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1. Introduction. Let PN, (q) (resp. PN,(¢)) be the bordism group of
n-dimensional smooth manifolds with arbitrary (resp. oriented) g-plane
fields, and let PQ,(¢q) and PQ;(g) denote the corresponding groups
based on oriented manifolds. In this paper we present a method which
allows us in many cases to determine these groups. We use the forgetful
homomorphism fi: PN, (g)—>N.(BO(q)) (resp. fg: PNy (9)—N.(BSO(9)),
resp. fop: PQL (92, (B(S)O(g))), which assigns to the bordism class of
a g-plane field the bordism class of (a classifying map of) the underlying
vector bundle. Our point of departure is the following observation. If £ is a
g-dimensional vector bundle over an n-manifold M and n=2g—3, then it
is always possible to find a vector bundle homomorphism /: &—~TM which
is injective outside of a (¢g—1)-dimensional submanifold S of M, and such
that the kernel of /4 is 1-dimensional at every point of S. We investigate the
behavior of & at such a singularity and obtain criteria as to when it is
possible to cancel S without getting out of the original bordism class.

If M is closed and £ is isomorphic to a g-dimensional subbundle of TM,
then the element TM —§ in the K-theory of M can be represented by an
(n—g)-dimensional bundle, and hence the class [M, &] in the bordism of
B(S)0 satisfies the following vanishing condition:

(V) all Whitney numbers of [M, &] containing some w,(TM—§),
i>n—q, as a factor, vanish.

Conversely we obtain

THEOREM 1. Let n>2q—2. Then under all four orientedness assumptions
[M, &) lies in the image of fy, if and only if condition (V) is satisfied. Further-
more, the kernel as well as the cokernel of fy are finite groups consisting
entirely of elements of order 2.

A stable version of the first statement for the case of 9i,(BO(g)) has
previously been obtained by R. Stong [11] by other methods.
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CoROLLARY 1. PN, (q) and PN (q) are finite vector spaces over Z,.
PBQ,(q) and PQJ(q) are finitely generated groups whose torsion consists
entirely of elements of order 2 or possibly 4.

These results can be sharpened in many cases to give a complete de-
scription of our groups. For example

THEOREM 2. fi gives an isomorphism between BN, (q) and the subgroup

of N,(BO(q)) consisting of all elements [M, &] which satisfy condition (V)
above.

For a determination of the plane field bordism groups with other
orientedness assumptions see also [6] for g=1 and [7] for g=2.

If we also take vanishing conditions for the Pontrjagin numbers into
account we may in many cases avoid the restriction n>>2g—2. This can be
done either by also considering singularities with higher dimensional
kernel, or by applying our approach to complementary (n—g)-plane
fields. Thus, e.g., Corollary 1 and Theorem 2 turn out to hold whenever
0=<g=n, the latter as a consequence of the following duality result.

THEOREM 3. If 0=q=n, there is a natural isomorphism PN,(q)=
BN, (n—q) obtained by taking complements.

This is not a priori obvious since the standard bordism relation for g-
plane fields induces a different (stabilized) bordism relation for the
complementary (n—q)-plane fields.

Next define FN,(¢), FN(¢), FQ.(g) and FQ2'(g) to be the bordism
groups of closed n-manifolds with smooth g-codimensional foliations,
satisfying the indicated (co)-orientedness conditions. For ¢=2 Thurston
[13] has shown recently that a foliation on a compact manifold M is
essentially given by an (S)I'-structure y on M (in the sense of Haefliger
[3]) together with a bundle monomorphism from the normal bundle »(y)
of y into TM.2 Thus when we compare our foliation bordism groups with
the corresponding usual bordism groups of Haefliger’s classifying spaces
BT'(q) and BST'(g), we are only confronted with a plane field problem
and can apply our approach. We obtain for the forgetful homomorphism
S IR (@—>RL.(B(S)T(9)), resp. f3: FQY (9)—~Q,(B(S)I'(9)):

THEOREM 1'. Let g=2 and n>2q—2. Then under all four orientedness
assumptions, an element [M,y] of the n-dimensional bordism group of
B(S)T'(g) lies in the image of f if and only if the vanishing condition (V) is
satisfied by the normal bundle &=v(y). Furthermore the kernel as well as the
cokernel of fy are finite groups consisting entirely of elements of order 2.

? ADDED IN PROOF. More recent work of Thurston implies that the results of this
paper still hold for foliations of codimension g=1.
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This contrasts with the fact that the foliation bordism groups themselves
need not even be countably generated. E.g., #Q3;.1(g) surjects onto R
for even positive ¢ (see [14]).

THEOREM 2. Ifq=2 andn=2q—2, then fg gives an isomorphism between
&N,.(q) and the subgroup of N, (BI'(q)) consisting of all elements [M, y] for
which the normal bundle &=v(y) satisfies condition (V).

As a corollary to the proof we have

THEOREM 4. For q=1, n=2q—2, every g-plane field on a closed n-mani-

fold is bordant (in PN, (q)) to one which is transversal to a foliation of co-
dimension q.

The case g=1 (where Thurston’s results are not available®) was settled
in [8] by an explicit construction of enough foliations to generate PN, (1)
by their normal linefields.

Finally, note that the singularity approach can also be fruitfully applied
to the bordism of manifolds with tangent g-frames, or to the bordism of
immersions and, more generally, of k-mersions. More details on this
point will appear elsewhere (see also [9]).

I would like to thank Peter Landweber for many helpful references.

2. The singularity isomorphism. Let N, (BO(q), B) (resp. N,.(BI'(g), &)
be the bordism group of triples (M, &, 4") (resp. (M, v, ")) where M is a
compact smooth n-manifold, £ is a g-plane bundle over M (resp. y is a
I'(g)-structure on M, and we write & for its normal bundle »(y)), and
I :£|oM—~T(0M) is a bundle monomorphism. Denote the normal
bundle map from N, (BI'(g), &) into N,(BO(q), P) by »,.

Now for 0= p=gq consider the p * (n—g+ p)-codimensional submanifold
A, of the total space of the homomorphism bundle Hom(&, TM) where
Ap=Uoem 4,(x) and 4,(x)={g:&—~T,M|g linear, dim(ker g)=p} (cf.
[5, p. 120]). If n=2¢g—3, or equivalently, if 2(n—q+2)>n, then, by
transversality we can extend A4’ to a vector bundle morphism A:{—TM
which, as a section in Hom(&, TM), goes entirely into 4,UA4; and inter-
sects A4, transversally. Denote by S the closed (g—1)-dimensional sub-
manifold /~1(4,) of the interior of M. Since h|S has constant rank, there
are canonical vector bundles Ker, Coker, and Im over S of dimension 1,
n—q+1, and g—1, respectively, where e.g., the fiber of Ker at x € S is the
kernel of h,:&—~T,M. These bundles are related to E[S, TM|S and the

3 See footnote 2.
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normal bundle »(S, M) of S in M by the following isomorphisms (which
are canonical up to homotopy)

| S = Im & Ker,
O] TM | S = Im & Coker,

v(S, M) ~ Hom(Ker, Coker);
and consequently

) i:Im @& Coker =~ TS @ Hom(Ker, Coker).

Associating the bordism class of (S, Ker, Coker) to the class of
(M, &, K'), we obtain a well-defined homomorphism

o:N.(BO(9), B) > N,1(BO(1) X BO(n — g + 1))
=~ N, 1(BO(1) x BO(q)),

provided n=2¢—2. Similarly o is defined on the relative bordism groups
N,.(BSO(q), P) and Q,(B(S)O(g), B) corresponding to the other orien-
tation cases.

We will say that an element x=[S, {, ] of RN, _;(BO(1)x BO(q))
satisfies condition O, (resp. 0,) for (n,q) if all those Whitney numbers
vanish which either involve w;(S)+ (n—q)w,({) as a factor or which are
made up entirely by a positive number of factors of the form #n - wy,(S)?
or n - wy(n)?, k=0 (resp. if all Whitney numbers of x involving w,(S)+
(n—g+1)w,(D)+wy() vanish).

THEOREM 5. Let n>2q—2. Then under all four orientedness assumptions
o is an isomorphism into N,_,(BO(1) X BO(q)). An element x of

N, 1(BO(1) x BO(9))

liesin the image of R,,(BO(q), *B) (resp.N,,(BSO(q), P), resp.Q,(BO(q), PB),
resp. Q,(BSO(q), B)) under o if and only if x is arbitrary (resp. x satisfies
condition O, resp. O, resp. O, and O,,, for (n, q)).

If in addition q=2, then in all four orientedness cases o v, is also an
isomorphism onto the image of o.

In particular, for fixed q the relative bordism groups of a given orientation
type depend only on the parity of n.

In the proof we use generalized surgery with core manifolds of dimen-
sion g or 1 or 2. The construction extends to the case of I'-structures since
the normal bundle map »:BI'(9)—>BO(g) has a g-connected homotopic
fiber [3].
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The relevance of Theorem 5 stems from the following commutative
diagram and its analogues in the other orientation cases

e B9 (g) Lo RA(BL() —> NL(BT(g), §) —>FR, 1(g) — -

s> PRA(9) LN R, (BO(g) ——> R, (BO(g), B) —>PR,4(g) —> -

3 9
RN, 2(BO1) x BO())

Here the forgetful homomorphisms jand 9 make the horizontal sequences
exact.

In order to describe o o j in terms of Whitney numbers, assume M to be
closed in the discussion above. In a Whitney number of (S, Ker, Coker)
eliminate first w(S), and then w(Coker), using (1) and (2), and apply the
identity

wy(Ker)* - (W(TM — &)'w(M)Y’ | $)[S]
= Waor1ie(TM — EW(TM — EFw(TM) (M),

where «, f§ are multi-indices.

Now Theorem 5 implies Theorem 1, Corollary 1 and Theorem 1’. To
obtain a full description of the bordism groups of ¢-plane fields, it remains
only to determine the image of j, or equivalently, of ¢ - j (and to check for
possible 4-torsion in PQL(¢)). For example, a geometric construction
yields

THEOREM 6. For n=2q—2, the homomorphism o oj:N,(BO(q))—
N, 1(BO(1)x BO(9)) is onto.

Thus, if no orientation conditions are imposed, the lower horizontal
line in diagram (3) breaks down into short exact sequences (0=0), and so
does the upper line since the middle homomorphism », is surjective here
(compare [1]). This proves Theorems 2 and 2’. Theorem 4, or equivalently,
the surjectivity of the left hand homomorphism »,, follows immediately.
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