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1. Introduction. Let ty$ln(q) (resp. $9C(9)) be the bordism group of 
«-dimensional smooth manifolds with arbitrary (resp. oriented) #-plane 
fields, and let tyQ^q) and S$Q,°n(q) denote the corresponding groups 
based on oriented manifolds. In this paper we present a method which 
allows us in many cases to determine these groups. We use the forgetful 
homomorphism/^: ^Kn(q)-»Kn(BO(q)) (resp. fa m°nr(q)-+Mn(BSO(q)), 
resp. f^: S$Q.i1?

r)(q)-+Q.n(B(S)0(q))), which assigns to the bordism class of 
a y-plane field the bordism class of (a classifying map of) the underlying 
vector bundle. Our point of departure is the following observation. If £ is a 
^-dimensional vector bundle over an «-manifold M and w^2#—3, then it 
is always possible to find a vector bundle homomorphism h : Ç-+TM which 
is injective outside of a (q— l)-dimensional submanifold S of M, and such 
that the kernel of h is 1-dimensional at every point of S. We investigate the 
behavior of h at such a singularity and obtain criteria as to when it is 
possible to cancel S without getting out of the original bordism class. 

If M is closed and £ is isomorphic to a ̂ -dimensional subbundle of TM, 
then the element TM— f in the X-theory of M can be represented by an 
(n--^)-dimensional bundle, and hence the class [M, | ] in the bordism of 
B(S)0 satisfies the following vanishing condition: 

(V) all Whitney numbers of [M, £] containing some w^TM— f), 
/>«•— q, as a factor, vanish. 

Conversely we obtain 

THEOREM 1. Let n>2q—2. Then under all four orient edness assumptions 
[M, | ] lies in the image offo if and only if condition (V) is satisfied. Further­
more, the kernel as well as the cokernel offo are finite groups consisting 
entirely of elements of order 2. 

A stable version of the first statement for the case of yin(BO(q)) has 
previously been obtained by R. Stong [11] by other methods. 
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COROLLARY 1. ty9ln(q) and ^3l°n(q) are finite vector spaces over Z2. 
ty£ln(q) and ty£l°n(q) are finitely generated groups whose torsion consists 
entirely of elements of order 2 or possibly 4. 

These results can be sharpened in many cases to give a complete de­
scription of our groups. For example 

THEOREM 2. fa gives an isomorphism between ty$ln(q) and the subgroup 
°f ytn(BO(q)) consisting of all elements [M9 f] which satisfy condition (V) 
above. 

For a determination of the plane field bordism groups with other 
orientedness assumptions see also [6] for q=\ and [7] for q—2. 

If we also take vanishing conditions for the Pontrjagin numbers into 
account we may in many cases avoid the restriction n>2q—2. This can be 
done either by also considering singularities with higher dimensional 
kernel, or by applying our approach to complementary (n—#)-plane 
fields. Thus, e.g., Corollary 1 and Theorem 2 turn out to hold whenever 
0^q^,n, the latter as a consequence of the following duality result. 

THEOREM 3. If Or^fïn, there is a natural isomorphism tyyin(q)^ 
tyyin(n—q) obtained by taking complements. 

This is not a priori obvious since the standard bordism relation for q-
plane fields induces a different (stabilized) bordism relation for the 
complementary («—^)-plane fields. 

Next define 3f9tn(?), JSW?(q)9 %0.n(q) and dÙ°n
r(q) to be the bordism 

groups of closed «-manifolds with smooth ^-codimensional foliations, 
satisfying the indicated (co)-orientedness conditions. For q^.2 Thurston 
[13] has shown recently that a foliation on a compact manifold M is 
essentially given by an (S')r-structure y on M (in the sense of Haefliger 
[3]) together with a bundle monomorphism from the normal bundle v(y) 
of y into TM.2 Thus when we compare our foliation bordism groups with 
the corresponding usual bordism groups of Haefliger's classifying spaces 
BT(q) and BSF(q), we are only confronted with a plane field problem 
and can apply our approach. We obtain for the forgetful homomorphism 
ƒ*: m{n0r)(q)-^^n(B(S)r(q))9 resp. fc m{n0r)(q)-^n(B(S)T(q)): 

THEOREM 1'. Let q^.2 and n>2q—2. Then under all four orientedness 
assumptions, an element [M, y] of the n-dimensional bordism group of 
B(S)T(q) lies in the image off% if and only if the vanishing condition (V) is 
satisfied by the normal bundle £=v(y). Furthermore the kernel as well as the 
cokernel off% are finite groups consisting entirely of elements of order 2. 

2 ADDED IN PROOF. More recent work of Thurston implies that the results of this 
paper still hold for foliations of codimension q=l. 
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This contrasts with the fact that the foliation bordism groups themselves 
need not even be countably generated. E.g., ^ÏÏJ£+1(^) surjects onto R 
for even positive q (see [14]). 

THEOREM 2'. Ifq^2 andn^2q—2, thenf$ gives an isomorphism between 
$9ln(?) and the subgroup of9ln(BT(q)) consisting of all elements [M, y]for 
which the normal bundle ë=v(y) satisfies condition (V). 

As a corollary to the proof we have 

THEOREM 4. For q^. 1, n^2q—2, every q-plane field on a closed n-mani-
fold is bordant (in tyyin(q)) to one which is transversal to a foliation of co-
dimension q. 

The case q=l (where Thurston's results are not available3) was settled 
in [8] by an explicit construction of enough foliations to generate ^3?lw(l) 
by their normal linefields. 

Finally, note that the singularity approach can also be fruitfully applied 
to the bordism of manifolds with tangent ^-frames, or to the bordism of 
immersions and, more generally, of fc-mersions. More details on this 
point will appear elsewhere (see also [9]). 

I would like to thank Peter Landweber for many helpful references. 

2. The singularity isomorphism. Let $ln(BO(q), $ ) (resp. yin(BY(q), g)) 
be the bordism group of triples (M, f, h') (resp. (Af, y, h')) where Af is a 
compact smooth «-manifold, £ is a #-plane bundle over M (resp. y is a 
T (^-structure on Af, and we write f for its normal bundle v(y)), and 
h' :Ç\dM~+T(dM) is a bundle monomorphism. Denote the normal 
bundle map from yin(BT(q), ft) into yin(BO(q), <P) by r*. 

Now for O^p^q consider the/7 • (n—^+/?)-codimensional submanifold 
Ap of the total space of the homomorphism bundle Hom(f, TM) where 
AP=UXBMAP(X) and Av(x)={g:Çx-+TxM\g linear, dim(kerg)=/?} (cf. 
[5, p. 120]). If w ^ 2 # - 3 , or equivalently, if 2(n-q+2)>n9 then, by 
transversality we can extend h' to a vector bundle morphism h : Ç-+TM 
which, as a section in Hom(£, TM), goes entirely into A0UAX and inter­
sects Ax transversally. Denote by S the closed (q— l)-dimensional sub-
manifold / T " 1 ^ ) of the interior of M. Since h\S has constant rank, there 
are canonical vector bundles Ker, Coker, and Im over S of dimension 1, 
n—q+1, and q— 1, respectively, where e.g., the fiber of Ker at x e S is the 
kernel of hx:Çx-+TxM. These bundles are related to g\S, TM\S and the 

8 See footnote 2. 
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normal bundle v(S, M) of S in M by the following isomorphisms (which 
are canonical up to homotopy) 

£ | S ^ I m 0 K e r , 

(1) TM | S ^ Im 0 Coker, 

v(S, M) ^ Hom(Ker, Coker); 
and consequently 

(2) i : Im 0 Coker ^ TS 0 Hom(Ker, Coker). 

Associating the bordism class of (S, Ker, Coker) to the class of 
(M, f, ƒ*'), we obtain a well-defined homomorphism 

a: Kn(BO(q), <$) -+ ^_x(i?0(l) X BO(n - q + 1)) 

s 9U(*0(1) x *O(0), 

provided w^2^—2. Similarly a is defined on the relative bordism groups 
Wn(BSO(q), ty) and Q,n(B(S)0(q), ty) corresponding to the other orien­
tation cases. 

We will say that an element x=[S, £, rj] of yt^BO^xBOCq)) 
satisfies condition Ob (resp. Om)for (n,q) if all those Whitney numbers 
vanish which either involve w1(S)+(n—q)w1(!)) as a factor or which are 
made up entirely by a positive number of factors of the form n • w2k(S)2 

or n • w2k(r))2, kztQ (resp. if all Whitney numbers of x involving Wx(5)+ 
(«—?+l)w1(0+>Vi(^) vanish). 

THEOREM 5. Let n>2q—2. Then under all four orientedness assumptions 
a is an isomorphism into 5R<z_1(50(l)x BO(q)). An element x of 

91^(2*0(1) X BO(q)) 

lies in the image of yin(BO(q), ^)(respMn(BSO{q)y ^)9resp.an(BO(q)9 $) , 
resp. Qn(BSO(q), S$)) under a if and only if x is arbitrary (resp. x satisfies 
condition Ob9 resp. Om, resp. Ob and Om9for (n,q)). 

If in addition q^2, then in all four orientedness cases a o v# is also an 
isomorphism onto the image of a. 

In particular, for fixed q the relative bordism groups of a given orientation 
type depend only on the parity ofn. 

In the proof we use generalized surgery with core manifolds of dimen­
sion q or 1 or 2. The construction extends to the case of T-structures since 
the normal bundle map v:BT(q)-+BO(q) has a ^-connected homotopic 
fiber [3]. 



764 ULRICH KOSCHORKE [July 

The relevance of Theorem 5 stems from the following commutative 
diagram and its analogues in the other orientation cases 

>mn(q) -^> KniBTiq)) - i * 9tn(BT(q)9 g) - ^ g ^ f o ) _ > . . . 
v 4 v*{ v*{ v*{ 

• • • —•$»»(?) ~~^ SR»(^0(?» - ^ »«(*0(*), *) - ^ K ^ - i f o ) —> • • • 

(3) '1 
ïUOBOfl) x *0(?)) 

Here the forgetful homomorphisms y and 9 make the horizontal sequences 
exact. 

In order to describe a oj'm terms of Whitney numbers, assume M to be 
closed in the discussion above. In a Whitney number of (£, Ker, Coker) 
eliminate first w(S), and then w(Coker), using (1) and (2), and apply the 
identity 

w^Kerf • (w(TM - f)*w(Jlf)' I S)W 
= wn_Q+1.hk(TM - |)w(rM - S)"w(TMy[M], 

where a, /? are multi-indices. 
Now Theorem 5 implies Theorem 1, Corollary 1 and Theorem 1'. To 

obtain a full description of the bordism groups of ç-plane fields, it remains 
only to determine the image of/, or equivalently, of a °j (and to check for 
possible 4-torsion in ^3Q^r,(#)). For example, a geometric construction 
yields 

THEOREM 6. For n^.2q—2, the homomorphism a oj:3ln(BO(q))-^ 
yiQ_x(BO(l)xBO(q)) is onto. 

Thus, if no orientation conditions are imposed, the lower horizontal 
line in diagram (3) breaks down into short exact sequences (9=0), and so 
does the upper line since the middle homomorphism v+ is surjective here 
(compare [1]). This proves Theorems 2 and 2'. Theorem 4, or equivalently, 
the surjectivity of the left hand homomorphism v#, follows immediately. 
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