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We announce here some results of a paper to appear elsewhere [1]. 
Let a torus T act continuously on a topological space X. Let 

X -* XT ->'t 5 r be the fibre bundle with fibre X associated (by means of 
the action of T on X) to the universal principal T bundle T -> ET -> BT. 
We define the equivariant cohomology ring Hr(X) = H*(XT) where H* 
denotes Cech cohomology with rational coefficients. When Y is an 
invariant subspace of X, we define H%X, Y) = #*(X r , YT). Then 
R = H*(BT) is a polynomial ring and HT(X, Y) is a module over R by 
means of 7i*. 

For each subtorus L of T let PL be the kernel oîH*(BT) -+ H*(BL). Let 
XL = F(L, X) be the set of points fixed by L. We will assume that X is 
compact. Given a closed invariant subspace Y a X and an element 
x e HT(Y), we define 

Ix = {a e R | ax lies in the image of H^{X) -> /f*(Y)}, and 

Ii = {a e R | ax lies in the image of #£(XL u Y) -> #£( Y)}. 

When L c X are subtori, Ix c 1% cz 1$. We say that X belongs to x if K 
is maximal with respect to the property if ^ i?. 

1. THEOREM. The isolated primary components of the ideal Ix are the 
ideals Ix where K belongs to x. The radical of I x is PK, hence yflx = f] PK 
where K ranges over the subtori belonging to x. 

2. COROLLARY. If Ix is principal, the subtori belonging to x are all of 
corank 1 and Ix = f] Ix where K ranges over the subtori belonging to x. 
For each such X, /£ = (cod) where d ^ 1 and œ e H\BT) generates PK. 

Assume that the fixed point set F of the T action on X is not connected. 
Let F = F1 + • • • + Fs be the connected components of the fixed point 
set, s ^ 2. We say that a subtorus L connects F 1 and F2 if they lie in the 
same component of XL. We assume that dim H*(X) is finite. 

3. THEOREM. Let N a Hr(X) be the ideal generated by odd degree and 
R torsion elements. Assume that Hr(X)/N is generated by k elements as an 
R algebra. Then for every maximal subtorus K connecting F1 and F2, 
rank K ^ rank T - k. 
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4. REMARK. This generalizes a result of Hsiang [3] that F is connected 
whenever H*(X) is generated as an JR algebra by odd degree and R 
torsion elements. 

The following proposition is a technical result related to a theorem of 
Golber[2]. 

5. PROPOSITION. Assume that dim H*(X) = dim J/*(F) < oo. Let S = 
{x e X | rank Tx ^ rank T — 1}. Then the homomorphism HT(X, F) -> 
HT(S, F) is injective. 

We use the notation X ~ Y to indicate that there is an isomorphism of 
rational cohomology rings H*(X) = 7/*(7). When X ~ Skl x - - x Skn 

where the fa are odd integers, we define e(X) to be the second symmetric 
polynomial ^ . ^ (fa + l)(/c/ + 1). If dim H*(X) = dim H*(F), we know 
that XL ~ Sdl x • * • x Sdn where the dt are odd integers, for every 
subtorus L of T [3]. Hence e(XL) is defined. Further we define g(X) = 
e(X) — e(F) — YJL Le(XL) ~ e(F)] where L ranges over the corank 1 
subtori. For each subtorus H of corank 2, we define g(XH) by using the 
induced T/H action on XH. 

6. PROPOSITION. g(X) = £ H g(XH) where H ranges over the corank 2 
subtori. 

1. REMARK. Golber [2] has proved that g(X) = £ g(XH) when 
X - Skl x Sk2 where the fa are odd, and F = 0 . 

When X is a compact rational cohomology manifold and F = 
F 1 + • • • + Fs are the components of the fixed point set, let f be a 
generator of the top dimensional cohomology group of F ' . After including 
fi e i/*(Fl) ci 7/*(F) ci Z/?(F), we can define the ideal Ifi. The following 
result was conjectured by Hsiang. It is a kind of splitting principle or 
Schur lemma for torus actions. 

8. THEOREM. The ideal Ift is principal with a generator of degree 
dim X — dim Fl. This generator splits as a product of linear factors in R 
corresponding to the subtori belonging to f. 

Here n = dim X means that IF(X) is the top dimensional nonzero 
cohomology group of X. We do an explicit computation of Ift when 
X ~ quaternionic projective n space [1]. 

9. REMARK. Theorem 8 holds for torus actions on Poincaré duality 
spaces. It also holds for actions of /7-tori on Poincaré duality spaces over 
Zp. The Borel formula (see [3]) also holds for such actions [5]. 

Theorem 8 yields the following result of Hsiang and Su [4]. 

10. THEOREM. When X is a compact rational cohomology manifold and 
X ~ QPn, quaternionic projective n space, and a torus of rank ^ 2 acts 
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effectively on X, the fixed point set has at most one component ~ QPk 

with k ^ 1. 

The results announced here also hold for actions of /?-tori using Zp 

cohomology. 
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