
computations for ranks 2 5 and dimensions 2 100 and for ranks = 10 and di-
mensions = 10% on a large computer [5, 6]. With the proposed method the
multiplicities can routinely be calculated, even by hand, for dimensions far ex-
ceeding these. As an example we present a summary of calculations [7] of all
multiplicities in the first sixteen irreducible representations of £.

Let O be a semisimple Lie algebra over C with root system A and Weyl
group W relative to a Cartan subalgebra . Let A" be the positive roots with
respect to some ordering and II = {a,, ..., o} the set of simple roots. Let Q
and P be the root and weight lattices respectively spanning the real vector space
V C b*. If X C P we denote by X** the set of dominant elements of X rela-
tive to II.

Let M be an irreducible ¢-module with highest weight A and weight sys-
tem 2. An important feature of the approach is the direct determination of
Q%+ without computing outside the dominant chamber. Since every W-orbit is
represented by one weight A € Q+* of the same multiplicity, it suffices to com-
pute such X\’s.

The recursion formula for computing the multiplicities is a modification
(Proposition 4) of the Freudenthal formula in which the Weyl group has been
exploited to collapse it as much as possible. After describing the procedure, we
present the Eg example. Finally the necessary proofs are given.
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238 R. V. MOODY AND J. PATERA

Computation of dominant weights and their multiplicities. Examples.
Determination of Q**+. We define inductively a set of disjoint subsets
(layers’) of P*+, L, , k=0,1,2,...,by

M Ly={A}, Lg={yE€EP™*~L, [ly=\N-BNEL,_,,BEAT}.

Then (Proposition 1) Ug=oL; = @**. Thus Q** can be found directly by

computing the layers beginning with L. After Q** is computed in this way

it is reordered according to level. If p* € V is defined by (p", o;) = 1 for all ;,

then the new (partial) ordering of Q** is given by the integers (A, p"), A€ Q* .
Computation of the multiplicity m, of \ € Qtt. An my of level k is

given in terms of the multiplicities m, . of weights A" of levels above the kth one.
Let Stab,(7) be the stabilizer of X in W. Then Stab,(A) = Wy :=(rli € D),

where 7= {il(\, &) = 0} [8]. Let Wy = (W, ~1,), where 1, is the identity

transformation on V. W, decomposes A into orbits 04, ..., 0,. Each orbit o;
contains a unique §; = Zn,-].wi, £ € A* and ny; = 0 for all j € T (Proposition 3).
The modified Freudenthal formula is
n -]
)] 2 lofd 30 (A + pg, EDMyspg, = (e —c))my,
i=1  p=1
where |o,| is the number of elements of o; and, for all u € P,
1

3 ¢ =+putp)=(p,p), p=5 X o

a€A+

The sum on p is in reality finite and by standard properties of weight strings
N+pg, €EQ =N+ qE € Q forg >p.

It is advantageous to work in the w-basis of the fundamental weights
when computing m,. Thus writing A = Zn;w;, T = {i|n; = 0}. When the
positive roots are expressed in this basis one easily determines &’s. With §; :=
{j €T, oz,.) = 0} the orbit sizes |o,| are given by subgroup indices [Wy: ws,-]
or 2[W;: Ws,] (Proposition 3).

If in the relation (2) some weight u = A + p§; = Zn;w; is not in pt+,
then some n; < 0 and rik = [ noy is on a higher level. A finite number
(< |A*]) of reflections r; transforms u into » € P**+ and m,, is already computed.

If an extensive computation of weight multiplicities is to be undertaken, it
is important to notice that for a given O there are only finitely many subsets 7
of {1,2,...,1} and corresponding £; and |o,|. It is natural to compute this in-
formation once and for all. We are preparing such a table.

Consider an example of the Eg representation of dimension 4 096 000.
There are only nine weights in Q**. In the basis of fundamental weights these
are (after reordering according to levels) A, ..., Ag (see Table). Here the layers
are Lo = {Ag}, Ly = { A, A, N3}, L, = {5, N, Ny, N1 Ly = {2}, Given
AY in the c-basis, even by hand, the computation of (4) can be done in a matter
of minutes.
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of reflections r;, j = 1, 2, ..., 8. These weights are A, + £, =\, A, + &, =
A, Ay +E3 =23, and N, + 283 = 100020 Which after 16 reflections 7; is
transformed into A,. Hence (2) reads

lo41(Xs, 51)’"7\6 + lo,1(As, Ez)mxs + lo5l(A;, 53)’”7\3
4

+ losl(A, + 2%,, Ea)m}\,7 = (C;\s - C}\z)mxz.

Substituting the corresponding values into (4), one has 28 - 4 - 12 + 128 - 3 -
48 +84-2-174+84-4-2=(186-96)m,, which gives my, = 552.

The Table summarizes our results for the 16 irreducible representations of
Eg. A useful check of the results is the equality of dimensions

&) dimM)= 3 [w: WTi] my

veatt
where the dimensions dim(M), the number [W: WT',] of weights on each W-orbit,
and the multiplicities my, are given in the Table.

Theory.

PROPOSITION 1. Let M be an irreducible & -module with highest weight
A. Then for N\€E P with N\ A, NE QYT ifand only if (A + AT) N QT+
* &

PROOF. Suppose that \EPT+ a€ At andu:=A+a€Q**. Forall
g€ At, (A, @) =>0. Then (u, @) = (A + a, @) > 0. Since the weight string
through pisu + qa, ..., i, ..., u — pa where p — q = 2(u, @)/(e, @), [3], it
follows that p > 0 and hence A€ Q N P+ = Q++,

Conversely, suppose that A € Q1+, XA # A. We show that there is an
a€ At with A\ + a € Q**. Thereisa € AT with A + BE Q. If A + Bis
dominant we are done. If not (A + §, ozi) < 0 for some j so by the argument
above the a;-weight string through A + § contains A + 8 + a;. Also (A, ai) =0
since \ € P** 50 (8, @) < 0. Then §+ a;isaroot, B+ o; €A%, and A + § +
L’ € . We can replace § by § + Q; in the above and repeat. The process can-
not continue indefinitely, so the required « exists.

An interesting consequence of Proposition 1 is

PROPOSITION 2 (NOTATION OF PROPOSITION 1). Let k be the largest in-
teger such that L, # @. Then L, is a singleton {w}. Furthermore, w depends
only on A mod 0. In particular 0 € Q if and only if A € Q.

For T C {1,2,...,1},let V := Z,crRay, and let Ay be the root sys-
tem based on sub-Coxeter-Dynkin diagram corresponding to the vertices labelled
by T. Then V7 N A = A
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ProrosITION 3. Let T C {1, ...,1} be any subset. Then each orbit o of
Wp in A contains a unique element § € AY of the form Zn;w; where n; = 0 for
all i € T. Furthermore, if S = {i € T|n; = 0} then either lo| = [Wp: Ws] if
§E€ Ay, orlol =2[Wy: W] if £ € Ar.

PROOF (EXISTENCE). Let 0 be an orbit of WT in A. Choose § = Zn;w;
= Z¢;o; € o with htt := Z¢; maximal. Since—1, € ﬁ/T, £€ At Since ht(r;%)
< ht(§) for all i € T, we have (§, o)) >0 hence n; = 0,if i€ T.

(UNIQUENESS). Let m: V' — V. be the orthogonal projection onto V =
ZicrRa;. Then i€ T, v EV, (7(v), &) = (v, o) from which it follows that 7
is Wp-equivariant. Furthermore, 7 is injective on any W.,.-orbit in V since Vi N
ker m = 0. Thus there is a unique element on each W,-orbit in ¥ whose projec-
tion is in the dominant chamber of V7 under Wy. If u = Zu;wj; is such an ele-
ment then (u, ¢;) = (m(w), o) =0 forall i €T, thatisuy; >0 forali € T.

Now let £ € A*. If Wyt = Wyt then —§ € Wpk so Wk 0 A™ # g,
from which £ € A}. Conversely, if § € A} then —§ € W& so WTE = Wrk.

Finally suppose that distinct &, ¢’ satisfy the hypothesis of the Proposition
and define the same ﬁ/T-orbit. Then by the above W & #* WTE' so in fact ﬁ/Tz
# Wpk, £ € Ap, Wt CAY and &’ € ~Wy £ C A7, a contradiction. This proves
the uniqueness. The statement on the orbit size is immediate.

PROPOSITION 4 (MODIFIED FREUDENTHAL FORMULA). Let M be the ir-
reducible @-module of highest weight A and let X € Q(A). Let Wy = Stab,,())
and let oy, ..., o0, be the orbits of ft\/T in A Let & € o; be as in Proposition 3.
Then equation (2) holds.

PrOOF. We may suppose the indexing of the orbits is taken so that
0, Y---Vo, =4, 0<m<n Fori<m, 0, = W whereas for i > m,
0; = Wy, U —Wr§; (disjoint). Begin with the form of Freudenthal’s formula
[3, Equation 48.2]:
6) eamy = 3 Y (Ntpa,)my 0 T (A N)my.

«€A p=0

For w € Wr, (A + pwa, wa) = (W(A + pa), wa) = (A + pa, @) and m, 0 =
My 4 pa> 50 the double sum of the right-hand side of (6) may be rewritten as

Z |WTE‘7I Z ()\ + p%, Sj)mh+p€‘-
) i=1 p=0

T3 WREl X L Pl By e, + (- PR —E)m e )

i=m+1 p=0
Now for any o € A there is the relation [3, §48]
(8) Z ()‘ + pa, a)m}\+pa =0

p=-—o
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by which (7) becomes

iZ IWré,l Z (A + pg&;, E)my, +pE;
=1

p=0
®

+i E (Wr§l {2 Z (N + s, E)my 4oy + (A, E)my
=m+1 p=

Collect the coefficients of m, appearing in (9). In the first sum occur those £;

which are in A;. Since (A, ai) =0forjET (\g)=0forj=1,...,m.
In the second sum we have Z/_, | IWr&I(N &) =2 _ v, +(X @) =

Ea - A+(>\, @) = 2(A, p). Taking account of the (A, \)m, appearing in (6) and

2IWrEl = lo;| for i > m, we arrive at

camy = Z logl Z (A + P, £)my ype, + (N p) + (N N))my
=1 p=1

which proves the proposition.
The authors gratefully acknowledge the hospitality of the Aspen Center for
Physics where this paper was written.
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