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that Sloman regards AI as a new synthesis of science and philosophy: 
experimental philosophy. He offers a challenge to those who bitterly attack AI: 

Anyone who objects to a particular explanation in the form of a program, 
should try to construct another better explanation of possibilities, that is, 
better according to the criteria by which explanations are assessed.... The 
preferred explanation should account for at least the same range of possibil­
ities with at least as much fine structure, (p. Ill) 

Without insisting that it be a program, he does demand an equally complete 
explanation from any rival theory. Those who criticize AI should ponder this 
well. 

If Sloman's book has the impact he hopes, it will certainly create what its 
title proclaims: a computer revolution in philosophy. 

I have a few gripes with the way the book as a whole is put together: (1) it 
is riddled with typos and bad punctuation which do not impair understanding 
but which lower one's estimate for the amount the author cares about his 
work; (2) occasionally long passages appear in boldface, or reduced, or 
indented, for no apparent reason; (3) too many brief asides are thrown in for 
some special restricted audience, and they detract from the flow; (4) its tone 
is simply too biting. 

But despite all my reservations, Sloman's book is a significant and highly 
original contribution to the debate about minds and machines. 
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The first interpolation theorem was given by M. Riesz (1926) in his study of 
the Lp mapping properties of certain operators associated with the Fourier 
series. Riesz showed that the boundedness of a linear operator A as a 
mapping from LPi(T) to Lr (T) (i = 0, 1) carries with it the boundedness of A 
from Lp(T) to Lr(T) for other pairs (p, r). The power of the method is that it 
determines the mapping properties of A on Lp spaces by examining A on only 
two appropriate pairs of (endpoint) spaces. 

Much of the early work in interpolation centered around extending and 
refining Riesz's results to be applicable to a larger variety of operators. It was 
not until the development of the abstract methods of interpolation in the late 
1950s that the wide applicability of interpolation became clear. These abstract 
methods not only allow for the study of operators on general Banach spaces 
but also give a unified approach to the development of various classical 
families of spaces which arise in the modern theory of differential equations, 
approximation, and numerical analysis. With the development of these ab­
stract methods, interpolation has become a major discipline which is indis-
pensible for a thorough understanding of that portion of analysis which deals 
with spaces of functions and mappings of operators. 
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Lp theory. The early results of Riesz were refined by G. Thorin into what is 
now known as the Riesz-Thorin convexity theorem. If (S, /A) and (T9 v) are 
two nonnegative totally a-finite measure spaces and A is a linear operator 
which maps Lp(S) into Lr{T) with norm Mi9 i = 0, 1, then, A maps Lp{S) 
into Lr(T) with norm M0 < M^~eM^ for any pair (/?, r)9 \/p = (1 - 0)/p0 

+ 0/pl9 \/r « (1 - 0)/ro + 0/r l9 0 < 0 < 1. The admissible pairs (p, r) 
have a simple geometrical description. If we identify (p, r) with the point 
(1//?, \/f) in the unit square, then the admissible pairs (p9 r) are exactly 
those for which (l/p, \/r) is on the line segment connecting (l/p0 , l/r0) to 
(l/p\, l/rx). The set of such pairs is denoted by o[p0, rQ; pl9 r j with closed or 
open brackets chosen to indicate whether or not the end pair is included. 

Riesz applied this interpolation theorem to give a simple proof of the 
Hausdorff-Young estimates for Fourier series. If ƒ E LX(T) then a simple 
inequality gives that ƒ E ^ ( Z ) and || fW^ < | | / | | i . On the other hand Parse-
val's identity states that for any ƒ E L2(T), || jf||2 = \\f[\2. Thus the Riesz-
Thorin convexity theorem applies and shows that | |/ | | r < ||/||p for any 
(/?, r) E a[l, oo ; 2, 2]. The admissible pairs are those (p, r) with 1 < p < 2 
and \/p + \/r = 1. 

Weak Lp interpolation. Many interesting operators fail to be bounded on 
the appropriate endpoint spaces thereby precluding the direct application of 
the Riesz-Thorin theorem. The best known example is the Hubert transform 
H which maps Lp{R) into itself for 1 <p < oo but not when/? = 1 or oo. To 
study such operators, a weak interpolation theory has been developed which 
replaces the assumption that A is bounded on the endpoint spaces by certain 
weaker, measure theoretic conditions. The ideas go back to J. Marcinkiewicz 
who introduced the condition 

v{x:\Af(x)\>y}<çy-'\\f\\'p (1) 

as a replacement for A: Lp -> Lr. The inequality (1) is automatically satisfied 
when A maps Lp(S) into Lr(T) since yrv{x: \Af(x)\ >y) < fT\Af\r dv. 
Marcinkiewicz showed that if (1) holds for (pi9 rf)9 i = 0, 1 then^4 maps Lp(S) 
into Lr(T) for all (p, r) E a(/?0, r0; pv rx) provided 1 < pv p2 < oo, 1 < rv 

r2 < oo and/?, < ri9 i = 0, 1 (the pairs are in the lower triangle). 
The weak inequality (1) can be reformulated in terms of rearrangements of 

functions. This is an important step since it comes back to itegral inequalities 
between Af and ƒ. For any measurable function ƒ, the distribution function ƒ 
is defined by ty» = ti{x: \f(x)\ >y} and the rearrangement of ƒ is defined 
byy*(0 = inf{j: tyy) < t}. The function/" is defined on (0, oo) is nonin-
creasing and most importantly is equimeasurable with ƒ and as such contains 
all the information about ƒ needed for the Lp norms, indeed, \\f*\\p = \\f\\p, 
0 <p < oo. Rewriting (1) in terms of rearrangements gives 

tx'r{Af)*{t) < qini,, t > o. (2) 

The formulation (2) leads naturally to the Lorentz spaces Lp q defined as 
the set of those f unctions ƒ f or which \\f\\Lpq = ||./*||M < °o where for any 
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nonnegative nonincreasing function \p, 

w« s UV'wor f ),/f o) 
with the usual change to a sup when q = oo. Certain fundamental embed-
dings hold for the Lorentz spaces, among others Lp ̂  c Lpp = Lp c Lpqi if 
1 < qx < p < q2 < oo. In terms of Lorentz spaces, (2) says that A maps Z^ 
into Lro0 so the weakening of the hypotheses in Marcinkiewicz's theorem 
consists of replacing Lr by the larger space Lro0. 

This idea can be carried even further in that Lp can be replaced by the 
smaller space Lp,, namely, if A maps Lp_, into Lr^,pi < r.,/?, ^ oo (/ = 0, 1), 
then the conclusions of Marcinkiewicz's theorem hold. This follows (when 
p > 1) from the E. Stein-G. Weiss theorem [13] which shows that it is enough 
to consider simple functions in establishing the weak type of an operator. A. 
P. Calderón [4] made perhaps the most important step when he proved that 
an operator A maps LpX into Lr^ i = 0, 1, with 1 < p0 <px < oo if and 
only if the following integral inequality holds. 

(Af )*(') < const Sa(f*)(t), t>0 (4) 

where for any decreasing \p and any o = o(p0, r0; px, rx) 

S„(*)^ r ^ * ) min { ^ , - i / ^ 
JQ i==0,l S 

'• j T ^ V ' « y + t*"*f~K'W">* (5) 
with m the slope of the line segment connecting (l/px, 1/rj), (l//?2> l/r2)* 
When a is closed on either endpoint the corresponding integral in (5) is 
deleted. This corresponds to strong mapping at that endpoint. 

The integral inequality (4) can be used as a definition of weak type a, as 
was done by C Bennett [1]. It is preferable to (1) or any statement about 
mappings of spaces. For one thing, in applications, it is usually the inequality 
(4) which is derived when one studies the mapping properties of the operator 
A. Also, (4) makes it transparent that A inherits all the mapping properties of 
Sa relative to rearrangement invariant norms. In fact, starting with (4), it is 
rather easy to prove the corresponding Marcinkiewicz theorems as well as 
other mapping results by merely applying norms to the inequality (4) and 
studying the mapping properties of Sa. For Lorentz space norms the mapping 
properties of Sa follow from the classical Hardy inequalities. There is another 
important reason for preferring (4). Our discussion so far has been restricted 
to the case/?! < oo. The reason for this is that the space L^x according to (3) 
consists of only the zero function and therefore cannot be used in the 
definition of weak type when/? = oo. The usual remedy is to use Lœ in place 
of L^x but this returns us to (1) and in fact gives nothing new in the case 
(oo, oo) since then weak type is the same as strong type (L^tO0 = L^). On the 
other hand, (4) makes perfectly good sense when the parameters are infinite. 
We should further note that in the case/?! = oo, inequality (4) cannot be split 
into separate statements about mappings of Lorentz spaces. 

- r'/ 
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Many operators satisfy weak type inequalities like (4). For example as was 
shown by Bennett and Rudnick [2], the R. O'Neil-G. Weiss inequality for the 
Hubert transform can be sharpened to 

(#ƒ)*(/) < c ( r > j f > ( * ) ds + J T > ( , ) ^ J , 0 < * < oo. 

Thus H is of weak type (1, 1; oo, oo). The standard mapping properties of H 
follow directly from this inequality e.g. H: Lp -» Lp9 1 <p < oo, H: L log L 
-> Lx (locally) and H: L^ -» Lexp. Similar weak type inequalities hold for 
fractional integrals and singular integrals. 

Abstract methods. Abstract methods were developed in the late 1950s and 
early 1960s which allow interpolation to be applied in a broad setting. These 
methods take two Banach spaces X09 Xx (which are assumed to be continu­
ously embedded in a Hausdorff topological space) and use them to generate 
new spaces Xa9 0 < a < 1 which have the interpolation property, i.e. if A 
boundedly maps Xt into Yi9 i = 0, 1 then A boundedly maps Xa into Ya9 

0 < a < 1. There are in essence two approaches: the complex method which 
is patterned after the Riesz-Thorin theorem; and the real method which is 
similar to weak type interpolation for Lp spaces. The complex method was 
developed by A. P. Calderón, J. Lions, and S. G. Krein. Let % denote the 
class of those functions ƒ which take values in X0 + Xl9 are bounded, 
continuous on 0 < Re(z) < 1 and analytic in its interior, with/((y + t) G X(9 

t = 0, 1. The space Xa is the set of all those x 6 I 0 + I j for which f (a) = x 
for some ƒ 6 f . The norm on Xa is defined by ||x||x = inf{||/||; ƒ e f , 
f (a) = x) with 

II/]] - max(sup| | /( i» | |^ sup ||/(1 + , » | | ;A 

If 7" is a linear operator mapping Xt into Yt with norm Mi9 i = 0, 1, then a 
simple application of the Hadamard three lines theorem shows that T maps 
Xa into Ya with norm Ma < M^~aMf for each 0 <<x < 1. Actually, the 
complex method can also be used to describe the mappings of a family of 
operators defined on a family of spaces depending on some analytic parame­
ter and in fact this may be its most appropriate formulation [5], [12]. 

There are several real methods introduced by J. Peetre, J. Lions, E. T. 
Oklander and others. These various methods are equivalent at least in the 
sense that they generate the same interpolation spaces. The choice of the K 
method of Peetre is the most applicable. If ƒ G X0 + Xx and t > 0, then 

K(f9t) = K(f9t9X09Xx) 

s inf{|l/ö|k + 'llfilk: ƒ - /o + fiJi e Xi9 i - 0, 1}. 

In some cases, Xx C X0 and then || • ||^ is only required to be a seminorm. 
For any/, K(f9 •) is a nondecreasing continuous, concave function on (0, oo) 
and as such, K(f9 t)/t is nonincreasing. Thus, K(f9 •)/(*) has the same 
properties as f* and now it is a simple matter to apply the Calderón-Marcin-
kiewicz ideas to this more general setting. For any 1 < p9 q < oo, the space 
XM is the set of those ƒ G X0 + Xx for which \\K(f9 -)/(-)llM < <*> (see (3)). 
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A more standard notation is X9q for Xpq where 0 = 1 — 1//?. When A is a 
linear operator which maps Xi into Yt with norm Mi9 i = 0, 1, then 

K(Af9 u Y» Yx) < M0 K(f9 Mxt/M0, X0, Xx) 

so that applying norms shows that A maps Xpq into Ypq with norm Mpq < 
Ml~9M\ when 1 < /? < oo and 0 = 1 - \/p. ' 

The spaces Â  q can be thought of as abstract versions of the Lorentz 
spaces. Many families of spaces can be viewed either as Xa or Xp spaces for 
appropriate endpoint spaces X09 Xv It is in this sense that interpolation 
theory can be used as a unified approach for the study of such spaces. 

If A is a linear operator for which 

K(Af9 t9 Y0, Yx)/t < const Sa(K(f9 -, X09 * , ) / ' ) 

then A is said to be generalized weak type o with respect to (X09 Xx)9 (Y09 Yx) 
[6]. When A is of weak type a then for any (p9 r) G o9A boundedly maps Xpq 

into Yrq, 1 < q < oo. 

AT-functionals. What emerges as the key ingredient of the abstract real 
method is the iÇf-functional. This is in essence what needs to be calculated in 
order to identify the spaces Xpq. This has been done for several, but by no 
means all, classical pairs of endpoint spaces. In each such instance, the 
afunctional turns out to be an important analytic quantity which describes a 
family of classical spaces. 

It is not surprising that the A-functional for (Ll9 L^) is related to re­
arrangements of functions. J. Peetre and, independently, E. T. Oklander 
showed that 

#(ƒ, U Lv LJ - f > (5 ) ds = <ƒ**(')> t > 0. (6) 
A) 

This means that K(f, t9 Ll9 L^)/t = Sa{f*)(f)9 for a = a(l, 1; oo, oo]. From 
the mapping properties of Sa it follows that Xpq = Lpq (l<p<co9l<q< 
oo) for the pair (Ll9 L^), and so at least in this sense the abstract real method 
recovers the classical Lp theory. There is a result of T. Holmstedt [10] which 
characterizes the afunctional for (X„ a, Xn a ) in terms of the ^-functional 
for (X09 Xx). This can be combined with (6) to characterize the /^-functional 
for any pair of Lorentz spaces. 

There is an analogous result to (6) for the Sobolev spaces Wp(Çi) provided 
that fi C Rn is suitably smooth [7], 

K(f, U W\9 W
k„)~t 2 (DJ)**(t). 

The spaces Xpq in this case are what could be called Lorentz-Sobolev spaces, 
in particular Xpp = Wp. 

Another important case is interpolation between Lr and W*9 1 < r < oo, 
k = 1, 2 , . . . . Here, H. Johnen and K. Scherer [11] have shown that for 
suitable smooth ti Q Rn

9 

K(f919 Lr9 Wr
k) ~ atif, tl'k)r9 t>0 (7) 

with o)k(f9 ')r the A:th order modulus of smoothness in Lr The spaces X are 
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the Besov spaces B?>q wth 0 - k - k/p and the norm on Bj!" is 

W^ sW. + ( j [V # ^a0r ] f 7 
dt\i/q 

There are two important ^-functionate for harmonic analysis which have 
recently been found. C. Fefferman, N. Riviere, and Y. Sagher [8] have shown 
that 

K(f, t; Hp9 LJ ~ (f*[(mf)*(s)y *} 
VP 

where mf is the grand maximal function of ƒ. For interpolation between Lx 

and BMO we have the result of C. Bennett and R. Sharpley [3] 

K(f9t9Ll9BMO)~t(f#)*(t) 

where ƒ is the "sharp function" introduced by C. Fefferman and E. Stein [9]. 

Properties of spaces. It is clear how interpolation gives information about 
the mapping properties of operators but it can also be used to give important 
information about the spaces themselves, in the form of embedding theorems, 
trace theorems and the like. This is often accomplished by studying the 
identity operator. For example, the inequality (for Q Q Rn) 

«*(/.0* <*ƒ'*-'«*(ƒ,*),, 4 (8) 
JQ S 

when 9 = n/rx — n/r2 expresses the fact that the identity operator is of weak 
type a(k/(k - 0), 1; oo, k/0] for the pairs (Lr|, Wr

k)9 (L,2, W?2)9 because of 
(7). The standard embedding theorems for Besov and Sobolev spaces follow 
from (8), e.g. B?*9* C B%*9 X > 0. Embedding theorems for Besov spaces 
into Lorentz spaces can be proved from the inequality [6] 

for r > 1 (a strong inequality holds for r = 1). 
Other information can be obtained from the study of differential operators. 

For example the weak inequalities 

k{D% t)p < c['ak+J(f, s)p-^, t > 0, | l | = j 
•'O Sr 

establish the equivalence of norms involving (7) with other norms involving 
the modulus of smoothness of derivatives of/. 

The book. The main thrust of TriebePs book is the development of Sobolev 
and Besov spaces from the viewpoint of interpolation theory. The first 
chapter gives a careful accounting of interpolation theory, pre-1975. Because 
of the continual activity in this subject, some of the more recent results, 
including the calculation of several K4unctionals, is not included. 

Chapters 2, 3, and 4 apply interpolation to the study of Sobolev and Besov 
spaces (with weights) including a unified development of embedding theo­
rems, trace theorems and the like. There is much of interest here although in 

ƒ**(') < c (9) 

COlr 
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some instances the exposition suffers from poor orientation. A good case in 
point is the development of Besov spaces. The space B^q is first defined for 
Rn using in essence the norm: ||/|| = ||{2^||(^/)v||i>}jl1||<r, where A and V 
the Fourier and inverse Fourier transforms and (<fy) is a partition of unity 
with supp <j>j C {JC: 2j~l < \x\ < 2J+l}. With some work, the equivalence of 
this norm with the norm involving (7) can be established. For more general 
$2 c Rn

9 the space Bpq is defined as the set of those functions which can be 
extended to a function in Bp,q(Rn). This approach not only loses the flavor of 
Bp* as a space of smooth functions, but all properties of Besov spaces must 
be verified through the cumbersome use of extensions and transforms. Most 
serious of all, this approach led to the decision of the author to exclude 
completely the cases/? = 1, oo, since these must be handled separately, in that 
the Hörmander multiplier theorem does not hold for these values of p. 

Later chapters of the book deal with some selected topics including a study 
of (elliptic) differential operators and the structure of nuclear spaces. These 
establish once again the far reaching application of interpolation theory. 

TriebeFs book should surface as an important reference for interpolation 
theory and spaces of functions. The comprehensive notes and remarks section 
are of value even to the specialist. 
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