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I. Serendipity. Let p be a prime number, let Z/p be the cyclic group of
order p and let Z/P be the unitary Z/p bordism ring.

THEOREM 1. Qlf/P is multiplicatively generated, over U, by the follow-
ing:

{I"™(pt), m > 0},

U{z/p},

Urm(ch), m >0, + 1)2<j<p -1},

U, 1 <j<(@-12},

U{l"m(Cj), m=0,1<j<(p+ 1)/2},

U{r™(CpP),m=>0,n>2,1<j<p-1}
Furthermore, this set is irredundant.

The notation is explained by the following.

(a) pt the point, with obvious Z/p action.

(b) Z/p, p points with obvious Z/p action.

(c) CP} ,((@ + D2 <j<p-1),the complex projective, line CP' with
Z/p action given by [z,; z,] > [z4; £/z,] where & = exp(2mi/p).

@ S, (1 <j< (p—1/2), the Riemann surface of genus (g — 1)(p — 1)/2
associated to the complex function u = (z7 — 1)!/9 where q satisfies gj = — 1
mod p, 0 < q <p. The action of Z/p on S]- is induced by z > &z.

() G, (1 <j<(p+ 1)/2), the complex projective plane CP? with Z/p
action given by [z,; z; z,] > [z, §24; ¥2,].

() CPj} (n>2,1<j<p—1), the complex projective space CP" with
Z/p action given by [z4;243 .. .52, 152,] /> [2g5245 .. 32,4 §'2,].

(g) Let M be a unitary Z/p manifold for which the Z/p action extends to
a unitary S ! action. For example, the unitary Z/p manifolds in (a), (c), (¢) and
(f) satisfy this property.

The circle S! acts freely on the product M x S3 by (m, 2y, 2,) > (tm,
1z, 1z,), t € S*, where S® = {(z,, z,) € C?; |z, |*> + |z,|*> = 1}. Let T(M)
denote the quotient (M x S3)/S!, with Z/p action given by [m, z,, z,] +—>
[¢m, 2., z,]. Of course, this action extends to an S! action and we can define,
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inductively, (M) by T'*(M) = I'(T'""~1(M)). Also we set I'°(M) to be M.

II. Applications. Note that most of the generators of ?Iﬁ/p are in fact
S! manifolds and so we can use known results concerning S* manifolds to obtain
corresponding results for Z/p manifolds. The following mod p characteristic
numbers formula is the analogue of the formula for ' manifolds given in §8 of

[].

THEOREM 2. Suppose M is a unitary Z[p manifold of dimension 2n and

suppose that f is any symmetric homogeneous polynomial in n variables of degree
less than or equal to n, then

UG Yoo s Tar ty ¥z ty F 2y ooty + 2, G + 2)7 1} F)

=f(wy, Wy, ..., w,)[M]mod p
where the sum is taken over the components F of the fixed point set. The t;
are the “rotation numbers”, and elementary symmetric functions of y;, z; and

w, respectively, give the chern classes of F, normal bundle of F and M respectively
(dim F = 2d).

Such a formula was known [2] but in the case that each component of
the fixed point set has dimension less than 2(p — 1), we require no such restric-
tions.

Let s, be the polynomial defined by s,(x,, x5, ..., x,) =x] +x3 +
-+« + x7; then we can say more.

THEOREM 3. Suppose M is a Z[p manifold of dimension 2n, then

Z{sn(yl, Vase e s Yty Yz ty vzp oot 4+ zn_d)n(ti + zj)_l}[F]
s,IMImod p? if n =p* — 1 for some k,

s, [Mlmod p  otherwise.

Using Theorems 1 and 3 we obtain

THEOREM 4. Let M be a Z|p manifold of dimension 2n such that

(i) n=0mod(p - 1),

(ii) either n = — 1 mod p or else each component of the fixed point set
has trivial normal bundle in M,

(iii) no component of the fixed point set is of dimension 2n, and

Gv) n#p* -1 forany k> 0;
then M is decomposable mod p, i.e. decomposable as an element of U, /p¥Y .

As an example, Z/p manifolds of dimension 2n = 2(kp + 1)(p — 1), where

k> 0 and k # 1 mod p, which have no component of the fixed point set of
dimension 2n are decomposable mod p.
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Finally, we mention a result whose proof uses a free 9, basis for Y Z/7.

THEOREM 5. Let M be a Z[p manifold such that
(i) no component of M has a trivial Z|p action,
(ii) each component of the fixed point set has trivial normal bundle and
(iii) M has no isolated fixed points;
then M is equivariantly decomposable modulo free Z[p manifolds, i.e. decompos-
able in AZ/PpY,.

The fact that such manifolds are decomposable in U, /p U, follows quite
easily from Theorem 3.
All the above results have obvious analogues in the oriented case so long
as p is an odd prime.
Details of proofs will appear elsewhere.
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