
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 4, July 1973 
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BY C. R. PUTNAM 

1. Introduction. This lecture will deal with a few classes of operators 
which in some sense are close to being normal. For the sake of definiteness 
the underlying Hubert space H will be taken to be infinite dimensional 
and separable. Occasionally, it may be convenient to let H be finite 
dimensional, but, in this case, the operators considered will usually reduce 
to normal ones. By an operator T is meant a bounded operator, so that 
Tis linear, is defined on the whole space H, and satisfies || Tx\\ ^ const||x|| 
for all x in H. By the spectrum, sp(T), of T is meant the set of complex 
numbers z for which (T — zl)~~l fails to exist as a bounded operator. 
Recall that T is said to be normal if T*T = TT*. 

It seems not out of place here to remark that the "almost" of the title 
is a bona fide adverb and not part of some compound adjective describing 
a new kind of operator. In line with this remark it is noteworthy that 
many classes of almost normal operators which have received attention 
can be produced by supplying an appropriate prefix or adverb to the root 
adjective "normal." A few of these prefixes are quasi, sub, hypo, semi, 
(GJ (which appears to be a ringer in this group), para (cf. [11], [19]), some 
adverbs: "nearly," "vaguely" and others. Suffixes apparently have not 
caught on as well, although "oid" is popular with various root adjectives 
preceding it, witness normaloid, convexoid and spectraloid ; cf. Halmos 
[16, p. 114]. For classifications of some almost normal operators, see, 
e.g., Furuta [11, p. 595], Gustafson [13, p. 37], Stampfli [36, p. 473]. 

The classes of operators we shall consider here can be arranged as 
follows, each inclusion being proper : 

normal c quasinormal c subnormal c hyponormal 

c= seminormal c (GJ. 

These will be discussed briefly, with particular consideration to necessary 
and/or sufficient conditions on the spectrum assuring that the operator 
is (or is not) normal or has (or does not have) a normal part. Finally, in 

1 This paper is an expanded version of an invited address given to the American Mathe­
matical Society in Cleveland, Ohio on November 25, 1972. The work was supported by a 
National Science Foundation grant; received by the editors December 8, 1972. 
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§7, we shall consider another class of operators resembling normal ones 
and which, for want of a better name, will be called of zero lower bound 
type. 

In all classes occurring in the inclusions mentioned above, various 
thinness properties of the spectrum (e.g., nowhere dense, of plane measure 
zero, being a subset of a smooth curve) will imply normality. The "in­
variant subspaces" of the title will for the most part refer to those assured 
by virtue of normality. 

An operator T will be called completely quasinormal (completely 
subnormal, etc.) if T is quasinormal (subnormal, etc.) and if, in addition, 
there is no nontrivial reducing space on which it is normal ; thus, T fails 
to have a representation T = Tx © N where N is normal. 

2. Normal operators. It is well known that normal operators T have 
spectral resolutions, that is, representations of the form T = ƒ zdKz, 
where the integral is taken over the complex plane or, if one wishes, over 
the spectrum of T. Among the good things supplied by the spectral 
resolution are plenty of invariant subspaces of T. Recall that a subspace 
M of H is said to be an invariant subspace of T if T(M) a M and non-
trivial if M # 0, H. 

If T is any operator, normal or not, it is well known that sp(T) is a 
nonempty, compact set of the complex plane. This result goes back to 
Wintner [45] ; in this connection, see Hartman [17, p. 485]. Conversely, if 
one starts with any compact (nonempty) set X, there is a normal operator 
T for which sp(T) = X. In fact, if H = /2, the unilateral sequence space, 
one need only choose T = diag(tx, t2,...) where the numbers ti belong 
to, and are dense in, the set X. 

3. Quasinormal operators. An operator T belongs to this class if 

(3.1) T(T*T) = (T*T)T. 

These operators, under a different name, were first investigated by 
Brown [3] ; see also Halmos [16, Problem 108]. It is clear that a normal 
operator is also quasinormal. That the converse need not hold can be 
seen by choosing T to be the unilateral shift, that is, if H = /2, the matrix 

/o o o ...\ 
1 0 0 ••• 

It is easily verified that T*T = I, so that (3.1) obviously holds, but 

(3.3) T * T _ TT* = diag(l,0,0,.. .), 
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so that T is not normal. It is well-known, and easily verified, that sp(T) 
is the closed unit disk. 

If T is quasinormal, so are all powers T", n = 0,1,2, On the other 
hand, the property does not extend to polynomials in T, even to trans­
lations T + tl. Thus, for instance, if T is the shift of (3.2), then T + tl 
fails to be quasinormal except when t = 0. 

If T is quasinormal but not normal then sp(T) has an interior. This 
fact was noted by Stampfli [36, p. 473]. In fact, Brown [3] has shown that 
every quasinormal operator has a direct sum representation T = 7\ © N 
where N is normal and T1 is a dilated shift operator associated with a 
certain positive operator. Professor Brown has recently pointed out to 
the author that 7\ is actually a tensor product and that, as a consequence 
of Brown and Pearcy [4], sp(Tt) is the closed disk {z:\z\ ^ ||7\||}. It is 
clear that if c > 0 then cT9 where T is the shift of (3.2), is completely 
quasinormal with spectrum {z:\z\ ^ c}. Hence, a compact set X is 
the spectrum of a completely quasinormal operator if and only if 
X = {z:\z\ ^c}9c> 0. 

4. Subnormal operators. T is said to be subnormal on the Hubert space 
H if there exists a normal operator N o n a Hubert space K => H for which 
H is invariant under JV and T is the restriction of N to this invariant 
subspace. Thus, subnormal operators are the restrictions of normal 
operators to invariant subspaces. 

It turns out that quasinormal operators are subnormal ; see Halmos 
[16, p. 155]. That the converse is false follows from the following ob­
servations. The shift T of (3.2) is subnormal ; in fact, the bilateral shift on 
the bilateral sequence space defined by 

(4.1) x = (...9x-l9x09xl9...)-+y = (...,x-2>x-l9x09...) 

is a normal extension. Clearly, the operators T + tl9 where T is defined 
by (3.2), are subnormal, but, as noted above, not quasinormal unless 
t = 0. 

It is easy to see that if T is subnormal with the normal extension N, 
then the powers Tn (n = 0,1, 2,...) are subnormal with normal ex­
tensions Nn. Similarly, polynomials in T are also subnormal, as is also 
T - 1 in case Tis nonsingular. 

If T is subnormal there exists such a thing as the minimal normal 
extension N of T and, moreover, sp(iV) is a subset of sp(T); see Halmos 
[14], [15], [16]. In fact, it turns out that sp(T) can be obtained by filling 
in some of the holes (bounded components of the complement) of sp(AT). 
This was first shown by Bram [2] ; for a proof due to S. K. Parrott, see 
[16, p. 310]. It may be noted that the bilateral shift of (4.1) is the minimal 
normal (unitary) extension of the unilateral shift of (3.2) and that the 
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former has spectrum \z\ = 1 while the latter has spectrum \z\ ^ 1. 
Next, we consider the question as to what compact sets X can be 

the spectra of subnormal, but not normal, operators. To this end, 
let X denote any compact set and let C(X) and R(X) denote respec­
tively the class of continuous functions on X and the class of functions 
on X which can be uniformly approximated by rational functions 
with poles off X. In this connection, see, for instance, Gamelin [12] or 
Zalcman [46]. 

It was first shown by Hartogs and Rosenthal [18] that C(X) = R(X) in 
case X has planar measure 0. This fact can be used, together with an 
argument given in Wermer [44], to show that if T is subnormal and if 
sp(T) has measure 0 then necessarily T is normal. Another proof of this 
result can be given using the concept of spectral set. Recall that a spectral 
set (von Neumann [23], see also Halmos [16, p. 123]) of an operator Tis 
a compact set X containing sp(T), for which || ƒ (T)|| ^ sup{| ƒ (z)| : z in X}, 
where ƒ (z) is any rational function with poles off X. If T is subnormal 
then sp(T) is a spectral set of T. Also, if sp(T) is a spectral set of Tand if 
C(sp(T)) = R($p(T)) then T is normal; see von Neumann [23], also 
Lebow [21, p. 73]. Thus if Tis subnormal and if its spectrum has measure 
0 then T must be normal. This fact apparently was first noted in the 
literature by Stampfli [36, p. 473]. That the result was contained implicitly 
in Wermer [44] and that it could also be obtained via spectral sets, as 
indicated above, was pointed out to the author by J. G. Stampfli several 
years ago. 

Recently, it was shown in Clancey and Putnam [7] that, more generally, 
a compact set X is the spectrum of a subnormal, but not normal, operator 
if and only if C(X) ^ R(X). Moreover, even a local version of the result 
is true. Thus, a compact set X is the spectrum of a completely subnormal 
operator if and only if 

(4.2) C(X n D~) # R(X n D~) (D~ = closure of D\ 

where D is any open disk intersecting X in a nonempty set. 
It may be observed that a necessary condition that C(X) = R(X) is 

that X be nowhere dense. This is clear from the fact that on an open set 
only analytic, rather than just continuous, functions can be uniformly 
approximated by analytic functions, and hence X cannot have any 
interior. Further, C(X) = R(X) holds for "most" nowhere dense compact 
sets X, in particular, if X has measure 0 (Hartogs and Rosenthal [18]) or 
if, for instance, X has a finite number of holes. However, there do exist 
nowhere dense compact sets X (e.g., Mergelyan Swiss cheeses) satisfying 
(4.2). Such a set can be obtained by removing from the closed unit disk a 
sequence of open disks, with pairwise disjoint closures, the sum of whose 
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radii is finite, in such a way that the remaining (compact) set is nowhere 
dense. For details, see Gamelin [12, p. 25] or Zalcman [46, p. 69]. 

Concerning the beautiful results of A. G. Vitushkin and, in par­
ticular, associated geometric conditions on a compact set assuring that 
A(X) = R(X) (where A(X) denotes the set of functions continuous on X 
and analytic in its interior), that is, if X is nowhere dense, C(X) = R{X\ 
see Zalcman [46, p. 112 ff]. 

5. Hyponormal and seminormal operators. An operator T is hypo­
normal if 

(5.1) T*T - TT* ^ 0 

and seminormal if either T or T* is hyponormal. For properties of these 
operators, cf. Halmos [16], Putnam [26]. If the Hubert space is finite 
dimensional then all seminormal operators are normal ; this can be seen 
by noting that the trace of T*T - TT* must be 0. Further, if T is sub­
normal then it is also hyponormal. In fact, in the notation of the be­
ginning of §4, let P denote the orthogonal projection of K onto H. If 
x, y are in H then (T*x, y) = (x, Ty) = (x, NPy) = (PN*x, y\ so that 
T*x = PN*x for x in H. Consequently, for x in H, \\T*x\\ ^ ||N*x|| 
= ||]Vx|| = ||Tx||,thatis,(5.1). 

That there exist hyponormal operators which are not subnormal was 
first shown by Halmos [14] (see also [16]), who gave an example of a 
hyponormal T for which T2 was not hyponormal, and hence T was not 
subnormal. Various other examples are known; for instance, Stampfli 
[37, p. 378] has given an example of a hyponormal T, not subnormal, 
such that all powers T2, T 3 , . . . are subnormal. Incidentally, if Tis hypo­
normal and if Tn is normal for some positive integer n then T is normal ; 
see Stampfli [36]. It has been shown by Joshi [20], using results of 
Stampfli [37], that for every positive integer n there exists a hyponormal, 
not subnormal, operator T with the property that all polynomials in T 
of degree not greater than n are hyponormal. The question remains open 
as to whether the assumption that all polynomials in T are hyponormal 
implies that T must be subnormal. 

As noted in §4 above, the spectrum of a subnormal operator is a 
spectral set of the operator. In addition, if all rational functions of a 
hyponormal Tare also hyponormal, then sp(T) must be a spectral set of 
T; cf. Clancey and Putnam [8, p. 199]. It may be noted that if T is hypo­
normal and nonsingular then so is T _ 1 ; see Stampfli [36, p. 469]. It is 
unknown, however, whether the hyponormality of all polynomials in T 
implies that of rational functions of T. Further, it may be noted that there 
exist hyponormal operators T whose spectra are not spectral sets of T; 
see Clancey [6], Wadhwa [43]. Also, examples with totally disconnected 
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spectra can be given ; see Putnam [30, p. 707], also [33] and the remarks 
at the end of this section. 

As noted above, if T is subnormal, then so are all polynomials in T, 
but the corresponding assertion for hyponormal operators is false. How­
ever, there does exist a method for producing a useful variety of hypo-
normal operators starting from a given one, T. Let T = A + iB denote 
the Cartesian representation of a hyponormal T, and let A = ƒ u dEu 

denote the spectral resolution of A = Re(T). If /5 is any Borel set of the 
real line, it is easy to show (cf. [26, p. 49]) that E(/3)TE(p) is hyponormal 
on the Hubert space E(/3)H. It is known (see Putnam [25], also [26, p. 46]) 
that the spectra of the real and imaginary parts of T are just the pro­
jections onto the real and imaginary axes (regarded as real sets) of sp(T). 
It follows that the projection of the spectrum of E{fS)TE(f}) onto the real 
axis lies in the closure of j8. 

Further, it turns out that the spectrum of T can be specified in terms 
of the spectra of its real and imaginary parts A and B as follows. Let a 
denote any open interval containing the real number t and consider the 
selfadjoint operator E(OL)BE(CL\ which is the imaginary part of E(a)TE(a). 
Then the spectrum of T lying over t, that is, the intersection of sp(T) 
with the line Re(z) = t, is precisely the set {is : s e sp(£(a)££(a)) for all a} ; 
see Putnam [32]. 

If T is hyponormal then 

(5.2) TT||T*T - TT*\\ S meas2(sp(T)). 

This was proved in Putnam [28]; in case T*T — TT* is compact the 
result was proved by Clancey [5]. (For an inequality related to (5.2), see 
Putnam [31].) It follows that if Tis hyponormal, but not normal, then its 
spectrum has positive planar measure. In fact, it was shown in [28] that 
a local version of this is valid. Thus, if T is completely hyponormal and 
if D is any open disk intersecting sp(T), necessarily the set sp(T) n D has 
positive measure. In fact, if sp(T) n D is a nonempty set of zero planar 
measure there exists a normal operator N for which T = 7\ © N and 
sp(iV) is the closure of sp(T) n D. 

Recently, it has been shown that, conversely, if X is any compact set 
with the property that 

(5.3) m e a s 2 ( X n D ) > 0 whenever XnD is nonempty (D = open disk), 

then there exists a completely hyponormal operator T such that 
sp(T) = X ; see Putnam [33]. Thus, a compact set X is the spectrum of a 
completely hyponormal operator if and only if (5.3) holds. 

6. (Gr) operators. If T is any operator it is easily shown that 
\\(T- ziy1\\ ^ l/dist(z,sp(T)) for z^sp(T). An operator T is said to 
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satisfy the first order growth condition (Gx) in case equality holds so that 

(6.1) \\(T - zl)'11| = l/dist(z, sp(T)), z f sp(T). 

Since the equality (6.1) is one of the basic properties of seminormal 
operators, the latter are contained in the class (Gx). That the inclusion is 
proper can be seen from the examples below where T fails to be semi-
normal. 

In case the underlying Hilbert space is finite dimensional, the property 
(GJ is known to imply normality. See Stampfli [36], where it is also 
shown that T may be compact and satisfy (6.1) but fail to be normal. To 
construct such an example, let Tx be defined by 

(6.2) Tx = (° * so that (7i - zl)'1 = ( ~ * ~ * _ t (z * 0). 

Note that sp(Tj) on the two-dimensional Hilbert space H2 is the singleton 
{0} and that Tx fails to satisfy (6.1). However, by choosing an appropriate 
normal operator N on an infinite-dimensional space Hœ, one can arrange 
that T = Tx © N is compact on H = H2 + H œ and satisfies (6.1). 

The question arises as to what compact sets X have the property that 
if T satisfies (6.1) and if sp(T) = X then T is normal. In this connection, 
it was shown by Nieminen [24] that if (6.1) holds and if sp(T) is real then 
T is selfadjoint, and by Donoghue [10] that if (6.1) holds and if sp(T) is a 
subset of \z\ = 1 then T is unitary. These results were generalized by 
Stampfli [38], [39], who showed that if T is (Gx), or even locally (G^, so 
that (6.1) is assumed to hold only for z belonging to U — sp(T), where U 
is some open set containing sp(T), and if sp(T) is, for instance, a subset 
of a piecewise C2 curve (having continuous right- and left-hand tangents 
where the smooth pieces join) then necessarily Tis normal. 

This furnishes only a sufficient condition for normality. It may be 
noted however that Stampfli [38, p. 9] has shown that if Tx is the matrix 
of (6.2) then a normal operator N can be chosen so that T = Tx © N 
satisfies (6.1) and sp(T) lies on a curve ƒ (t), where ƒ (t) is continuous on 
0 ^ t ^ 1 and has a continuous second derivative on 0 < t ^ 1. One need 
only choose ƒ (t) so as to satisfy dist(z,/(f)) ^ | z | - 2 for 0 < z < 1 (cf. (6.2)) 
and the required smoothness conditions. The question remains open as to 
a necessary and sufficient condition on a compact set in order that it be 
the spectrum of a completely (GJ operator, that is, one having no normal 
part. For other results relating to the {Gx) condition see also Luecke [22], 
Putnam [27], Stampfli [40], [41], and the references contained there. 

7. Zero lower bound operators. This last section will deal with another 
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class of operators resembling normal operators. Let Tz = T — zl and 
suppose that D is any nonnegative selfadjoint operator satisfying 

(7.1) T z T * ^ D ^ 0 for all z. 

It was shown in Putnam [34] that if D =£ 0 and if z is not in the set P, 
where 

(7.2) P = {z:z in the point spectrum of Tor of T*}, 

then there exists a vector x ^ 0 for which 

(7.3) 11(7- ziy^W ^ constHx||, 

and, if y is any vector in H, 

(7.4) ((T — zl)~ 1x, y) is continuous and bounded on C — P. 

It follows from this (cf. [34]), using a result in [29], that T cannot then be 
normal ; in particular, if T is normal and if (7.1) holds, necessarily D = 0. 
We shall call an operator a zero lower bound (ZLB) operator if (7.1) holds 
only for D = 0 ; thus, in particular, every normal operator is of this class. 

It is easily verified that T satisfies (7.1) with a D # 0 if T* is hypo-
normal but not normal. That these latter operators are properly con­
tained in the set of non-ZLB operators can be seen by choosing T* to 
be the direct sum of a nonnormal hyponormal operator and an arbitrary 
operator. 

Next, we need the notions of analytic capacity y(X) and continuous 
analytic capacity oc(X) of a compact set X. For definitions and properties, 
see Gamelin [12, Chapter 8], or Zalcman [46, p. 11 ff., 77 ff]. The idea of 
continuous analytic capacity (or AC capacity) was introduced by 
Dolzhenko [9] ; see [46, p. 143], and the references mentioned there, in 
particular, Arens [1]. It turns out that a compact set of analytic capacity 0 
must also have continuous capacity 0, but that, in general, the converse 
is false. Further, compact sets of analytic capacity 0 are just the removable 
compact sets for bounded analytic functions. Also, if X is compact and 
of planar measure 0 then necessarily a(X) — 0 but the converse need not 
hold. 

Let P~ denote the closure of the set P of (7.2). It was shown in [34] 
that T is a ZLB operator if either 

(7.5) y ( sp(T)uP- 1 ) = 0 

or 

(7.6) yiP'1) = 0 and a(sp(T) u P~) = 0. 

For instance, compact operators T are of ZLB type since (7.5) (or (7.6)) 
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is satisfied. Also, if Tis seminormal, so that Tor T* is hyponormal, and 
if either (7.5) or (7.6) holds, then T must be normal. However, as noted 
in §5, if T is seminormal, the same conclusion holds even when sp(T) is 
any set of planar measure 0, whether or not (7.5) or (7.6) holds. 

As noted above, either (7.5) or (7.6) is sufficient to ensure that T be a 
ZLB operator. However, it does not seem to be known, for instance, 
whether every compact set of planar measure 0 but of positive con­
tinuous analytic capacity is the spectrum of some non-ZLB operator, or, 
even better, of some operator having no nontrivial reducing space on 
which it is a ZLB operator. 

Finally, it may be mentioned that if T is a contraction (||T]| :g 1) 
satisfying (7.1) with D / 0 and if 

(7.7) {Tn}n= i,2,... does n o t converge strongly to 0, 

then, as a consequence of (7.3) and (7.4) above (see [34]), T has a non-
trivial invariant subspace. In case T* is subnormal then (7.7) implies 
that {T*n}„=1 2,... also does not converge to 0, and the assertion can be 
deduced from the Sz.-Nagy and Foia§ theorem (see [42, p. 314], also 
[16, p. 96]). However, the latter theorem does not appear to be applicable 
when the contraction T is assumed only to satisfy (7.1) with D / 0, even 
if T* is hyponormal (again, with D ^ 0, as can be supposed if T* is not 
normal). 
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