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Linear functional analysis evolved as the natural gathering point for a 
number of different investigations into the solvability of linear equations 
which were either in the form of integral equations or in the form of 
countable systems of linear scalar equations in which the unknown was a 
sequence of numbers. As the subject developed much broader areas of 
applicability became evident. These applications, in turn, spawned further 
abstract development, and the abstract results themselves assumed an intrin­
sic interest. The basic approach of functional analysis, where one considers 
functions to be points in a large space of related functions and lets the 
differential or integral operator act on these points, has also been very 
successful in treating nonlinear problems. 

The division between the linear and the nonlinear theory is, of course, not 
so sharp. As we know from calculus, a great deal of information about a 
system of nonlinear equations is obtained from their local linear appro­
ximation. Moreover, it is often possible to glean information about a linear 
problem by considering a related nonlinear problem; this is so strikingly 
demonstrated in Lomonosov's recent results on the invariant subspace prob­
lem for linear operators [5]. 

Berger's aim is to give a systematic treatment of some of the fundamental 
abstract nonlinear results and of their application to certain concrete prob­
lems in geometry and physics. 

The study of nonlinear operators acting on infinite dimensional spaces has 
an obvious starting point-study the finite-dimensional case, a finite system of 
scalar equations in a finite number of unknowns. Even at this step we note 
that a fairly complete description of the solutions would be very difficult; 
when p(x) is a polynomial in a single variable the study of solutions of 
p(x) = 0 is the subject matter of classical algebraic geometry. 

Let n and k be integers, n > 1, k + n > 1 and let 0 be a bounded open 
subset of Rn. Suppose/: 0 ~>RW+A: is continuous. 

If ƒ is one-to-one then k > 0. Moreover, assuming ƒ is 
one-to-one, ƒ (0) is open in Rn+k iff k = 0. (Fl) 
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If k = 0, 0 contains the origin, and ƒ (JC) ^ fix when /? < 0 
and x E 3 0, then there exists JC E 0 with ƒ (JC) = 0. (F2) 

Clearly (Fl) is a direct (local) extension of the linear theory. (F2) is an 
existence result from which it is easy to see, letting ƒ = I — h9 that when 0 is 
convex and A(3 0) Q 0, then h has a fixed point. These results, known as the 
Invariance of Domain Theorem and the Brouwer Fixed Point Theorem are 
consequences of the topological degree of Brouwer. For many years prior to 
1912 generalizations of the notion of winding number for functions of a 
complex variable had been sought. Brouwer completed this search in 1912 by 
assigning to each member g of *$ = {ƒ: 0 ->Rn, ƒ is continuous, f(x) ^ 0 
when x E 3 0 } an integer, which we can denote by deg(g, 0, 0). This integer 
was invariant under homotopies lying in ÏÏ, and its nonvanishing implied g 
vanished in 0. It enjoys other properties and is very useful for not only 
proving existence results, but also for describing the nature of the set of 
solutions. 

Suppose 0 = {JC E R", ||JC|| < 1), let SJ = {JC E RJ+l\ \\x\\ 
= 1} and define/: Sn~1-* Sn+i~l by ƒ(*) =/(JC)/|}/(JC)| | 
for x E Sn~l. Then every continuous extension of ƒ to 0 
with values in Rn+k necessarily has a zero iff ƒ is not 
homotopic, through maps of Sn~l into sn+k~l, to a constant 
map. In particular, if ƒ is homotopically nontrivial then 
ƒ (x) = 0 has a solution in 0. (F3) 

The proof of the above is clear. When k = 0, deg(ƒ, 0, 0) =£ 0 iff ƒ is 
homotopically nontrivial, so no new existence information is gained. When 
k > 0, ƒ is always homotopically trivial. When k < 0, one has a sufficient, if 
difficult to check, criteria for existence. 

Suppose ƒ is continuously differentiable and at x0 E 0, 
df(x0) is nonsingular. Then ƒ is a homeomorphism of a 
neighborhood of x0 onto a neighborhood of f(x0). (F4) 

Let ƒ be differentiable, have a Lipschitz continuous deriva­
tive, and suppose that at x0 E 0, df (x0) is nonsingular. Then 
if f(x0) is small, the sequence {xk} defined by 

Xk+i-Xk-[df(Xk)]~lf(*k) (F5) 
converges to a solution of f(x) = 0. 

The Inverse Function Theorem, (F4), and Newton's Method, (F5), are 
distinctly different from the previous two results. Based upon information 
about ƒ at a point x0 one can say something about ƒ nearby x0. In (F2) and 
(F3) information about ƒ on 3 0 implies the existence of a zero in 0. 
Moreover, (F4) and (F5) are not finite-dimensional results in the sense that 
they are immediately extendable to the general Banach space case. When X 
and Y are Banach spaces, U C X is open, ƒ : U -* X is dif f erentiable (the 
derivative of ƒ at x, df(x), is a bounded linear map of X into Y) and df(x0) 
being nonsingular means it is a bijection between X and Y, then (F4) and 
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(F5) hold. The proof is based upon the most venerable of nonlinear 
techniques-the iterative method which is now well known as the Banach 
Contraction Principle [3]. 

Let A be a complete metric space, with h: A ->A Lipschitz 
with Lipschitz constant less than 1. Then h has a unique 
fixed-point **, and {hk(x)} converges to x* for any x E A. 

The extension of (Fl) and (F2), and, more generally, of topological degree, 
to general Banach spaces requires an essential modification. From now on let 
X denote a Banach space equipped with a norm || ||, and let Br = {x E 
X\ \\x\\ < r)* If X is infinite dimensional, Bx is not compact and as a result 
there always exist continuous maps g: Bx -> 2?, without fixed-points. This 
being so, one cannot have a reasonable topological degree defined for all 
continuous maps g: Bx -» X with g(x) *£ 0 when x E 92Ï,. 

In 1922 Birkhoff and Kellogg [2] used the Brouwer Fixed Point Theorem to 
prove the existence of solutions to certain integral equations. Their method of 
proof was to discretize the equations, apply the Brouwer Theorem to the 
resulting finite-dimensional system, and then show that as the discretizations 
became more refined these approximate fixed-points converged to a solution 
of the full equation. In 1930 Schauder [8] gave an abstract version of their 
results. When D C l a continuous mapping, g: D -* X is called compact if 
g(A) is compact whenever A C D is bounded. Schauder proved that if D is 
closed, bounded and convex and g: D-+D is compact, then g has a 
fixed-point. The role played by compact perturbations of the identity in the 
linear theory had long been noted, and in 1934 Leray and Schauder [4] 
extended Brouwer degree to nonlinear mappings of this type. When V QXis 
open and bounded, h: V-*X is compact, h(x) ^ x when x EdV, they 
defined an integer deg(2 — /*, F, 0), which they proved had all of the 
properties of the Brouwer degree provided deformations took place within 
compact perturbations of the identity. Having a topological degree available 
permitted investigation of problems by means of the following a priori bound 
method-if C: AT-» X is compact and linear and/: X -* X is compact then ƒ 
has a fixed-point provided that {x E X\ x » tf(x) + (1 - f)C(x)f for some 
t E [0, 1]} is bounded. This method produced substantial improvement in 
existence results for nonlinear elliptic partial differential equations, problems 
which had previously been attacked by local continuation arguments where 
one starts, say, at the unique solution of x = tf(x) 4- (1 — t)C(x) at t « 0, 
uses a local analysis to prove existence for small values of f, and by repeating 
the argument marches across to a solution at t = 1. 

Of course, for a concrete problem the choice of the spaces in which one sets 
up the problem will be very important (assuming there is a choice; for some 
problems, methods of functional analysis have not been shown to be useful). 

Let us consider the following problem: Let Q be a bounded domain in Rw, 
with 3B smooth, let q: B x R w + l - > R be continuous and consider the 
equation 

âu(x) — q(x, u(x)9 Vu(x))9 for* E Q, 

K(*) = 0, for*E3Q. 
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To consider this problem in the context of functional analysis it is clear that 
one should first find out the spaces where the Laplacian is well behaved. The 
obvious _guess is that one should let X = {u E C2(ïï), u = 0 on 3£2} and 
Y = C(B), where these spaces are equipped with the norm defined to be the 
sum of the supremum norms of derivatives up to order 2, and the supremum 
norm, respectively. It turns out that A: X -» Y is continuous and one-to-one, 
but fails to be onto, and, in fact, fails to have closed range. Schauder 
developed a priori estimates for the Dirichlet problem from which it follows 
that the following spaces are better for A. If u: Q-»R and a E (0, 1) one 
defines the a-norm of u9 \\u\\a9 to be 

, , xl , K*) - "OOI 
sup|n(*)| + sup —, ,« , 

and let C2,a = {u: Q -» R, derivatives of u up to order 2 have finite a-norm, 
and u = 0 on 3fl} and C°-a - {u: S2~»R, \\u\\a < oo}. Letting ||u||a define 
the norm on C0,a and letting the norm of u in C2*a be the sum of the a-norms 
of derivatives less than or equal to order 2, these are Banach spaces and A: 
C2'a -* C0>a is a bijection. One can also choose Y to be Z/(Q), p > 1, and 
identify a space of functions, X9 having generalized derivatives up to order 2, 
incorporating the null boundary conditions, with A: X ~* LP a bijection. 

In either of the above situations when q satisfies some additional properties 
one can formulate the above problem as a fixed-point equation for a compact 
mapping in C0,a or Lp

9 and one can bring the machinery of topological 
degree to bear on problem (1). 

The above fixed-point theorems and the Leray-Schauder degree have been 
generalized in many different directions, as has the fundamental method of 
approximating infinite-dimensional problems by finite-dimensional problems 
and then verifying the validity of taking limits. 

Let us now consider some problems which are related to the classical 
calculus of variations. Many problems in geometry and physics have a 
formulation where one has a real valued functional, $9 defined on a class of 
functions and one seeks a function in this class where ^ is minimized. The 
problem of determining geodesies joining two points p and q on a manifold 
M amounts to minimizing arclength among all paths in M joining p and q. 
When a body is deformed under the influence of certain forces and one 
wishes to determine the equilibrium configuration one can associate to each 
possible configuration an energy, and the configuration which minimizes this 
energy is the equilibrium. 

When the above ^ is differentiable and u0 is a minimum then by taking 
directional derivatives of ^ in arbitrary directions at u0 one obtains necessary 
conditions for a minima which in many concrete situations are the classical 
Euler-Lagrange equations. On the other hand, sometimes one has a partial 
differential equation which one recognizes has a variational principle behind 
it and then the above \p can be used as a means of studying the equation. In 
the situation where the domain of \p is restricted to a surface one uses 
Lagrange multipliers to relate the minimization problem to an eigenvalue 
problem. 
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Suppose q in equation (1) does not depend on Vu. Then a classical 
approach to solving 

f — àu(x) = q(x, u(x)), x 6 0 , 

[u(x) = 09 xEdti, ^' 

is to minimize t|/(w) = Jn { \ |Vt/(x)|2 — g(x9 u(x))}dx, over a suitable class of 
functions vanishing on 3ÏÏ, where dg(x9 s)/ds = q(x, s). In our present 
context an important aspect of this problem is to determine reasonable 
conditions under which a continuous function \p: H->R, where H is a 
Hubert space, has a minimum. Suppose there exists an r > 0 such that 
\(s(u) > i//(0) when ||w|| > r. Then, letting m = M{^(ü)\u E H, \\u\\ < r}, we 
wish to prove m is attained. Often it is not hard to prove m > — oo, so, 
supposing this has been done, we may select {un} with ||wj| < r and 
i//(w„) < m + l /« , for each «. One cannot expect {*/„} to have a subsequence 
which converges in the norm topology. However, assuming H is separable 
and choosing {e(} to be an orthonormal basis for H, we may use a diagonali-
zation argument to choose a subsequence {unk) and w0 E ff with ||w0|| < r 
such that {<iV e,-» -» <t/0, ^>, for each i. If one additionally assumes \p is 
convex one can show i/> is weakly lower semicontinuous with respect to 
coordinatewise convergence. So u0 is a minimum. 

This idea of relating convexity and the topology of coordinatewise conver­
gence was known to Hilbert and Beppo Levi, and the method carries over to 
a general Banach space iff it is reflexive. 

When g satisfies appropriate growth conditions the above method can be 
applied to equation (2) where H is the completion of the C00 functions on Q 
of compact support in the inner product 

<w, v) = ƒ Vu(x)Vv(x) dx + I u(x)v(x) dx. 

Now the above method establishes the existence of just one solution of 
equation (2), and classical finite-dimensional results give quite general 
conditions under which one can establish the existence of a number of critical 
points of cp on M where <p: M -»R is C l and M is a manifold modelled on 
R". When <p = (q>x,..., <pn) and M is open in R" one gets solutions of 
V(p(x) = 0 and when, say, M = S n ~\ one gets distinct eigenvalues of V<p. 

Let's be more precise. When 0 C Rn is open and \p: 0 -*R is C2, let 
CO//) = {x € 0 |Vi//(x) = 0}; if x E C(\p) implies that the matrix of second 
partial derivatives of \p, the Hessian of \p, at x is nonsingular, \p is called a 
Morse function. For such a function, Morse showed that when x E C(i/>) a 
local change in coordinates f -».y(f) could be made so that ip(£) "~ *K*) = 

-2*=1j>? + S/^+i/ i2 ' and & = £(*), defined to be the index of x, is the 
dimension of the maximal subspace on which the Hessian of ^ at x is 
negative (this is Morse's Lemma). Even at this stage, once one observes that 
the local Brouwer degree of Vi// at x E C(\p) is ( - l)k{x), the properties of the 
Brouwer degree can be used to obtain information about the number of 
critical points of ^ of index j . These definitions can be extended to a smooth 
finite-dimensional manifold Af, and when M is compact Morse established 
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lower bounds for the number of critical points of ^ of index k in terms of the 
&th Betti number of M (see [7]). 

Lyusternik and Shnirelman (see [6]) developed, in the 1920s and 1930s, 
methods for estimating critical points by certain topological invariants 
without the above rather strong nongeneracy condition. When W is a topo­
logical space, of which F is a subspace, let cat^(F) be the least number of 
closed subsets Vj of V, each contractible in W9 such that V = U7 Vj (possibly 
cat^(F) = oo). One of the consequences of their theory is that if M is a 
compact, smooth finite-dimensional manifold, \p: M -» R is C1, and there is a 
subset K of M with catM(K) > m, then there is a critical point xm of $ on M 
with \P(xm) = cm, where 

c™ = Jnl {SUP{*K*)I* E K}}> 
A ectm 

6Bm being the collection of closed subsets of M of category greater than m. 
The above minimax principle is a direct generalization of the Courant-

Weyl minimax principle estimating the eigenvalues of an n X n symmetric 
matrix L; one lets M = Sn~\ \p(x) = <L(x), x>, and replaces &m by the 
intersections of Sn~~l with subspaces of dimension greater than m. 

The difficulty with applying the category argument is that the category may 
be hard to compute or the category may be small. That the category may be 
difficult to compute is intrinsic; one can sometimes determine more easily 
computable but still useful invariants. The second difficulty may sometimes 
be circumvented. If ƒ: Sn"1 -»R is C1 and even, then, by identifying antipo­
dal points, ƒ may be considered to be defined on (n - l)-dimensional 
projection space, which is known to have category n (in the above eigenvalue 
problem \p is even). 

The basic idea in both of the above critical point theories is to take ^: 
M -» R, a < h and let Mc = {x E M\\p(x) < c}. If $ has no critical points in 
Mb \ Ma then the flows x\i) = - VI//(JC(0),

 x(°) = P e Mb wi11 c a r ry Mb t o 

Ma9 allowing comparison of topological properties of Mb and Ma, while if 
Mb \ Ma contains critical points and ƒ is a Morse function the difference 
between Mb and Ma can be described in terms of the indices of the critical 
points in Mb \ Ma. 

The limitations of local continuation arguments for describing periodic 
orbits for dynamical systems motivated Poincaré and others to seek more 
global methods to study such problems, where one reformulated the orbit 
problem as a description of closed geodesies on a surface. As early as 1917 [1] 
explicit minimax results were used to obtain the existence of such closed 
geodesies, the novelty being that these were minimax results on a noncompact 
space. 

When S is a smooth «-dimensional Riemannian manifold and p, q G Af, 
the problem of describing geodesies on M joining p and q is the problem of 
minimizing arclength on the space P of smooth paths joining p and q on S. 
By rather ingenious approximation arguments Morse was able to use his 
finite-dimensional results to describe these geodesies. More recently, such 
minimization problems have been attacked more directly by formulating the 
problem as a minimization problem in a manifold modelled on a reflexive 
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Banach space and then using methods analogous to the gradient flow 
methods which work in the compact case. Since one is giving up compactness 
in the domain a price has to be paid. Both the Morse theory and the 
Lyusternik-Shnirelman theory have extensions to manifolds M modelled on a 
reflexive Banach space provided the map \p: M~»R is C l and satisfies 
condition (c) of Palais and Smale; if {xn} C M with {\p(xn)} bounded and 
{V\p(xn)} converging to 0 then {xn} has a convergent subsequence. In 
practice this amounts to verifying that if {xn} C M and {xn) converges 
coordinatewise to x, with {Vi//(x„)} converging to 0, then {xn} converges 
strongly to x. Such generalizations have proven useful in minimal surface 
problems; they can also be used in studying equations such as (2), and have 
been applied to nonlinear eigenvalue problems. 

Let's finish this discussion with a method for local analysis, which while 
simple in concept, is very useful when applicable. Suppose X and Y are 
Banach spaces, U Q X is open, and/: 1/~» Y is C\ Moreover suppose one 
also knows that at x0 E U9 f(x0) = 0 and df(x0) has an m-dimensional 
null-space and a range of codimension k. Then, letting Q and P be 
continuous linear projections of X onto the null-space of df(x0)

 a n d of Y onto 
the range of df(x0), respectively, one can use the Implicit Function Theorem 
to find a neighborhood 0 of .x0 in Q(x) and a function h: 0 -» ( / - P)(Y) 
such that x near xQ is a zero of ƒ iff P(x) G 0 is a zero of h. So one has 
reduced the local description of zeros of ƒ to a system of k real equations in m 
real unknowns. 

This method has been particularly useful in the study of problems involving 
parametric dependence of solutions, for example, if h: R X 0 -» 7, (\Q, x0) G 
R X 0 and one knows h (À, x0) = 0 for |X - XQ\ < e. One wishes to describe 
solutions of h(\9 x) = 0 which are near (XQ, X0) but x ^ x0. Such a problem is 
called a bifurcation problem, and when one applies the above reduction 
method based on the linearization dJQ^y x0) and so transfers the parameter 
to a finite system of equations, the method, known as the Lyapunov-Schmidt 
procedure, has been widely applied. 

As Berger points out in the Introduction, for obvious reasons of space he 
had to omit many important topics which could naturally be fitted into his 
overall scheme. For similar reasons the preceding discussion omits a large 
number of topics covered in the book. 

Berger's book is distinguished by the broad variety of problems which have 
been treated by the abstract results which are developed; there are 
applications to the determination of periodic solutions of nonlinear ordinary 
differential equations, the structure of the solutions of von Karman's 
equations, nonlinear Dirichlet problems, curvature problems, and more, 
Moreover, many of the results are from the recent research literature. 

The book is divided into three parts. In the first part there is a rather 
detailed list of the necessary background from linear functional analysis and 
elliptic partial differential equations (a few brief proofs are included), fol­
lowed by a discussion of properties of various classes of nonlinear operators. 
The second part treats the local analysis of a mapping. Infinite dimensional 
versions of (F4) and (F5) are discussed, as are such classical techniques as the 
majorant method, asymptotic expansions, and singular perturbations. Bifur-
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cation problems are treated by topological and analytical techniques. Appli­
cations are discussed. The final part is devoted to analysis in the large. The 
Leray-Schauder degree is developed as well as degree for C2 Fredholm maps. 
These, and related notions, are used to investigate nonlinear boundary value 
problems. Critical point theory, with applications, completes the book. 

Globally, I very much like the spirit and the scope of the book. The writing 
is lively, the material is diverse and yet maintains a certain unity, and the 
interplay between the abstract analysis and certain concrete problems is 
emphasized throughout. Locally, more attention could have been paid to 
detail; there are many misprints, some mistatements of results, and some 
proofs need tightening. On balance, the book is a very useful contribution to 
the growing literature on this circle of ideas, and I look forward to the 
author's promised companion volume, 
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Combinatorial set theory, by Neil H. Williams, North-Holland Publishing 
Company, Amsterdam, New York, Oxford, 1977, xi + 202 pp., $26.75, 

Combinatorial set theory is frequently distinguished from axiomatic set 
theory, although the distinction is becoming less and less clear all the time. If 
there is a difference, it is more one of method than substance. Axiomatic set 
theory uses the tools of mathematical logic, such as the method of ultra-
powers and the theory of forcing and generic sets, while the methods of 
combinatorial set theory are purely "combinatorial" in nature. In practice, an 
argument or result is "combinatorial" if it is not overtly model-theoretic, 
topological, or measure-theoretic. 

Both branches of set theory experienced explosions in interest at about the 
same time, in the middle 1960s, but at widely separated places. Combinatorial 
set theory grew up around Erdôs and his school, in Budapest, while axiomatic 
set theory received its impetus from the work of Cohen, Scott and Solovay at 


