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FAST RECURSION FORMULA 
FOR WEIGHT MULTIPLICITIES1 

BY R. V. MOODY AND J. PATERA 

The purpose of this note is to describe and prove a fast recursion formula 

for computing multiplicities of weights of finite dimensional representations of 

simple Lie algebras over C. 

Until now information about weight multiplicities for all but some special 

cases [1 ,2] has had to be found from the recursion formulas of Freudenthal [3] 

or Racah [4] . Typically these formulas become too laborious to use for hand 

computations for ranks ^ 5 and dimensions ^ 1 0 0 and for ranks — 10 and di­

mensions ~ 104 on a large computer [5, 6 ] . With the proposed method the 

multiplicities can routinely be calculated, even by hand, for dimensions far ex­

ceeding these. As an example we present a summary of calculations [7] of all 

multiplicities in the first sixteen irreducible representations of Es. 

Let ($ be a semisimple Lie algebra over C with root system A and Weyl 

group W relative to a Cartan subalgebra §. Let A+ be the positive roots with 

respect to some ordering and II = {at, . . . , a;} the set of simple roots. Let Q 

and P be the root and weight lattices respectively spanning the real vector space 

F C § * . If X C P we denote by X+ + the set of dominant elements of X rela­

tive to n. 

Let M be an irreducible ($ -module with highest weight A and weight sys­

tem £2. An important feature of the approach is the direct determination of 

£2 + + without computing outside the dominant chamber. Since every W-orbit is 

represented by one weight X £ £2 + + of the same multiplicity, it suffices to com­

pute such X's. 

The recursion formula for computing the multiplicities is a modification 

(Proposition 4) of the Freudenthal formula in which the Weyl group has been 

exploited to collapse it as much as possible. After describing the procedure, we 

present the E% example. Finally the necessary proofs are given. 
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Computation of dominant weights and their multiplicities. Examples. 

Determination of £l+ + . We define inductively a set of disjoint subsets 

('layers') of i> + + , Lk, k = 0, 1, 2, . . . , by 

( 1 ) I 0 = {A}, Lk= { 7 ^ / > + + - ^ _ 1 l 7 = A ~ ^ X G ^ _ 1 , / Î G A + } . 

Then (Proposition 1) \Jk==0Lk = £2+ + . Thus £l++ can be found directly by 

computing the layers beginning with LQ. After £2 + + is computed in this way 

it is reordered according to level. If pv E V is defined by (pv, at) = 1 for all /, 

then the new (partial) ordering of Sl+ + is given by the integers (X, pv), X G Çl+ + . 

Computation of the multiplicity mx of X G £2+ + . An mx of level k is 

given in terms of the multiplicities mx, of weights X' of levels above the kth one. 

Let Stab ̂ (X) be the stabilizer of X in W. Then StabH/(X) = WT := {rt\i G T), 

where T = {/|(X, a.) = 0} [8] . Let WT = (WT, - 1 v), where 1 v is the identity 

transformation on V. WT decomposes A into orbits ov . . . , on. Each orbit ot 

contains a unique £f. = Sw -̂co,., fy G A + and H/;. > 0 for all ƒ € T (Proposition 3). 

The modified Freudenthal formula is 

(2) E KI Z (X + P*i> W ^ + P * , = (CA " cx)mX9 
i = i p = i 

where |ÖJ is the number of elements of ot and, for all /x £ P, 

(3) cM := (M + P, M + p) - (p, p), p := - £ a. 

The sum on p is in reality finite and by standard properties of weight strings 

X + p%t £ Ü => X + q%t £Slïorq>p. 
It is advantageous to work in the co-basis of the fundamental weights 

when computing mx. Thus writing X = ErtjCOj, T = {i\nt = 0}. When the 

positive roots are expressed in this basis one easily determines £/s. With Sf := 

{ƒ e l̂O?,-, <*/) = 0} t n e orbit sizes |o#-| are given by subgroup indices [WT: Ws.] 

OT2[WT: WSi\ (Proposition3). 

If in the relation (2) some weight ju = ^ + V%t = S/ï̂ coy is not in /> + + , 

then some «. < 0 and rju = /x - « a - is on a higher level. A finite number 

(< |A+ | ) of reflections rt transforms ju into v G P++ and mv is already computed. 

If an extensive computation of weight multiplicities is to be undertaken, it 

is important to notice that for a given ($ there are only finitely many subsets T 

of { 1 , 2 , . . . , / } and corresponding %t and \ot\. It is natural to compute this in­

formation once and for all. We are preparing such a table. 

Consider an example of the Es representation of dimension 4 096 000. 

There are only nine weights in £l+ + . In the basis of fundamental weights these 

are (after reordering according to levels) X0, . . . , X8 (see Table). Here the layers 

areZ,0 = { X8}, Lx = { X7, X6, X3}, L2 = {X5 , X 4 ,X 2 ,X 1 } , L3 = {X 0 } . Given 

A + in the co-basis, even by hand, the computation of (4) can be done in a matter 

of minutes. 
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The determination of the multiplicity mx is representative. Suppose we 

already know mx% = 1, m x ? = 2, mX(. = 12, mx$ = 48, mx^ = 56, mK3 = 174. 

First we find the quantities %t and \ot\ for X2. They are %x = ooooooi» 
|Oj| = 28, 

?2 = - loooooo. lo3l = 128, J3 = _ 1 0 2 0 0 1 0 , lo3l = 84. Next we find the 
weights Xj + p%i which either are in S2+ + or are transformed there by a sequence 
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of reflections r-, j = 1, 2, . . . , 8. These weights are X2 + %x = X6, X2 + £2 = 
X5, X2 + | 3 = X3, and X2 + 2 | 3 = -1000020 w m c n after 16 reflections r* is 
transformed into X7. Hence (2) reads 

KI(X6> ?i)^x6 + lo2l(X5, %2)
m\s + IÖ3I(X3> £ 3 ) w \ 3 

(4) 
+ k>3|(X2 + 2£3, ^)mXi = (cXg - c ^ m ^ . 

Substituting the corresponding values into (4), one has 28 • 4 • 12 4- 128 * 3 * 
48 + 84 • 2 • 174 + 84 • 4 • 2 = (186 - 96)m^ which gives mXi = 552. 

The Table summarizes our results for the 16 irreducible representations of 
Es. A useful check of the results is the equality of dimensions 

(5) dim(A#) = Z \.W: wr]m\.> 

where the dimensions dim(M), the number [W: WT] of weights on each JV-orbit, 
and the multiplicities mx. are given in the Table. 

TTieory. 

PROPOSITION 1. Let M be an irreducible ($ -module with highest weight 

A. Then for X G P+ + with X ± A, X G £2+ + *ƒ ™tf o«/y i/(X + A+) n £2+ + 

# 0 . 

PROOF. Suppose that X G P + + , a G A+ and /x := X + a E £2+ + . For all 
0 G A+, (X, a) > 0. Then (/!, a) = (X + a, a) > 0. Since the weight string 
through n is /z + #a, . . . , M, • • •, M ~ P<* where p- q = 2(/z, a)/(a, a), [3], it 
follows that p > 0 and hence X G 12 O P+ + = £2+ + . 

Conversely, suppose that X G 12+ + , X =£ A. We show that there is an 
a G A+ with X + a G £2+ + . There is a 0 G A+ with X + 0 G fi. If X + 0 is 
dominant we are done. If not (X + 0, aj) < 0 for some j so by the argument 
above the ay-weight string through X + 0 contains X + 0 4- oy. Also (X, aj) > 0 
since X GP + + so (0, a;) < 0. Then 0 + a ; is a root, 0 + ay G A+ , and X + 0 + 
a. G 12. We can replace 0 by 0 + a- in the above and repeat. The process can­
not continue indefinitely, so the required a exists. 

An interesting consequence of Proposition 1 is 

PROPOSITION 2 (NOTATION OF PROPOSITION 1). Let k be the largest in­
teger such that Lk =£0. Then Lk is a singleton {co}. Furthermore, co depends 
only on A mod 0. In particular 0 G Ci if and only if A G Q. 

For T C {1, 2, . . . , / } , let VT := S^Ra,-, and let A r be the root sys­
tem based on sub-Coxeter-Dynkin diagram corresponding to the vertices labelled 
by T. Then VT n A = AT. 



FAST RECURSION FORMULA FOR WEIGHT MULTIPLICITIES 241 

PROPOSITION 3. Let T C {1, . . . , /} be any subset. Then each orbit o of 
WT in A contains a unique element £ G A+ of the form ^n^ where nt > 0 for 
all i G T. Furthermore, if S = {/ G T\nt = 0} then either \o\ = [WT: Ws] if 
| G A r , or \o\ = 2[WT: Ws] if$£ AT. 

PROOF (EXISTENCE). Let o be an orbit of W T in A. Choose | = 2ft,co; 
= ^c(a( G o with ht% := 2^. maximal. Since - 1 v G R^, £ G A+ . Since /î^(r^) 
< ht($) for all / G T, we have (£, a.) > 0 hence «f. > 0, if i G r. 

(UNIQUENESS). Let n: V —> VT be the orthogonal projection onto VT = 
2 e r R a . . Then i G 71, u G V, (n(v), a,.) = (u, O )̂ from which it follows that n 
is W^-equivariant. Furthermore, n is injective on any WT-orbit in V since VT n 
ker 7T = 0. Thus there is a unique element on each WT-orbit in F whose projec­
tion is in the dominant chamber of VT under WT. If ix = Su-ccy is such an ele­
ment then (/i, a.) = (TT(M), a,) > 0 for all i G T, that is ut > 0 for all i G r. 

Now let ? G A+ . If WT% = Wr£ then - f G R/^ so Wr£ n A~ ¥= 0, 
from which £ G A £ . Conversely, if £ G A J then - £ G J j / ^ so ^ r | = Wr£. 

Finally suppose that distinct £, £' satisfy the hypothesis of the Proposition 
and define the same WT-orbit. Then by the above WT% i^WT% so in fact WT% 
=£ WT%, £ é AT, WT% C A+ and £' G - WT% C A", a contradiction. This proves 
the uniqueness. The statement on the orbit size is immediate. 

PROPOSITION 4 (MODIFIED FREUDENTHAL FORMULA). Let M be the ir­

reducible &-module of highest weight A and let X G 12(A). Let WT = Stab^(X) 
A 

and let ov . . . , on be the orbits of WT in A Let £,. G oi be as in Proposition 3. 
Then equation (2) holds. 

PROOF. We may suppose the indexing of the orbits is taken so that 
ox U • • • U om = A r , 0 < m < n. For i < m, Oj = Wj,^. whereas for i > m, 
°i = ^r^/ u ~ WT%j (disjoint). Begin with the form of Freudenthal's formula 
[3, Equation 48.2] : 

(6) *A»*A = E £ ( ^ P M ) % p a + ( U K 
aGA p = 0 

For w G Wr, (X + pwa, wa) = (w(X + pa), w<x) = (X 4- pa, a) and m\+pwa = 
m\+pa> s o t n e double sum of the right-hand side of (6) may be rewritten as 

m °° 

( 7 \ <=1 P = 0 

i=m + l P=0 

Now for any a € A there is the relation [3, §48] 

(8) £ (X + pa, «)mx+P« = 0 
p =—oo 
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by which (7) becomes 

1 = 1 p=0 l 

(9) 

+ t WA\\2 £ (x + Pb ö«x+p«f + (*. SMx ! 
/ = m + l ( p = \ l 

Collect the coefficients of mx appearing in (9). In the first sum occur those £f. 

which are in AT. Since (X, aj) = 0 for j £ T, (X, £,.) = 0 for ƒ = 1, . . . , m. 

In the second sum we have S ? = m + 1 l ^ r y ( X , £/) = 2
a € = A + _A + (x> °0 = 

2 +(X, a) = 2(X, p). Taking account of the (X, \)mK appearing in (6) and 

2|W/7*£il = l°/l f°r ' ^ m> w e a r r i v e a t 

cA«x = t \ot\ t (A + /*„ y / n x + p ç . + (2(X, p) + (X, \))mK 
/ = 1 p = l l 

which proves the proposition. 

The authors gratefully acknowledge the hospitality of the Aspen Center for 
Physics where this paper was written. 
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