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BY MARVIN I. KNOPP 

ABSTRACT. We here formulate and prove several new results 
concerning the Eichler cohomology of automorphic forms on 
finitely generated Fuchsian groups of the first kind and, in particular, 
on //-groups. The Eichler cohomology we introduce is connected 
with automorphic forms of arbitrary real degree (as opposed to 
integral degree), with a suitably chosen underlying space of functions 
analytic in the upper half-plane. We obtain structure theorems 
for the Eichler cohomology groups which are analogous to earlier 
results of Eichler and Gunning. 

1. Introduction. 1. The purpose of this article is the proof of some 
new results concerning the Eichler cohomology connected with auto­
morphic forms on finitely generated Fuchsian groups of the first kind 
(in particular, on //-groups). More specifically we introduce Eichler co­
homology groups associated with automorphic forms of arbitrary real (that 
is, not necessarily integral) degree and, with a suitable underlying space 
of functions, we determine the structure of these groups. (See Theorems 
1 and 2.) 

For our present purposes it is sufficient to consider Fuchsian groups Y 
acting on Jf, the upper half-plane. That is, Y is a discrete group of 
linear fractional transformations acting on Jf. For convenience we 
normalize Y so that an element V of Y has the form z->(az+b)l(cz+d)9 

with a, b, c, d real and ad—bc=l. We also identify V with the matrices 
± (c £). In particular we call Y an H-group provided 

(i) r is finitely generated, 
(ii) T is discrete, but discontinuous at no point of the real line, 

(iii) r contains translations. 
In essence, then, an //-group is a finitely generated Fuchsian group of the 
first kind which has at least one parabolic class. 

2. Automorphic forms. The automorphic forms to be considered 
here are of arbitrary real degree with multiplier system, meromorphic 
in Jf, and meromorphic (in the appropriate uniformalizing variables) 
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at all of the parabolic cusps (necessarily finite in number) of a fundamental 
region 0t of V. The characteristic functional equation satisfied by an 
automorphic form F of degree r and multiplier system v9 with respect to 
T, is 

(1.1) v(V)(cz + dYF(Vz) = F(z)9 

for all F=(c b
d) e T, where v(V) is independent of z and \v(V)\ = l. From 

(1.1) follows directly the "consistency condition" 

(1.2) viV^Xc.z + dj = viV^V^c^z + dJic.z + dj 

where 

(* * \ 
1 e r fori = 1,2, 

^ dj 
and 

\c3 dzJ 

When r is an integer (2) reduces to v(V1V<i)=v(V1)v(V2)9 for all Vl9 V2 e Y9 

that is, v is a complex character on the matrix group T. Any function 
from the matrix group V into the unit circle of the complex plane which 
satisfies (1.2) is called a multiplier system for Y of degree r. 

We introduce the useful stroke operator 

F\IV = v(V)(cz + dJF(Vz)9 

for any function F and V= (ƒ *) e T. (When there is no risk of con­
fusion we write F\V for F\lV.) The functional equation (1.1) may then be 
written F\lV=F9 for VeT9 and the consistency condition (1.2) for v is 
equivalent to 

(1.3) (F|TO|;F2 = FllVM, for Vl9 V2 e T. 

(Both sides of (1.3) equal F if (1.1) holds.) 
Suppose T is an #-group and let S=(l l)9 A>0, generate the subgroup 

r ^ of translations in Y. If F satisfies (1.1), then in particular 

F(z + X) = v(S)F(z) = e2lTiKF(z)9 

with 0^/c<l. Thus, if F is meromorphic in J4? and its poles do not 
accumulate at oo, F has the Fourier expansion at oo (actually a Laurent 
expansion) 

A (27ri(m + K)Z) 
(1.4) F(z)= 2 A « e x p — — '-\, 

m=—oo \ A J 
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valid for j = I m z > j 0 . Suppose that in addition to oo, T has t^.0 inequiva-
lent parabolic classes. Each of these classes corresponds to a cyclic sub­
group of parabolic elements in Y leaving fixed a parabolic cusp on the 
boundary of 0t. Such a parabolic cusp lies on the real axis. (See [15, 
Chapter 4] for a detailed discussion of the fundamental region 0t and 
its parabolic cusps.) Let ql9 • • • , qt be the inequivalent (with respect to Y) 
parabolic cusps (other than oo) on the boundary of M and let r , be the 
cyclic subgroup of Y fixing qj9 l^j^t. (Yj is called the stabilizer of qi in 
T.) Suppose also that 

( * * \ 

is a generator of T,; Qó is necessarily parabolic. For l^j^t, put K 6 , ) = 
exp(27r//^.), 0<Kj<\. If F satisfies (1.1) with V=Qj and is meromorphic 
in 3tf with only finitely many poles in ^ , then F has the following Fourier 
expansion at qj : 

A (—2m(m + KJ)\ 
(1.5) F(z) = (z - * , ) ' 2 flw0>xp —f - ^ , 

valid for j = I m z>yj. Here ^ is a positive real number called the width 
of the cusp qô and defined as follows. Let 

so that Ai has determinant 1 and v43(^.)= oo. Then A3>0 is chosen so that 

generates Yj9 the stabilizer of qi% (See [15, pp. 269-270] for details.) 
We are now in a position to give the following 
DEFINITION, (a) Suppose F is meromorphic in J f and satisfies the 

functional equation (1.1) for all VeY, where T is a finitely generated 
Fuchsian group. If Y has parabolic cusps assume, in addition, that F 
has Fourier expansions (1.4), (1.5) which are finite to the left; that is they 
contain only finitely many terms with m<0. Then F is called an auto-
morphic form of degree r and multiplier system v with respect to Y. The 
set of all such automorphic forms will be denoted by {Y, r, v}. 

(b) Let Fe{Y, r, v}. Suppose in addition F is holomorphic in 3f 
and has only terms with m+K^.0 in (1.4) and m+K^O, l^j<:t, in 
(1.5). Then F i s called an entire automorphic form. The set of entire auto­
morphic forms in {T, r, v} is denoted C+(r, r, v). 
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(c) If F e C+(I\ r, v) and has only terms with ra+/c>0, m+/c3>0 in 
the expansions (1.4), (1.5), respectively, then F is called a cusp form. 
The collection of cusp forms in {T, r, v} is denoted C°(Y, r, t>). 

It is a well-known fact that if V is a finitely generated Fuchsian group of 
the first kind and r^O, then C+(T9 r, v)=C°(Y, r, !>)={<>} [8], [9]. For 
Fuchsian groups of the second kind, however, the situation is quite different. 

3. Automorphic integrals of integral degree. For the time being 
suppose that r is an integer ^ 0 . A result of G. Bol [1] states that 

(1.6) j-^i {(cz + dJF(Vz)} = (cz + dr~2Fir+1\Vz) 

for any V= (2 I), with ad—bc= 1 and any function F with sufficiently many 
derivatives. It follows from (1.6) that if FG{T, r, v}, then F(r+1) e 
(Y, -r-2,v}; also if fe{Y, -r-2, v] and F is any (r+l)-fold in­
definite integral off, then F satisfies the functional equation 

(1.7) F\:V = F + Pv, VeY, 

where pv is a polynomial in z of degree ^r . (If pv=z0 for all VeY, then 
of course F e {Y, r, v}.) From (1.7) may be derived the additive analogue 
of (1.2), a consistency condition for the system of polynomials pv: 

(1.8) pViy2 = pVi\
r
vV2 + Vv%, for Vl9 V2 e T. 

DEFINITION, (a) If F is a function meromorphic in 3? such that 
F(r+1) G {r, — r—2, v}, then Fis called an automorphic integral (orEichler 
integral) of degree r and multiplier system V with respect to Y. 

(b) The collection of polynomials pv (necessarily of degree ^ r ) 
occurring in (1.7) is called the system of period polynomials of F (or of 
F(r+1)). 

We call any collection of polynomials {pv\Ve Y}, of degree ^r which 
satisfies (1.8) a cocycle (of degree r). A coboundary (of degree r) is a 
cocycle {pv\VeY} such that pv=p\r

vV—p for all VeY, with/? & fixed 
polynomial of degree ^r . The parabolic cocycles play a special role in 
the theory of automorphic integrals; these are the cocycles {pv\VeV} 
which satisfy the following additional condition : 

Let Q0 = S, Qu • • • , Qt be a complete set of parabolic 
(1.9) representatives for T. Then for each h,0^h^t, there exists 

a polynomial/^ of degree <ir such that pQh = ph\
r
vQh - ph. 

Recall that S= (I J), A>0, generates the cyclic subgroup Y^ of trans­
lations of r and that Qh, \<h^t, generates Yh the stabilizer of qh, 
l^h^t. Here q0=oo, qx, • • • ,qt are the inequivalent parabolic cusps 
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on the boundary of ^ . Every parabolic element in V is conjugate in T 
to one of the Qh. 

DEFINITION, (a) The Eichler cohomology group H}tV(T9 Pr) is defined 
to be the vector space of cocycles modulo coboundaries. Here Pr is the 
vector space of polynomials of degree ^ r . 

(b) Let Hr,v(T, Pr) be the subgroup of HltV(T, Pr) defined as the space 
of parabolic cocycles modulo coboundaries. 

To ƒ G {T, —r—2, v} there is attached a unique element of HltV(T, Pr) 
in the obvious manner: let F be a fixed (r+l)-fold integral off and {pv} 
the corresponding cocycle determined by (1.7). Any (r+l)-fold integral 
of ƒ has the form F+p, with p ePr; then the corresponding cocycle is 
{pv+p\V—p}, which determines the same cohomology class as does 
{pv}> Let [pv] denote the cohomology class of the cocycle {pv}. We then 
define the mapping /? of {T, — r—2, v} into H}iV(T, Pr) by 

(1.10) P(J) = [pvl 
For F an /f-group the structure of H}tV(T9Pr) and HÎtV(T,Pr) has 

been completely determined in [2], [5], [6] and [13]. (See also [11], [12], 
[16] and [10, Chapter 5], where the structure of these groups is deter­
mined in the more general situation when T is a finitely generated 
Kleinian group.) The results are as follows. 

THEOREM A. The vector spaces C°(I\ - r - 2 , £ )0C + ( r , - r - 2 , v) 
and HltV(T, Pr) are canonically isomorphic. Under the same mapping 
C°(T, - r - 2 , v)@C°(T, - r - 2 , v) is isomorphic to Hl,v(T, Pr). 

REMARKS, (a) With r an integer and v a multiplier system of degree 
—r—2, v is likewise a multiplier system of degree —r—2. 

(b) Theorem A shows that HltV(T, Pr) is a finite dimensional complex 
vector space, since C+ and C° are of finite dimension. 

(c) Theorem A was first proved by Gunning [5] with Y a finitely 
generated Fuchsian group of the first kind, not necessarily an //-group, 
but with the mild restriction that v is always a root of unity. Gunning 
states the result in terms of the existence of exact sequences of the form 

o ~~> c+(r, - r - 2, v) - H r y r , pr) -* c°(r, - r - 2, v) -> 0, 
0 — C°(l\ - r - 2, v) -> # r%(r, Pr) - • C°(r, - r - 2, tO -> 0. 

These results originate with Eichler [2], who, however, dealt only with 
R],V9 under the additional (but inessential) restriction that r be even and 
v be = 1 . The proofs of Theorem A given in [6] and [13] are valid for 
arbitrary integral r and arbitrary multiplier system v. 

(d) The proof of Theorem A given in [6\ proceeds by explicitly con­
structing a linear mapping 

^ ( r - r - 2, v) 0 C+(r, - r - 2 , f O - f f ^ r , Pr) 
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of the form p(f9g)=*(f)+P(g), where ƒ e C°(v), geC+(v), and /? 
is defined by (1.10). The definition of a is more complicated and based 
upon the notion of the "supplementary series" introduced in [7]. The 
construction of a also can be carried out using the more recent results of 
Douglas Niebur [18], as we shall observe later. The proof that /u is 1-1 
follows from results of [7] ; the proof in [6] that /u is onto follows Eichler 
[2, pp. 274-276], utilizing a generalized Riemann-Roch theorem due to 
Petersson [23, Theorem 9]. Lehner's treatment of Theorem A differs from 
that of [6] in the proof that /u is onto, applying the Generalized Poincaré 
Series (see §11.1) rather than the Riemann-Roch theorem. 

4. Eichler cohomology of arbitrary real degree. Now let r be an 
arbitrary real number and v a multiplier system for Y of degree r. If !F 
is any vector space of functions preserved under the stroke operation |J, 
one may form the cohomology groups HliV(T, 3F) and Ü\tV(Y, $*) in 
complete analogy to the above construction of HltV(T, Pr) and ff},v(T, Pr). 
Of particular interest here will be the groups formed with # " = ^ , where 
& is the space of functions g holomorphic in £P which satisfy the growth 
condition 

(1.11) |g(z)| < K(\z\p + y"), J = l m z > 0 , 

for some positive constants K, p and a. It is easy to verify that 0* is 
preserved under \r

v for any real r and any //-group T and also under 
differentiation and anti-differentiation. Note that 3P is a ring as well as 
an infinite dimensional complex vector space, containing all polynomials 
and all entire automorphic forms with respect to any //-group (see 
[15, p. 281] and [8]). 

We now extend the notion of automorphic integral to arbitrary real 
degree. 

DEFINITION. If F is a function meromorphic in J f such that 

(1.12) F\r
vV-Fe0>, for F e T , 

and for each j , l^j^t, there exists an integer m^ such that 
ex${2Tri(mj+Kj)IA.j(z--qj)}F(z) has a limit as z-^qj within M and also 
there exists an integer m0 such that exp{—2TTi(m0+K)z/X}F(z) has a limit 
as z-*i co within ^ , then we call Fan automorphic integral of degree r with 
respect to Y. 

REMARKS. If r is an integer 2:0 and & is replaced by Fr in (1.12), then 
this definition coincides with our previous definition of automorphic 
(or Eichler) integral. Niebur's definition of automorphic integral is some­
what more restrictive than that given here. If (1.12) holds then {F\r

vV—F} 
is clearly a cocycle in 0 of degree r for the group V. In (1.12) one can of 
course replace & by any space 3F of functions meromorphic in J f and 
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obtain cocycles of degree r lying in !F. We refer to the cocycle {F\r
vV—F} 

as the cocycle of period functions of the automorphic integral F. 
By considering automorphic integrals of arbitrary real degree, we here 

determine the structure of both H},V(T9 0>) and SltV(T9 0>) for real 
r ^ O and real r^—2 with an arbitrary multiplier system of degree r and 
r an /f-group. Specifically, we prove the following. 

THEOREM 1. Ifr^0orr^—2 with v a multiplier system of degree r, 
then C°(Y, —r—2, v) is isomorphic to H}tV(T9 0>) under a canonical 
isomorphism a. 

THEOREM 2. Under the same conditions we have 

H}.9(T&*ÈmC>(r9-r-29if). 

REMARKS, (a) For r ^ - 2 , - r - 2 ^ 0 , so that C°(I\ - r - 2 , Ê ) = { 0 } ; 

hence Hl,v(T9 0>)=H}.v(T9 ^ )={0} in this case. 
(b) For r ^O the mapping a is the one mentioned above in connection 

with Theorem A. We give the definition of a in §111.2 (r>0) and §111.3 
(r=0). 

(c) We first prove Theorem 1 and later prove a general result (Propo­
sition 9) about the space &, from which it is possible to show that for any 
real degree r and corresponding multiplier system v every cocycle in SP 
is parabolic. Thus 

(i.i3) Hryr, p) = HUY9 SP) 

holds for arbitrary real r; Theorem 2 follows from Theorem 1 and (1.13). 
I am grateful to B. A. Taylor, who supplied the proof of Proposition 9. 

For arbitrary real r with corresponding multiplier system v9 v is a 
multiplier system of degree —r—2. Thus we are permitted to speak of 
C°(r , - r - 2 , v). 

II. The Generalized Poincaré Series. 1. The proof of Theorem 1 is 
based upon the more fundamental 

THEOREM 3. Let r be any real number and v a multiplier system of 
degree r. Suppose {(pv\Ve V} is a parabolic cocycle of degree r in SP\ that 
is9 <pv e 3P9 (pVlv^9vx\l

v^+(Pv^for al1 vi> v2 e I \ and 

/o i\ for eachj such that 0 ^ j ^ t9 there exists cpj e SP such that 

<PQ} = Vi\vQi - <Pi' 
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Then there exists a function O, holomorphic in ^f, such that 

(2.2) <D|;F - (D = <Pv, for all V e T, 

and with expansions at the parabolic cusps q}, O^j^t, of the form 

0(z) = ,,(z) + (z - a}J f a , ( W - ^ ( w + ^ ) t 

(2.3) l ^ ; ^ * , 

(D(z) = n(z) + J am(0)exp — ± — '-], j = 0. 

(Compare (2.3) with (1.4) and (1.5); recall that q0=oo, Q0=S.) The 
functions cpv may be called the period functions of <t>. 

The construction of the function <[> of Theorem 3 involves the intro­
duction of a "Generalized Poincaré Series," first discussed by Eichler 
[3], [4], discovered independently somewhat later by the author, and 
more recently applied by Lehner to Kleinian as well as Fuchsian groups 
[13], [14], [16]. 

DEFINITION. Suppose {cpv} is a parabolic cocycle of degree V which 
satisfies the additional condition that ^ = 0 . Suppose k is a "large" 
positive even integer and w is a multiplier system for V and the degree — k. 
Then the Generalized Poincaré Series T({ay}, k, w; z)=y¥(z) is defined 
by 

(2.4) T(z) = 2 MzMVXcz + dy\ 
V*Jt 

where J( is a complete set of coset representatives for Y\Y^ and F = ( * ƒ). 
(Recall that T^ is the stabilizer of oo in T; it is the cyclic group generated 
by 5.) 

REMARKS. 1. We shall show below that for k sufficiently large, the 
series (2.4) converges, in fact uniformly on compact subsets of Jf\ 
Indeed it will follow that, for such t , T e ^ 

2. The summation in (2.4) is really over all distinct lower rows c, d of 
elements of I \ 

3. The assumption <p8~0 has been made to insure that the individual 
terms of the series (2.4) are independent of the choice V of coset represen­
tatives. If V, V' lie in the same coset of YITa09 then V, V' have the same 
lower row c, d and V'=ST, where t is an integer. Then 

<Pv> = <Ps*v = <Ps* | V + <Pvl 
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but (ps=Q implies (pst=0, so that <pv, = (pv and the desired independence 
follows. 

4. On the assumption that k is sufficiently large we shall show that the 
series in (2.4) converges absolutely and it follows readily that, with 
M=(* J ) e l \ 

(2.5) W\r
vM - w(M)(yz + <5)*Y(z) - w(M)(yz + ô?g(z)<pM(z)9 

where g(z) is the Eisenstein series 

(2.6) g(z) = 2w(F)(cz + drfc. 

The functional equation (2.5) is a straightforward consequence of the 
absolute convergence of (2.4), the consistency condition for the cocycle 

(2.7) <pViV^ = <pVi\lVs + cpVï (Vu V2 e T), 

and the consistency condition for the multiplier system w: 

(2 8) *WMC* + d*)~* = ^^(V.Xc^z + dJ-Xc^z + d2r
k 

For k sufficiently large there is absolute convergence of the series in 
(2.6) and it follows that 

g{Mz) = w(M)(yz + ôfg(z), 

for M=(* ƒ) e T. Thus, putting F(z)=-Y(z)lg(z) and applying (2.5), 
we find that 

F\IM = -Ç¥\lM)/g(Mz) 
= -T(z)/g(z) + <pM{z) = F(z) + <pM(z), 

so that F is a solution of the functional equation (2.2). Indeed F has 
expansions of the type (2.3) at the parabolic cusps, but may h#ve poles 
in Jf"; thus it may have to be modified in order to obtain the function O 
of Theorem 3. 

2. Estimation of the cocycle. The proof of absolute convergence of 
the series defining T(z) is based upon a series of lemmas. 

LEMMA 4. For real numbers c, d and z=x+iy, we have 

W + d*) <: \cz + d\2 £ 2(|z|2 + y~*)(c* + A 
\ l + 4 | z | 2 / ( 

REMARK. This is essentially Lemma 4 of [14]. 
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PROOF. Schwarz's inequality gives \cz+d\2^(\z\2+l)(c2+d2). Since 
]z|2+1^2(|z|2+j~2), the upper bound follows. To obtain the lower 
bound observe that \cz+d\2^c2y2 and \z\2\cz+d\2=\c\z\2+dz\2^d2y2, so 
that 

\cz + d\2 ^ y\c2 + d2)/(l + |z|2) ^ y\c2 + d2)/(l + 4 |z|2). 

Suppose Q0, - • • , Qt, Vl9 • • • , Vs is a fixed set of generators of T, 
including the /+1 parabolic generators Q0, • • • , Qt and the nonpara­
bohc generators Vl9 • • • , V8. If A e Y consider a factorization of A 
into sections (see [14, pp. 156-157]), A = CX • • • Ca. Each section Q is 
either a nonparabohc generator of V or a power of a parabolic generator 
of I \ The importance of this factorization into sections lies in the result 
of Eichler [3, Theorem 1] that, for any A e T, the factorization can be 
carried out so that 

(2.9) q ^ mxlog p(A) + m2, 

where m1,m2>0 are independent of A and 

(2.10) p{A) = a2 + b2 + c2 + d2 if A = (a b\. 

(Note that ft(A)^2 and fj,(AB)<tft(A)/u,(B) for matrices ^ and J? of 
determinant 1.) 

We assume, as we may, that the cocycle {(pv) in & satisfies 

\<pVi(z)\ < K(\z\» + y-)9 for 1 ^ i <: s, 
(2.11) 

|ç>,(z)|< K(\z\<> + ƒ"*), f o r 0 ^ ; ^ f . 

Here 9>,(z) is defined by (2.1) and K, p,a are positive constants independent 
of the particular generator involved. Assume also 2or>—r, />>r. 

LEMMA 5. 7/* {çy} is a parabolic cocycle then there exists K*>0 
depending only upon T and {q)v} such that 

(2.12) \<p0h\lCM • • • Cq\ ^ K*v(Ay{\zr-2* + r 6 e + 2 r } , 

for l^h^q. Here e=max(/>/2, a+r/2) and A — ̂  • • • Ca is a factori­
zation into sections of A e I \ 

PROOF. The proof follows that of Theorem 1 in [14]. Consider first 
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the case when Ch is a nonparabolic generator. Let V=Ch+1- • • Ca= 
ÇÎ). Then, by (2.11), 

Woh\V\ = \yz + ô\r\tpoh(.Vz)\ 

< \yz + ô\r • K{\Vz\" + y-° \yz + <5|2"} 
= K |oz + (S|p \yz + ö\r-" + K \yz + ö\^+ry~ . 

By Lemma 4, 

\xz + p\' ^ 2p/2(|z|2 + jr2)' /2(a
2 + /S2)"/2, 

\yz + ô|2ff+r ^ 2<r+r/2(|z|2 + y-2)"+r/\y2 + ô*y+r/\ 
and 

\yz + Or» £ (y*l(l + 4 |z|2))('-'"/V + ô2)"-'"2. 
Hence 

19^ | FI < x2"/2(|z|2 + r 2 ) p / V + PY2 

(1 + 4 lzl2\<p-»-'/2 
l ± ± i £ L j (y» + ô2)(,-P)/2 

Since the nonzero y9 (* *) e T, with T discrete, have a positive lower 
bound, it follows that y2+<52 has a positive lower bound; hence 

i?o. I n < Ki(*2 + m w 2 + y-y'^-^-T-1) 
+ K[(y2 + ô2y+r/2(\z\* + y-*r»ny-. 

By [3, Theorem 2] 

a2 + /S2 + r2 + <52 = M*0 ^ J ^ ( A 
so that 

l̂ c» I V\ ^ K&iAY'Wzf + y-yy-»(l + 4 |z|2)("-)/2 

+ Kju^r* V(M" + r2r+r/2. 
Letting e=max(/3/2, a+r/2), we have 

I/o, | V\ ^ K^iAYQzf + r 2 ) e {/" p ( l + 4 |z|2)<"-'->/2 + ƒ - } 

^ « ^ ' ( M 2 + r2)e{|y2r-2p + 1(1 + 4 |z|2)"- + y-*}. 
Now tr^e—r/2 and /b—r^2e—r, so that 

IfCh | FI ^ « W l * + > -̂2)e{kl46-2r + rie+ir) 
^ JÇ6/a(^)e(|z|6e-2r + y«»+»). 
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We now deal with the case in which Ch is a parabolic section, that is 
Q = ô 5 \ mthj=j\h) between 0 and t. Then 

<pQi = <Pt I Qi - y * , 

and therefore, by (2.7), also 

From this it follows that 
<Pch I Q + l • " ' CQ = ^ I Ch ' ' ' Ca ~ <Pi I Q + l # * ' CQ' 

The previous argument applies to each of the two terms on the right-
hand side to yield 

\<Poh I ch+1 • • • cq\ ^ K^{A)\\zf^ + r 6 e + 2 r ) . 
The proof is complete. 

It is helpful at this point to introduce a specific fundamental region; 
we shall employ the Ford fundamental region M defined as follows (see 
[17, p. 58] or [15, p. 139]): 

m = (z G J f | |Re z\ < l\2 and \cz + d\ > 1 

(Please note that the definition of M is misprinted in [17].) Then there 
exists y0>0 with iy0 e &. Now determine ^ by the condition that A e ~# 
if -A/2^Re{^(i>o)}<:A/2. (Note that ^r\Vœ={±I}.) 

LEMMA 6. IfA = (a
c l) e *J(, chosen as indicated above, then 

H{A) <: K\c2 + d2), 

for K'>0, independent of A, 

PROOF. AeJ( implies |Re A(iy0)\ ^A/2. Also, 

0 < Im A(iy0) = y0 \ciy0 + d\~2 = y£c*y\ + d2)~\ 

If c = 0 , then d=l and Im A(iyQ)=y0. If c?±0, then \c\>m3, so that 

Imil(iyo) = yoKcVo + d2) <: yolc'yl < l / m ^ . 

Hence \A(iy0)\<K^; that is, \(a(iy0)+b)l(c(iy0)+d)\<K^ From this we 
conclude that ayo+b2<K^(c2yl+d2) and hence a2+b2<K'5(c

2+d2). The 
result follows since ju(A)=a2+b2+c2+d2. 

3. Convergence of the Generalized Poincaré Series. Suppose A e *J(. 
As before write A = CX* • • Ca, a product of sections. Applying (2.7) 
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repeatedly we find that 

(2.13) <pA = <pox...0q = <Pcx\C*'m-C*+ <Pct\C*m"CQ + -m + <Pcq> 

with q^mx log ju,(A)+m2 terms on the right-hand side. We need to esti­
mate the absolute value of the general term of the series (2.4). This is 

\<pA(z)w(A)(cz + rf)*| = \<pjz)\ \cz + d\~K 

By (2.13) and Lemma 5, we have 

\<pj?)\ ^ K*M(AY(\z\" + y-)q <: K^{Ay+\\z\* + y*), 

where ^=6e—2r and we have used q^m1logju(A)+m2^m3iu(A). 
Lemma 6 yields 

|çu(z)| ^ K*(c2 + dT-\\z\' + y*)9 

and, by Lemma 4, 

/ l 4- 4 lzl2V+1 

WA(z)\ % K* \cz + <C+2 ( , J (M' + y-"). 
Hence, 

( 1 4 - 4 lzl2V+1 

2 ) (M'+ro. 
With k>2e+A it follows that fc-2e-2>2, hence by [15, pp. 276-277] 
that (2.4) converges absolutely and, in fact, uniformly on compact subsets 
of JT. 

PROPOSITION 7. For k sufficiently large (>2e+4) the Generalized 
Poincaré Series (2.4) converges absolutely and, in fact, Y e 0>. 

PROOF. The absolute convergence and the fact that Y is holomorphic 
in 2tf have already been proved. To show that Y e 0 apply Lemma 4 
to (2.14) to get 

(1 4 - 4 lzl2\fe/2 

,' ') dzr + r") 

(1 + 4 lzlV / 2 

2 ') (izr + ro. 

The convergence of 2A** \ci+d\2e+2~k implies that Y e ^ . 

4. Proof of Theorem 3. Let {<pF} be a parabolic cocycle in & for Y 
of degree r and multiplier system v. For K G T, put 

<Pv = 9V - (<Po|^ - <Po). 
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Then {9?*} is again a parabolic cocycle in 0* and now ys—y^S—y^--
((Po\S—(p0)=0. Thus we may form the Generalized Poincaré Series 
T({<^}, fc, w; z)=T*(z); then Y* e » and F*(z)=-Y(z)lg(z) satisfies 
F*\IM-F* = <p%[9 for Me V. Defining F(z)=F*(z)+<p0(z), we have 

F|;M - F = 99^ + 990 I M - ç>0 = <pM9 for M G T. 

The first problem that presents itself is the possibility that g(z)=0; 
this indeed does happen for certain choices of V, k, and w. However, if 
we simply choose k an even integer and w(V)=l for all VeV, then 
g(z)=HveJï (cz+d)~k is an Eisenstein series of degree — k for T, con­
cerning which it is well known that [15, p. 278] l i m ^ ^ g(z)=2. Indeed, 
g G C+(T, -k, 1) but g £ C°(T, -k, 1) [15, p. 278]. Thus, in particular, 
g(z)^0, and Fis meromorphic in Jf. 

Since g has at worst finitely many zeros in M n Jf [15, p. 274], F has 
at worst finitely many poles in M C\£F. For eachy, O^y^r, consider the 
function Fj=F—(pj. Then we have 

Fi I O,- - *i = (F\Qi -F)- (9* I Qi - 9>i) = <PQ, - <PQi = 0; 
by a standard argument it follows from this that 

F,(Z) = (z - q3y 2 flmC^xp — - r r > ! = ^ = <> 
and 

F0(z)= 2 a m ( 0 ) e x p - ^ - M. 
m=—ao \ A ) 

However since g e C+(T, —A;, 1) it has at worst a zero of finite order, in 
the appropriate local variable, at each qy This, together with the fact 
that (fj G 0, implies that F(z) has expansions of the form (2.3) at the 
parabolic points. 

Since F may have poles in Jf we need to modify it somewhat to obtain 
the function O of Theorem 3. It follows from results of Petersson [22] 
that there exists ƒ G {T,r, v} which has poles with given principal parts 
at finitely many points of M n 3tf and is otherwise holomorphic in M 
with the possible exception of the cusps. Then we form 0=^—ƒ, where 
ƒ G {J1, r, v) is chosen to have poles whose principal parts agree with 
those of F in J n J T . Since f\r

vM=f for Me T, it is still the case that 
<S)\r

vM—<5> = (pM9 M e T. At each parabolic cusp ƒ has at worst a pole of 
finite order; thus O has expansions of the form (2.3) at the parabolic 
cusps. Finally, O is holomorphic in MnJf; this and the functional 
equation <t>|M—0 = <pM, MeT, imply that O is holomorphic in Jf. 
This completes the proof of Theorem 3. 
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III. Proof of Theorem 1. 1. The case r^—2. In this case the result 
is H}iV(T, ^ )={0} . In the proof we need 

LEMMA 8. There exist positive constants K, p0, <r0 such that for all 
r e J> n #? and VeJ(, 

|çy(r) | < K(yOo + j , — ) , 
where y=lm(Vr). 

PROOF. Fix r e Mn 30*, Ve Jt, and put z=Vr. Write V=CX • • • Cff, 
a product of sections, as before. Then, as in the derivation of (2.14), we 
have 

where r = I m r a n d V=(a
c
 h

d). By Lemma4, c2+d2<:\cT+d\2(\+4\r\2)r2. 
Now, 

y = Im z = Im Vr = t \cr + d\~2
y 

so that \cr+d\2=t/y. Hence c2+d2^{tyY1(\+A\r\2), from which it 
follows that 

(3.1) |^ F ( r ) | ^ XJ(1 + 4 I r l ^ n ^ r - X k r + '"«). 

If F e l , F?*/, then c^O; hence \cr+d\2^l, for all F e J ^ , since 
T Ê I and thus r is interior to no isometric circle. If follows that 
y=t\cr+d\~2^t. On the other hand, T=V~1Z, so that r=Im(K-1z) = 
j>| — cz+a|~2. Now, 

\-cz + a|2 = c2y2 + (a - ex)2 ^ c2j2 > m2 . / , 

unless c=0; if c=0 , then /=ƒ . Thus t=y or f <m^2y~1, so that in every 
case, tKy+m^jr1. Also r e Jf implies that |Rer|^A/2, hence 

M ^ t + A/2 < y + mfy-1 + A/2. 

Applying these estimates in (3.1), we find that 

\Mr)\ < K2 — 

x {(y + m^y-1 + mr + y'nl 
from which the result follows. 

PROOF OF THEOREM 1 FOR r < —2. We shall show that if r£j— 2 
and {(py) is a parabolic cocycle in ^ , then there exists O e ^ such that 

0 | : M - 0 = ^ M , M e r . 

As in the proof of Theorem 3 we may, without loss of generality, assume 
that 9^=0 , since (p0 e 0*. Let O be the function whose existence is 



622 M. I. KNOPP [July 

guaranteed by Theorem 3. Since r ^ — 2 there exists G e{T,r,v} such 
that G is holomorphic in 3tf and G has a principal part at each qi which 
agrees precisely with the principal part at qj of the expansion (2.3) of 0 . 
(If r < — 2 , G can be constructed as a linear combination of Poincaré 
series, whose absolute convergence is guaranteed in this case [15, pp. 272-
280]. If r=— 2 the much more difficult construction has been carried 
out by Petersson [20], [21].) If we put 0 * = 0 - G , then 

(i) $*|;M~(D* = toMGr5 

(ii) O* is holomorphic in Jf, 
(iii) ®* has an expansion (2.3) at each qi in which no negative power 

of the local parameter appears, O^j^t. 
Condition (iii) implies that there are positive constants K@, p, a such 

that 

|<D*(z)| < Km(\y\p + y-°), for all z e M n Jf. 

Put/(z)=7- r / 2 |0*(z) | , j = l m z > 0 . Then for F = ( * J) e T, 

y-r/2\cz + d\r\<&*(Vz)\ 
y-r/2\cz + d | f | ( c z + d)-r(D*(z) + ( c z + d ) - > F ( z ) | 

3rr/2|<ï>*(z) + çy(z)| ^ j - r / 2 l^*(^) l + y~r/2\Mz)\ 
f(z) + y^\cpv(z)\. 

Let ^ = U r e ^ V(M) C\3tf. Suppose we can prove that 

(3.3) |<D*(z)| < K(y* + y~p\ for z e ST, 

with a, |8, K positive constants independent of z. From the definition of 
fundamental region and the choice of <J( it follows that given z e J^, 
Smz e Sf for some rational integer m. Now, 

|0*(S™z)| = | (0* | Sm)\ = |0*(z)|, 

since <ps=0 (hence cpSm=0); also Im(Smz)=lm z==y. Then (2.17) implies 
that, for z e JT, 

|0*(z)| = |<D*(S™z)| < £(>;« + r ' ) , 

so that, in fact, 0 * e ^ . 
It is sufficient, therefore, to prove (3.3). Suppose z e ^ ; then there 

exist Ve J( and r eMn^ such that z=Vr. Let j = I m z . By the in­
equality (3.2), 

0 * ( z ) = / / 2 / ( z ) = / / 2 / ( F r ) 

(3.4) ^ / / 2 { / ( r ) + r ^ | ^ ( r ) | } 

= / / 2rW 2{ |0*(r) | + |çy(T)|}. 

(3.2) 
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Since r G ^ n ^ , ^{r)<KM{tp+ra)9 while, by Lemma 8, |çy(r ) |< 
Ki(yPo+y~a°)- From (3.4) we conclude that 

<D*(z) < yr/2rr/2{K^(tp + O + Xx(/o + /""•)}. 

In the proof of Lemma 8 we showed that y r g / ^ (m^y^+y. Since — r /2>0, 

<D*(z) ^ W — + J T ^ I K J - 1 - + yX + y-° + K^y* + r*)l 
\m 4 j ; / l \ m 4 j / j 

from which (3.3) follows and the proof is complete for r^— 2. 
REMARK. It is important to notice that the above line of proof de­

pends on the fact that r^— 2 only for the existence of G G {F, r, t;} with 
preassigned singularities at the cusps. The existence of such G is a kind 
of Mittag-Leffler theorem for automorphic forms which does not hold 
in general for r>—2. For the case r > 0 we substitute recent results of 
Douglas Niebur on automorphic integrals of arbitrary positive degree 
[18]. For r = 0 we again apply Petersson's construction of automorphic 
forms of degree - 2 [20], [21]. 

2. The case r > 0 . For any real r the previously-quoted results of 
Petersson [22] imply that there exists ƒ e {V, r, v} which has poles of 
prescribed principal parts at each of the cusps ql9 • • • , qt and is holo-
morphic in £F. If r ^O one has no control over the principal part at the 
cusp q0=co; this principal part is, indeed, largely (not completely) 
determined by the assignment of the principal parts at ql9 • • • , qt. With 
fixed r ^ O and given parabolic cocycle {(pv} in 2P9 let O be the function of 
Theorem 3 and let ƒ e {r , r, v} be holomorphic in J f with principal parts 
as given by (2.3) for l^j^t. Then 

(3.5) * • ( * ) =* <D(z) - / ( z ) 

satisfies all of the conclusions of Theorem 3 and, in addition, is holomor­
phic at the finite cusps ql9 • • • , qt. 

With r > 0 and v an associated multiplier system for the i/-group I \ 
the results of Niebur that we shall require may be stated as follows 
[18]: 

THEOREM N^ Let m0 be a nonnegative integer and a_l9 • • • , a_m 

complex numbers. Then there exists F, an automorphic integeral of degree 
r with respect to T, which is holomorphic in J f and at the finite cusps 
fa' ' ' >9t and which has an expansion (2.3) with principal part 

(3.6) a_m exp{27r/(—m0 + K)Z/X} + • • • 4- #_i exp{27r/(— 1 + K)ZJX} 
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at q0= oo. The function F has the transformation properties 

F\r
vV = F, VeY 0 0 5 

(3«7) /»ÎOO 

[F\IV -F]-=\ G(r)(r - zj dr, VeY- Yx, 
JV oo 

where G e C°(Y, —r—2, v) is determined by a_m , • • • , a_v Here [h(z)]~ 
denotes h(z), the complex conjugate ofh(z), and the path of integration is 
a vertical line. Furthermore, {F\V—F} is a parabolic cocycle in SP. 

THEOREM N2. Given G e C°(Y, —r—2,v) there exists an automorphic 
integral F satisfying (3.7) such that Fis holomorphic in 3F andatqx, • • • , qt. 

REMARK. Theorem N2, a converse of Theorem Ni, is analogous tó 
our Theorem 3 as it allows one to prescribe the period functions of an 
automorphic integral. As in Theorem 3, with the prescription of the 
period functions one loses the freedom to prescribe the principal part 
at oo, which is, indeed, largely determined by the given G. 

THEOREM N3. If there exists F e {Y, r, v} which is holomorphic in Jf7 

and at qx, • • • , qt, and which has principal part (3.6) at q0=oo, then the 
function F of Theorem Ni is in {Y,r,v} and, in fact, F=F. In this case the 
cusp form G of (3.7) is =0 . 

PROOF OF THEOREM 1 FOR r > 0 . Suppose G e C°(Y, —r, v). Then 
put oc(G)=(gF), where 

(3.8) i^i) = r G(r)(r - zYdr, VET, 
JV oo 

and (gv) denotes the cohomology class in HltV(T, 0>) determined by 
{gv} which, by Theorem N2, is a parabolic cocycle in 0*. If Ve T^ the 
integral in (3.8) is to be interpreted as 0; for Ve T—Y^ the path of 
integration is a vertical line. The mapping a is obviously linear from 
C°(T, —r—2, v) into / / ^ ( I " , 0). We must show that a is 1-1 and onto. 

To show that a is onto suppose {cpv) is an element of HltV(T, 0). 
Let O(z) be the function of Theorem 3 with cocycle of period functions 
{(py) and let 0*(z) be given by (3.5). Then O* has the prescribed cocycle 
of period functions {<pv} and it is holomorphic in J f and at the finite 
parabolic cusps ql9 • • • , qt as well. Apply Theorem Nx to obtain the 
existence of an automorphic integral F such that 0 = 0 * — F is again an 
automorphic integral of degree r with parabolic period functions in 0* 
and such that <î> is holomorphic in J f and at all of the parabolic cusps 
(including q0= oo). The argument used in §111.1 to conclude the proof of 
Theorem 1 for r<— 2 now shows that Ô G 0, from which it follows that 
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(<Pv)=(gv)> w i th gv determined by (3.8) from G e C°(T, - r - 2 , v), 
which, in turn, is determined from F by Theorem Ni. Then a(G)=(<pF) 
and a is onto. 

To show that a is 1-1 suppose that oc(G) = (gF>=0 in HÎ,V(T, 0>) for 
some G e C°(T, —r—2, v). This means that there exists f e 0> such that 
gv=Ê\lV—Ê9 VeV. On the other hand, Theorem N2 implies that there 
exists an automorphic integral F holomorphic in Jt? and at ql9 • • • , qt 

such that gv=F\r
vV-F, VeT.lt follows that F=F-Pe {I\ r, v) and 

Fis holormophic in Jf and at ql9 • • • , qt. At oo .Fhas the same principal 
part as does F. Theorem N3 then implies that F=F and G==0. Thus a 
is 1-1 and the proof of Theorem 1 is complete for the case r > 0 . 

3. The case r = 0 . If r = 0 the results of Niebur are not applicable 
and we apply instead results of Petersson which are utilized in [6] to 
prove Theorem A for the case r = 0 . 

Since v(S)=e2iriK, 0 ^ K < 1 , it follows that v(S)=e2lTiK'9 with 

K' = 0 if K = 0, 
= 1 - K if K > 0. 

If v is an integer define 

v' = — v if K = 0, 

= - 1 - v if/c > 0. 

In [20], [21] Petersson has carried out a construction of automorphic 
forms of degree —2 with arbitrary multiplier system v on //-groups T. 
He produces functions gv(z, v) holomorphic in Jf? such that 

(i) gv(z, v) e {I\ - 2 , v}9 

(ii) gv(z, tf) is zero at ql9 • • • , #*. At q0= oo it has an expansion of the 
form 

I2m{v + K)Z\ ^ [2m(m + K)Z\ 
qv(z, v) = 2 exp + 2 Z, <**>, *0exP : • 

I A ) m+K>o I ^ ' 

In particular if r + / c > 0 then gv(z, v) e C°(V9 —2, v). 

PETERSSON GAP THEOREM [19, p. 207 and p. 211, Theorem 9a ]. Le* s 
be the complex dimension of the vector space C°(V, —2, v). Then there are 
precisely s integers wi9 0<wx<' • -<ws> such that there does not exist a 
nonconstant element of{T,0,v} having as its only singularity in 0tr\J^ a 
pole at q0=co of order v^—K9 l^i<^s, in the local uniformizing variable 
at oo. Furthermore the functions g(-w.y(z9v)9 l^.i^s, form a basis for 
C°(r, - 2 , v). 

PROOF OF THEOREM 1 FOR r = 0 . Suppose G e C°(I\ — 2, v). Then 
G = Z î - i big^riz, v). Let G* = 2i-i **-«,(*> ») G ( r> ~2> »>• N o t e t h a t 

VeT.lt


626 M. I. KNOPP [July 

G* is holomorphic in 3P9 zero at ql9 • • • , qt9 and has an expansion at 
q0= oo with principal part 2 2 L i £* exp{27r/(—w^+^z/A}. Let Jpbe holo­
morphic in J f and such that dF(z)/dz=G*(z), so normalized that 
F(z+X)=e2vtKF(z). Then JP is an automorphic integral of degree 0 with 
a parabolic cocycle of period functions. In addition F is holomorphic 
at #i> ' * • 5 #t a n d has principal part at ^ 0 = oo 

(,9) 2|5ijMzi±i)pexpj?=fca±^j. 
Furthermore, in this case F\lV— F=cv, VeT, where cv is a complex 
number. Now we define OL(G)=(CV), where (cF) denotes the cohomology 
class in HltV(T9 0>) of the cocycle {cv}. Clearly a is a linear mapping 
of C°(T, —2, v) into i/o.vCr, 3P). As before we must show that a is 
1-1 and onto. 

Suppose (<pv) eHltV(T, 0*)\ let <D be the corresponding function of 
Theorem 3 and let ®* be defined by (3.5) once again. Then <£>* is holo­
morphic in J f and at the finite parabolic cusps ql9 • • • 9qt and has {(pv) 
as its cocycle of period functions. Petersson's construction yields the 
existence of G G C ° ( T , — 2, v) such that the automorphic integral F, 
the anti-derivative of the corresponding G* e {T, — 2, v], has the property 
that <î)=0—F is holomorphic in 01. Once again, the earlier argument 
implies that $ G ^ . From this it follows that {<Pv)=(cv)> where 
cv=F\vV— F, VEY9 and therefore a (G)=(c F )=(çy) . Thus a is onto 

Now suppose that a(G)=(cF )=0 in #J t f , (r , ^ ) for some G G e ' e r , 
- 2 , Ê). Then there exists Pe 0> such that c F = / | S K - / , VE V. On the 
other hand, if F is the anti-derivative of the G* e {T, —2, t;} corre­
sponding to G (as above), then also cv=F\vV—F9 Ve T, so that 

F=F- / e { I \ 0 , i ? } . 

Since Êe£P9 Fis holomorphic in M9 except possibly a t# 0 =oo where 
it has the same principal part as does F9 given by (3.9). The Petersson 
gap theorem then implies that F is constant, that is, that 6*=0 for 
1^/rgs. From this it follows that G=0 , so that a is 1-1 and the proof of 
Theorem 1 is complete. 

REMARK. For any r it is obvious that with given O e ^ , {0|£F— 0} 
is a cocycle in 3P. (Of course it is a coboundary in ^ . ) For r ^ — 2 Theo­
rems 1 and 2 have the interpretation that these easily available cocycles 
are, in fact, the only cocycles in ^ . For r > 0 Theorem Nj implies the 
existence of cocycles in & which are not obviously coboundaries in £P. 
Theorems 1 and 2 in this case show that every cocycle in & is one of the co-
cycles of Theorem Nx plus a coboundary in ^ . 
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IV. Proof of Theorem 2. 1. Deduction of Theorem 2 from Taylor's 
proposition. Theorem 2 follows from the fact that, for any real r, 

(4.i) #ryr, 9) = #ryr, ^), 
which in turn is a consequence of the following result concerning SP due 
to B. A. Taylor (private communication). 

PROPOSITION 9. Suppose g e SP and s is a complex number with |e| = l. 
Then there exists f e SP such that 

(4.2) * ƒ ( * + ! ) - ƒ ( * ) =*(* ) . * G ^ -

(Compare this result with [5, Lemma 4]). 
We postpone the proof of Proposition 9 for the time being and use it 

to derive (4.1). To prove (4.1) it is sufficient to show that, given a para­
bolic transformation Q eV and 99 G ^ , there exists p e SP such that 

(4.3) R\IQ -p=cp. 

There are two cases to consider. 
Suppose first that Q is a translation, that is, ô = (o 1), A>0. Put g(z) = 

cp(Xz); then g e SP and we may apply Proposition 9 to conclude that there 
exists ƒ G SP such that 

i ; ( ô ) / ( z + l ) - / ( z ) = g ( z ) , zzJ?. 

Put p(z)=f(z/X); then p G &> and 

p\lQ - P = v(Q)p(z + X) - p(z) = v{Q)f{{z + X)IX) - / ( z /A) 

= 0(e)/(zM + !) - / ( z M ) = s(zM) = <KZ)> 
for any z G Jf*. Thus (4.3) has a solution if g is a translation. 

If Q G r is parabolic, but not a translation, then Q can be written in 
the form Q =A~1(l i)A, A>0, where A is a real matrix of determinant 1 
such that Aq= 00. Here # is the parabolic point fixed by Q. By the pre­
vious case, given e, |e| = l, and g e £P, there exists ƒ G SP such that 

(4.4) ëf(z + X) - f(z) = g(z), z G JtT. 

Suppose Q = C I ) , A = (* T) and put 

(4.5) s = t?(g)(cz + d)-r(yQz + ô)~r(yz + ô)r. 

To show that \e\ = l it is sufficient to prove 

(4.6) (cz + d)(yQz + Ô) = yz + Ô. 

But a simple calculation shows that (cz+d)(yQz+ô) is the denominator 
of AQz. Since AQz=(l *)Az and (J i)^4z has the same denominator as 
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Az, namely yz+ô, the equality (4.6) holds and |e| = l. Since |s | = l and e 
is holomorphic (as a function of z) in Jf7, it follows that e is constant and 
(4.4) may be applied. 

Suppose g G &*, e is given by (4.5), and fe£P is a solution of (4.4). 
Put p(z) = (yz+ô)rf(Az); then p G SP and 

P | ;Ö - /> = £(QXcz + d)r
P(Qz) - p(z) 

= i;(g)(cz + dJiyQz + ÖJf(AQz) - p(z) 

= ë(yz + ó) r/(^z + A) - (yz + ó)7(>lz) 

= (yz + «)rg(Az), 

by (4.4) with z replaced by Az. We now put 

g(z) = (yA-^z + ôy'cpiA^z), 

so that (yz+ô)rg(Az) = q)(z), the given function in SP. With <p G ^ , g is 
likewise in 3P. Thus (4.3) has a solution /> G ^ for any parabolic Q e Y 
and (4.1) follows. 

2. Proof of Taylor's result. A formal solution to the functional 
equation (4.2), with given g, is provided by the function 

(4.7) / ( z ) = - | V g ( Z + n). 

Indeed, if g G 0* vanishes at oc with sufficient rapidity (say g(z) = 0(|z|-2) 
as |z|->oo), then (4.7) converges absolutely in J^ and uniformly on com­
pact subsets of Jf. In this case it is easy to verify that ƒ G SP. Though, 
in general, the series (4.7) does not converge, it nevertheless remains the 
key to the solution of (4.2). 

In order to overcome the convergence difficulties we first observe that 
it is sufficient to solve (4.2) for the fcth derivative of g or a fc-fold in­
definite integral of g. This follows since SP is stable under differentiation 
and integration and since (4.2) is readily solvable in SP if g is a polynomial. 
(Indeed if g G Pk9 (4.2) is solvable with ƒ G Pk+1.) We also make the easily 
verified observation that the condition (1.11) for g G SP may be replaced 
by |£(z)|<Jr(l + |z|)ajT*, j = I m z, with K, a, /? all positive, or by 

|g (z ) |< K(l + \z\T, y^l9 

( 4 . 8 ) < X(l + \z\yy-p, 0 < y < 1, 

again with K, a, j8>0. 
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LEMMA 10. Suppose g e SP satisfies (4.8) and h is any indefinite integral 
ofg(dhldz=g(z),zeje). 

(a) If /?>1 then h satisfies (4.8) with cc replaced by a+1 and fl replaced 
by f}—\. (The constant K must be replaced as well.) 

(b) 7/*0</?<l then h is continuous in ffl* (i.e. iny^.0), and there satisfies 

(4.9) \h{z)\ < X'(l + \z\T+\ 

The proof of (a) employs a straightforward use of (4.8) and Cauchy's 
theorem. The proof of (b) is more complicated since the proof that 
\imz_^x h(z)—h(x)9 z=x+iy, y>0, exists is somewhat delicate. It involves 
a careful (though not deep) analysis and employs, once again, Cauchy's 
theorem. The details will be omitted. 

Lemma 10 shows that if g e SP then some A>fold indefinite integral of g 
is continuous in JP and satisfies an inequality of the form (4.9). (If ]8 is 
not an integer take k= [j8] + l. If j8 is an integer replace j8 by /?+\\ then 
we may choose &==/?+1. Thus in either case k= [/?] + l will do, where [/?] 
is the largest integer ^jS.) This fact, together with our previous obser­
vation, implies that it isjsufficient to prove Theorem 9 in the case when 
g e SP is continuous in 3f and satisfies 

(4.10) |g(z)| < K(\ + |z|)«, y = lm z ^ 0, 

with K, oc>0. On the other hand, given such g, if k is an integer > a+1 then 

(4.11) g (z) = ——— ; -du9 z e J T . 
2-TTl J-OO (U — Zj 

In order to prove (4.11) let Ct9 f >0, be the path in Jf7 consisting of the 
interval [—t,t] followed by the semicircle in J^ connecting t to—t. 
The Cauchy Integral Formula shows that 

s (z) = „ . ; rfc
 du> 

ITTI Jct (u — zy 

for any z inside Ct. Letting f->+oo yields (4.11). As we have already 
observed, it is sufficient to solve (4.2) in 9 for g(fc-1). Thus we consider 

&) = 7 ~k
 du> 

J-oo (u — zy 

where g satisfies (4.10) and k is an integer >oc+l. 
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LEMMA 11. Write g(z)=g1(z)+g2(z)9 where 

SiOO = ; rj àu9 g2(z) = du. 
Jo (w — zy J-oo (M — zf 

Then gl9 g2e0* and for ze J f 

I&OOI < K ' ( M " + \z\*+1~k)> x = Re z ^ 0, 
(4.11) < K „ ( 1 + |z|j«+iy-* x = Re z > 0. 

7%e inequality (4.11) holds for g2(z)9 with the conditions on x reversed. 

REMARK. (4.11) implies that gx e 0*. 
Once again we omit the details of the proof, which involves estimating 

the integral representations of gl9 g2 by utilizing (4.10). 
If we now choose k so large that k—a— 1 > 1 then, of course, fc—1 > 1 + a 

and by (4.11) the series 

oo oo 

(4.12) A(z) = 2 *"&(* - «). Mz) = - 2 **&(z + ») 
w = l w = 0 

converge absolutely for z e Jf and uniformly on compact subsets of 
Jf7. Furthermore, an easy calculation shows that fuf2 e &- Finally, 
absolute convergence implies that 

. / 1 ( z + l ) - / 1 ( z ) = g1(z) 
and 

ëf2(z+\)-f2(z)=g2(z). 

Thus if f(z) = f 1(z)+f2(z), then ƒ G 0> and 

sf(z + 1) - f(z) = g^z) + g2(z) = g(z). 

This completes the proof. 

V. Concluding remarks. 1. Theorems 1 and 2 should be compared 
with Theorem 3 of [5], which, in our notation, may be stated: 

(5.i) c°(r, - r - 2, v) ̂  # r yr, J*°>, 

where r^O is an integer, v consists of roots of unity, and J&° is the space 
of all functions holomorphic in 3/P which grow more slowly than any 
exponential at all of the parabolic cusps of V. (See [5, pp. 48-49] for 
the precise definition of s/°.) With r an even integer (r^O, —2) and u s l , 
Kra [11, Theorems 3 and 6] has shown that 

(5.2) C0(T, - r - 2, *) ~ J£,(I \ <0, 
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if r is a finitely generated Fuchsian group of the first kind without para­
bolic cusps (i.e. 3tf\Y is compact) and si is the space of all functions 
holomorphic in ^ . Kra's formulation of (5.2) is actually more general 
than that given here, since he deals with Kleinian groups. Kra has also 
shown that [11, Theorem 5] 

(5.3) H r y i \ st) = 0 

for any even integer r and v=l if T is a Fuchsian group such that 3tf\Y 
is open. This includes the case of //-groups T, Again, Kra's formulation is 
in terms of Kleinian groups I \ 

2. Comparison of Theorem A, Theorems 1 and 2, (5.1), and (5.3) 
suggests that H}tV(T, &) (with fixed rg:0, v, Y) gets smaller as &* gets 
larger. It would be interesting to determine the "largest" IF (if such exists), 
^ c ^ c z ^ , with the property that HîtV(Y, ^)^{0}9 or, alternatively, 
such that HltV(Y, ^)^CQ(Y, —r—2, v). A related question is the determi­
nation of the "smallest" 3F, ^ c ^ c ^ such that J#.«,(I\ F)={0}, r^O. 
In more general terms, it might be of value to determine the behavior 
of H}lV(Y9 J O as J2" varies. 

The proof of Theorem 2 shows that, in fact, H}tV(Y9 0>)=H}fV(Y, 0>) 
for any group Y of real linear fractional transformations, whether it is 
finitely generated or not, whether it is discrete or not. We are led to ask 
whether an analogue of Theorem 1 is true for Fuchsian groups in general, 
with a suitable replacement for C°(Y, —r—2, v), of course. Another 
question that presents itself naturally is whether Theorem A has an 
analogue when r > 0 but r is not an integer. This involves identifying a 
space of functions to replace Pr, the polynomials of degree ^ r . Another 
difficulty in this connection is that, with r not an integer and v a multiplier 
system of degree —r—2, v is not a multiplier system of degree —r—2. 
Thus one must replace C+(Y9 —r—2, v) as well. 

Finally, I conjecture that Theorem 1 is true in the range — 2 < r < 0 . 
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