TOPOLOGICAL SCHUR LEMMA AND RELATED RESULTS

BY THEODORE CHANG AND TOR SKJELBRED Communicated by Paul S. Mostert, February 23, 1973

We announce here some results of a paper to appear elsewhere [1].

Let a torus T act continuously on a topological space X. Let $X \to X_T \to^{\pi} B_T$ be the fibre bundle with fibre X associated (by means of the action of T on X) to the universal principal T bundle $T \to E_T \to B_T$. We define the equivariant cohomology ring $H_T^*(X) = H^*(X_T)$ where H^* denotes Čech cohomology with rational coefficients. When Y is an invariant subspace of X, we define $H_T^*(X, Y) = H^*(X_T, Y_T)$. Then $R = H^*(B_T)$ is a polynomial ring and $H_T^*(X, Y)$ is a module over R by means of π^* .

For each subtorus L of T let PL be the kernel of $H^*(B_T) \to H^*(B_L)$. Let $X^L = F(L, X)$ be the set of points fixed by L. We will assume that X is compact. Given a closed invariant subspace $Y \subset X$ and an element $x \in H_T^*(Y)$, we define

 $I_x = \{a \in R \mid ax \text{ lies in the image of } H_T^*(X) \to H_T^*(Y)\}, \text{ and}$

 $I_x^L = \{a \in R \mid ax \text{ lies in the image of } H_T^*(X^L \cup Y) \to H_T^*(Y)\}.$

When $L \subset K$ are subtori, $I_x \subset I_x^L \subset I_x^K$. We say that K belongs to X if K is maximal with respect to the property $I_x^K \neq R$.

- 1. THEOREM. The isolated primary components of the ideal I_x are the ideals I_x^K where K belongs to x. The radical of I_x^K is PK, hence $\sqrt{I_x} = \bigcap PK$ where K ranges over the subtori belonging to x.
- 2. COROLLARY. If I_x is principal, the subtori belonging to x are all of corank 1 and $I_x = \bigcap I_x^K$ where K ranges over the subtori belonging to x. For each such K, $I_x^K = (\omega^d)$ where $d \ge 1$ and $\omega \in H^2(B_T)$ generates PK.

Assume that the fixed point set F of the T action on X is not connected. Let $F = F^1 + \cdots + F^s$ be the connected components of the fixed point set, $s \ge 2$. We say that a subtorus L connects F^1 and F^2 if they lie in the same component of X^L . We assume that dim $H^*(X)$ is finite.

3. THEOREM. Let $N \subset H_T^*(X)$ be the ideal generated by odd degree and R torsion elements. Assume that $H_T^*(X)/N$ is generated by k elements as an R algebra. Then for every maximal subtorus K connecting F^1 and F^2 , rank $K \ge \operatorname{rank} T - k$.

AMS (MOS) subject classifications (1970). Primary 55C20, 57E10, 57E25; Secondary 55C35.

4. REMARK. This generalizes a result of Hsiang [3] that F is connected whenever $H_T^*(X)$ is generated as an R algebra by odd degree and R torsion elements.

The following proposition is a technical result related to a theorem of Golber [2].

5. PROPOSITION. Assume that dim $H^*(X) = \dim H^*(F) < \infty$. Let $S = \{x \in X \mid \text{rank } T_x \geq \text{rank } T - 1\}$. Then the homomorphism $H^*_T(X, F) \rightarrow H^*_T(S, F)$ is injective.

We use the notation $X \sim Y$ to indicate that there is an isomorphism of rational cohomology rings $H^*(X) = H^*(Y)$. When $X \sim S^{k_1} \times \cdots \times S^{k_n}$ where the k_i are odd integers, we define e(X) to be the second symmetric polynomial $\sum_{i < j} (k_i + 1)(k_j + 1)$. If dim $H^*(X) = \dim H^*(F)$, we know that $X^L \sim S^{d_1} \times \cdots \times S^{d_n}$ where the d_i are odd integers, for every subtorus L of T [3]. Hence $e(X^L)$ is defined. Further we define $g(X) = e(X) - e(F) - \sum_{L} \left[e(X^L) - e(F) \right]$ where L ranges over the corank 1 subtori. For each subtorus H of corank 2, we define $g(X^H)$ by using the induced T/H action on X^H .

- 6. Proposition. $g(X) = \sum_{H} g(X^{H})$ where H ranges over the corank 2 subtori.
- 7. REMARK. Golber [2] has proved that $g(X) = \sum g(X^H)$ when $X \sim S^{k_1} \times S^{k_2}$ where the k_i are odd, and $F = \emptyset$.

When X is a compact rational cohomology manifold and $F = F^1 + \cdots + F^s$ are the components of the fixed point set, let f_i be a generator of the top dimensional cohomology group of F^i . After including $f_i \in H^*(F^i) \subset H^*(F) \subset H^*_T(F)$, we can define the ideal I_{f_i} . The following result was conjectured by Hsiang. It is a kind of splitting principle or Schur lemma for torus actions.

8. THEOREM. The ideal I_{f_i} is principal with a generator of degree dim X — dim F^i . This generator splits as a product of linear factors in R corresponding to the subtori belonging to f_i .

Here $n = \dim X$ means that $H^n(X)$ is the top dimensional nonzero cohomology group of X. We do an explicit computation of I_{f_i} when $X \sim \text{quaternionic projective } n \text{ space } [1].$

9. Remark. Theorem 8 holds for torus actions on Poincaré duality spaces. It also holds for actions of p-tori on Poincaré duality spaces over \mathbb{Z}_p . The Borel formula (see [3]) also holds for such actions [5].

Theorem 8 yields the following result of Hsiang and Su [4].

10. THEOREM. When X is a compact rational cohomology manifold and $X \sim QP^n$, quaternionic projective n space, and a torus of rank ≥ 2 acts

effectively on X, the fixed point set has at most one component $\sim QP^k$ with $k \ge 1$.

The results announced here also hold for actions of p-tori using Z_p cohomology.

REFERENCES

- 1. T. Chang and T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. (to appear).
- 2. D. Golber, Torus actions on a product of two odd spheres, Topology 10 (1971), 313–326. MR 44 #1024.
- 3. Wu-yi Hsiang, On some fundamental theorems in cohomology theory of topological transformation groups, Taita J. Math. 2 (1970), 66-87.
- **4.** Wu-yi Hsiang and J. C. Su, On the geometric weights system of topological actions on cohomology quaternionic projective spaces, Taipei-Berkeley-Amherst (mimeographed).
 - 5. T. Skjelbred, Thesis, University of California, Berkeley, Calif., 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address (Tor Skjelbred): The Institute for Advanced Study, Princeton, New Jersey 08540