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CYCLIC ELEMENTS IN SOME SPACES
OF ANALYTIC FUNCTIONS
BY BORIS KORENBLUM!

DeFINITIONS. 1. A™P (p > 0) is the Banach space of analytic functions
f(2)in U= {z €C||z| < 1} that satisfy |f(2)| = o[(1 — lz)7P] (lz| — 1) with
the norm || fIl = max {|f(2)I(1 — z)’} (z € U). Note that f, — fin A~ and
g, — g in A~" implies f,g, — fg in A=6T,

2. BP (p > 0) is the Bergman space, i.e., the “analytic” subspace of
LP(rdrd9) in U.

3. A7 =UA?=URBRBP (p>0). A~" is a linear topological space [1].

4. Pis the set of all algebraic polynomials P(z). Pis dense in any of the
spaces A=P, BP, A~ .

5. Let A be any of the spaces A™P, B?, A~ and let f€ A. The ideal
generated by fin A is defined by

I(f; A) = clos{fPIP € P}.

If f is bounded, then also I(f; A) = clos{fg] g € A}.

6. An fE€ A is called cyclic in A if I(f; A) = A.

7. A closed set E C QU is called a Carleson set if its Lebesgue measure
|El = 0 and Z,II,| log(2n/Il, ) < o, where I,, are the components of 3U\E.

THEOREM. A singular inner function

) = exp= L)),

where v is a nonnegative singular measure on 93U, is cyclic in any (and hence in
all) of the spaces A=, AP, BP if and only if v(E) = 0 for all Carleson sets E.

The “only if” part is due to H. S. Shapiro [2]. The case A~ was treated
in [3]. Some partial results in a different direction are due to Daniel H. Luecking.

Since every A~P is a dense subset of some BP ’, and vice versa, it suffices to
prove the Theorem for A=P, Now we use the following result from [3]; it is,
roughly, equivalent to the above Theorem for A=,
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ProrosSITION. Let v be as described in the Theorem. Then there exists a
sequence of functions {g,,(2)}7, each belonging to A=%, such that

(@) g,&#0(z€U;m=1,2,...).

() h,, =sg, (m=1,2,...) belong to A=V for some fixed N > 0.

() N =h,ll_p—0(m— ).

To use this result for A~? we need the following

LEMMA. Ifg € A™", g(z) # 0 (z € U), and sg € A=Y, then sg € I(s; A~N).

ProOOF oF THE LEMMA. Since [s(z)| < 1, we have for 0 <t < 1,
Is2)(e(2))| < I(s(2)g(2))!| and thus sgf € A~V (0<r<1).

Let F= {t| 0<t<1,sg" €I(s; A=N)}. Fis closed and 0 € F. Let ¢, = max F.
If ¢ty <1, choose a § > 0 so that g% € A—(1=%0)N and a sequence of polyno-
mials {P,,}7 so that P,, — g% in A~(1=70)N_ We have sg?0P, —> sg®0*% in
A=Y and, since sg0P,, € I(s; A=), we obtain sg’0*% € I(s; A=) and thus

ty + 6 €F. Therefore t, = 1. Q.E.D.

ProoOF oF THE THEOREM. Fix an arbitrary p > 0 and show that [ €
I(s; A=P). By the Proposition and Lemma, 1€ I(s; A~") for some N, i.e., 5 is
cyclic in some A=Y, Let k > 1 be an arbitrary integer. We have st/ kgrln/ k—1
in A=N/% and hence sgl/* — s(¥=1)/k jn A=N/k_ By the Lemma this implies
s=1/k € [(s; A=N/*). For the same reason s ~1/kgllk — (k=2)k ¢
I(s; A=N/%), After k steps we obtain 1 € I(s; A~"V/¥), and thus s is cyclic in
A~N/%_ Since k is arbitrary, s is cyclic in all A=P (p > 0). Q.E.D.
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