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1. Introduction. The concept of inductive definability has become of 
great interest to recursion theorists in recent years. Recursion over natural 
numbers, ordinals, and higher type objects may itself be defined by an 
inductive operator—see for example [7] and [9]. Many results have been 
obtained characterizing the closures of inductive operators over the 
natural numbers, and relating lengths of inductive definitions to various 
interesting ordinals ; see [3] for a brief summary. 

The purpose of this note is to present results on the closure ordinals and 
sets of inductive operators over the continuum. Details will appear later in 
[2], [4], and [5]. 

2. Basic definitions and notation. An inductive operator T over a set X 
is a map fromP(X) to P(X) such that for all A, A^V(A). T determines a 
transfinite sequence {T°:o e ORD}, where V(T=U{VT:r<a} for (7=0 or 
a a limit and T ^ + ^ r ^ ) . V is monotone if, for all A, Bin P(X), A^B 
implies V(A)^V(B). V is positive if its application to a set A involves only 
the positive part of %A (the characteristic function of A). 

The closure ordinal |T| of T is the least ordinal a such that r< r + 1=r< r ; 
clearly |T| always has cardinality less than or equal to c a r d ^ ) . The closure 
F of r is r | r ' , the set inductively defined by T. 

For a class C of inductive operators, the closure ordinal |C |=sup{| r | : 
V e C} and the closure algebra C={A :A is 1-1 reducible to V for some T 
in C}. We write C-mon for the class of monotone operators in C 

In studying inductive operators over the continuum, we follow the usual 
convention that a real number is a function from the set œ of natural 
numbers to itself; thus the real line is ^co. 

3. Main results. The central result of our research is the following 
theorem. 

THEOREM 1. (a) | n?-mon| H n^mon | = |Ii}-mon| ==*<!; 
(b) (n î -mon)~=(n î -mon)""=n î ; 
(c) (2i-mon)~~=22-
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One direction of these equalities is derived from the existence of a 11? 
monotone operator V with | r | = Xx and P equal to the set of codes for 
well-orderings. 

The other direction depends heavily on first proving that both n î and 
S j monotone operators can be put in positive form. See [1] for some related 
results. 

Concerning nonmonotone inductive definitions, we obtain the following 
result by considering the essential countability of any computation on real 
numbers. 

THEOREM 2. (a) I S ^ X ^ 

(b) (Aîr^Si 
It is interesting to compare these two theorems with the corresponding 

results for inductive definitions over the natural numbers, where 

(1) |n?-mon| = |IIî-mon| = œ1 < \A]\ < |Zi-mon| 

and 

(2) (nj-mon)"" = ( I ï ï -monT = ^l g (Sî-mon)"~g 2^. 

The simplest type of inductive definition over the reals would be one in 
which the real variable appeared only as a parameter. For example, if R is 
a n? relation such that for all a, Ta, defined by n e Ta(A)<r-^R(n, a, A), is 
an inductive operator over co, then there is an obvious IIJ operator T such 
that for all n and a, « e ( r a ) ~ iff (n, a) e P. A similar fact holds if ü j is 
replaced by any other definability class. 

We see by Theorem 1(b) and remark (2) that for II? this process can be 
reversed: If V is a n? monotone operator over ^œ, then there is a n? 
relation R such that for all a, r a , defined by « G Va(A)<r->R(n9 a, A), is a 
monotone operator over œ and a e T iff 0 e Fa . We say that the Ta 

parametrize V. 
Comparing Theorem 1(c) with remark (2), we see that this cannot be 

done for S j operators over ^œ. The surprising result here will be the extent 
of the definability class needed to parametrize Aj nonmonotone operators. 

In general, we say that A^œ can be inductively parametrized'm Cif 
there is a { r „ : a e " œ } in C and a recursive F such that for all a in ^co, 
a e A iff F(OL) E Fa . Let PCI (C) be the class of subsets of ^œ which can be 
inductively parametrized in C. 

By the above remarks, PCl(IIJ)=IIi=(riJ-mon)~". The power of 
recursive inductive operators over the continuum can be seen in the 
following result. 

THEOREM 3. (a) l A j ^ K ^ 
(b) PCI (III) UPC1 (2î)c= (Aî)~ 
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Inductive definitions of length greater than Nx are closely related to the 
functionals 3E and 3£#—see [8] for definitions. Let /q be the ordinal of 
ZE, K2 that of 3 £ * ; KX is less than K2. The following two results are implicit 
in [6]. 

PROPOSITION 4. |*nî| = #cx; (Ilî) =semirecursive in ZE (hyperanalytic). 

PROPOSITION 5. For all n>l, \/S?n-mon\ = \I*l\ = K2 and (A*-mon)~~= 
(Sil)~~ ==semirecursive in 32s* (hyperprojective). 

We can add the following. 

THEOREM 6. |n||>>ica. 

Hyperprojective inductive definitions can be analyzed in the manner of 
[3] and [10]. For example, we obtain the following analogue of a theorem 
of Richter from [10]. 

THEOREM 7. | [A|, A|]| is the least ordinal which is recursively Mahlo in 
ZE# and parameters from ^œ. 

All of the results in this paper are easily relativized with respect to a 
real parameter and have obvious boldface analogues. 
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