THE LANGLANDS CONJECTURE FOR Gl, OF A LOCAL FIELD

BY PHILIP KUTZKO¹

Let F be a p-field and let W(F) be the absolute Weil group of G. Let $A_n(F)$ be the set of (equivalence classes of) continuous semisimple n-dimensional complex representations of W(F) and let $A(Gl_n(F))$ be the set of (equivalence classes of) irreducible admissible representations of $Gl_n(F)$. By local classfield theory there is a natural bijection between the sets $A_1(F)$ and $A(Gl_1(F))$, this latter set being just the set of quasi-characters of the multiplicative group F^{\times} of F; we observe the convention of using this bijection to identify one-dimensional representations of W(F) with quasi-characters of F^{\times} .

It is a conjecture of Langlands [JL] that there should exist a bijection $\sigma \rightarrow \pi(\sigma)$ between $A_2(F)$ and the subset of nonspecial representations in $A(Gl_2(F))$, this bijection having the following properties.

- 1. For χ in $A_1(F)$, $\pi(\sigma \otimes \chi) = \pi(\sigma) \otimes \chi \circ \det$.
- 2. The one-dimensional representation det σ should (under our convention) be the central character of $\pi(\sigma)$.
- 3. $L(\sigma) = L(\pi(\sigma))$; $\epsilon(\sigma) = \epsilon(\pi(\sigma))$ where L, ϵ are the *local factors* associated to σ and $\pi(\sigma)$ [JL] with respect to some fixed character of F^+ .

In case the representation σ in $A_2(F)$ is reducible or imprimitive (i.e., induced from a proper subgroup of W(F)) the existence of $\pi(\sigma)$ is demonstrated in [JL]; in particular, this verifies the conjecture in case $p \neq 2$.

In case p=2, Yoshida [Y] and Ree [R] have shown the existence of $\pi(\sigma)$ for certain primitive representations σ and Tunnell [T] has shown that the map $\sigma \longrightarrow \pi(\sigma)$ is a bijection given that the existence of $\pi(\sigma)$ has already been established for all σ in $A_2(F)$, thus establishing the validity of the conjecture for $F=\mathbf{Q}_2$ as well as for fields F of residual characteristic two which contain the cube roots of unity.

We have recently verified the existence of $\pi(\sigma)$ for any primitive representation σ of $A_2(F)$ and we have shown that the map $\sigma \longrightarrow \pi(\sigma)$ is indeed a bijection with the properties described above. We give here a sketch of our methods; a more detailed description of our results will appear elsewhere.

1. As above, let F be a p-field, p=2 and let σ be a primitive two-dimensional representation of W(F). Then [W] there exists a unique extension $K=K(\sigma)$

Received by the editors September 24, 1979.

AMS (MOS) subject classifications (1970). Primary 12B25, 20G05; Secondary 22E50, 12B15.

¹Supported in part by NSF Grant #MP575 07481.

of F, galois with galois group $\Gamma_{K/F}$ either A_3 or S_3 , such that the restriction, σ_K of σ to $\Gamma_{K/F}$ is imprimitive. We call $K(\sigma)$ the splitting field of σ . Given such a galois extension K/F we denote by $A_2(K/F)$ the set of representations in $A_2(F)$ with splitting field K.

Fix a character τ of F^+ and for any extension L/F, set $\tau_{L/F} = \tau \circ {\rm Tr}_{L/F}$.

Lemma 1.1. If σ is in $A_2(K/F)$ then if $\Gamma_{K/F} \cong A_3$, $\epsilon(\sigma_k, \tau_{K/F}) = (\epsilon(\sigma, \tau))^3$ while if $\Gamma_{K/F} \cong S_3$ and H is any intermediate field to K/F with [H: F] = 3 then $\epsilon(\sigma_H, \tau_{H/F}) = \zeta(\epsilon(\sigma \otimes \omega, \tau))^3$ where ζ is a cube root of unity and ω is the nontrivial character of F^\times corresponding to the quadratic unramified extension F_0/F .

LEMMA 1.2. Let \mathfrak{A} be the field obtained by adjoining all nth roots of unity, $3 \nmid n$, to Q. Let σ be a primitive two-dimensional representation of W(F). Then

- 1. There exists a one-dimensional representation χ of W(F) such that
- (i) $f(\sigma \otimes \eta) \ge f(\sigma \otimes \chi)$ for all η in $A_1(F)$ where $f(\sigma)$ is the exponent of the Artin conductor of σ [S];
 - (ii) $\det(\sigma \otimes \chi)$ has values in \mathfrak{A} .
 - 2. If χ is chosen with the above properties, then $\epsilon(\sigma \otimes \chi, \tau)$ lies in \mathfrak{A} .
- 2. Let $G_F = Gl_2(F)$ and let π be an irreducible admissible supercuspidal [JL] representation of G_F . Then π will be called *unramified* if it may be induced from the subgroup $Z \cdot Gl_2(\mathcal{O}_F)$ where Z is the center of G_F and ramified otherwise. (It should be noted that this terminology is nonstandard; π is generally called unramified if its conductor is \mathcal{O}_F .)
- LEMMA 2.1. An irreducible supercuspidal representation π of G_F is unramified if and only if $\pi = \pi(\sigma)$ for some two-dimensional representation σ of W(F) which is induced from $W(F_0)$.

Now let π be a ramified irreducible supercuspidal representation of G_F . Then [K] π may be induced from a one-dimensional representation of a subgroup of G_F and as such is determined by a ramified quadratic extension E/F, a quasi-character ρ of E^{\times} , a quasi-character χ of F^{\times} and a character η of E^{+} [GK]. Let K/F be tamely ramified. Then by lifting ρ to EK^{\times} and χ to K^{\times} through the norm and lifting η to EK^{+} through the trace, we obtain a representation π_K of G_K which we call a *tame lift* of π to G_K .

LEMMA 2.2. If
$$[K: F] = 3$$
 then

$$\epsilon(\pi_K,\,\tau_{K/F}) = \left[\epsilon(\pi,\,\tau)\right]^3.$$

LEMMA 2.3. Let K/F be galois with prime cyclic galois group $\Gamma_{K/F}$. Then a representation π of G_K is a tame lift if and only if π is fixed under $\Gamma_{K/F}$.

Lemma 2.4. Let π be an exceptional representation of G_F ; i.e., a supercuspidal irreducible representation not of the form $\pi(\sigma)$ for an imprimitive representation σ of Γ_F . Then there exists a unique extension K/F, galois with $\Gamma_{K/F}$ either A_3 or S_3 , such that π_K is not exceptional.

With π , K as above we call K the splitting field for π and let $A(G_K, G_F)$ be the subset of $A(G_F)$ consisting of representations whose splitting field is K.

Lemma 2.5. Let π be an irreducible supercuspidal representation of G_F . Then there exists a quasi-character χ of F^{\times} such that $\pi \otimes \chi \circ \det$ has minimal conductor and the central character of $\pi \otimes \chi \circ \det$ takes values in $\mathfrak A$. With χ as above, $\epsilon(\pi \otimes \chi \circ \det, \tau)$ lies in $\mathfrak A$.

LEMMA 2.6. Let σ be an imprimitive two-dimensional representation of W(F), let F_0/F be quadratic unramified and suppose that σ_{F_0} is irreducible. Then $[\pi(\sigma)]_{F_0} = \pi(\sigma_{F_0}) \otimes \omega$ o det where ω is an unramified character of F_0^{\times} and $\omega^2 = 1$.

3. THEOREM. Let F be a 2-field and let K/F be galois with galois group either A_3 or S_3 . Then the map $\sigma \to \pi(\sigma)$ is defined on $A_2(K/F)$ and puts $A_2(K/F)$ into bijection with $A(G_K, G_F)$.

PROOF (SKETCH). First let $\Gamma_{K/F}\cong A_3$. Pick σ in $A_2(K/F)$ such that $f(\sigma)\leqslant f(\sigma\otimes\chi)$ for quasi-characters χ of F^\times and such that det σ takes values in $\mathfrak U$. Then $\pi(\sigma_K)$ exists and is fixed by $\Gamma_{K/F}$. By Lemma 2.3, $\pi(\sigma_K)=\pi_K$ for some representation π in $A(G_K,G_F)$ and one may pick π such that its central character takes values in $\mathfrak U$. With this choice of π , $\pi=\pi(\sigma)$. In fact, it follows immediately that det σ is the central character of π . Also, one has $\epsilon(\pi\otimes\chi\circ\det,\tau)=\epsilon(\sigma\otimes\chi,\tau)$ for quasi-characters χ whose values lie in $\mathfrak U$ by Lemmas 1.1 and 2.2 and for tamely ramified χ by a direct computation. One then deduces that $\epsilon(\pi\otimes\chi\circ\det,\tau)=\epsilon(\sigma\otimes\chi,\tau)$ for arbitrary χ whence $\pi=\pi(\sigma)$. By Lemma 1.2 one may construct $\pi(\sigma)$ for any σ in $A_2(K/F)$.

In the same manner, using Lemmas 2.3, 2.4, 2.5, one may construct an inverse map $\pi \longrightarrow \sigma(\pi)$ from $A(G_K, G_F)$ to $A_2(K/F)$ thus demonstrating the theorem if $\Gamma_{K/F} \cong A_3$.

Now suppose that $\Gamma_{K/F}\cong S_3$, let H and F_0 be as in Lemma 1.1 and pick σ in $A_2(K/F)$ as above. Then σ_H is imprimitive and by Lemma 2.6, $[\pi(\sigma_H)]_K$ is fixed by $\Gamma_{K/F}$. It follows (with some work) that there exists a representation π in $A(G_K,G_F)$ such that $\pi_H=\pi(\sigma_H)$. Since det σ is the unique extension of det σ_H to W(F) and since the cube roots of unity do not lie in F, it follows from Lemmas 1.1 and 2.2 that $\pi=\pi(\sigma)$. Just as above, one may construct an inverse to the map $\sigma \longrightarrow \pi(\sigma)$ thus verifying the theorem in case $\Gamma_{K/F}\cong S_3$.

REFERENCES

- [GK] P. Gerardin and P. Kutzko, Facteurs locaux pour GL(2) (to appear).
- [JL] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin and New York, 1970.
- [K] P. Kutzko, On the supercuspidal representations of GL(2), Amer. J. Math. 100 (1978), 43-60.
 - [R] R. Ree (communicated by W. Casselman).
 - [S] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.
- [T] J. B. Tunnell, On the local Langlands conjecture for GL(2), Invent. Math. 46 (1978), 179-200.
 - [W] A. Weil, Exercices dyadiques, Invent. Math. 27 (1974), 1-22.
- [Y] H. Yoshida, On extraordinary representations of GL_2 , Algebraic Number Theory, S. Iyanaga (ed.), Tokyo, 1977, 219-303.

DIVISION OF MATHEMATICAL SCIENCES, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242