
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 1, January 1973 

RELATIVELY INVARIANT SYSTEMS AND THE SPECTRAL 
MAPPING THEOREM 

BY ROBIN HARTE 

Communicated by Robert G. Bartle, July 27, 1972 

1. Introduction. In this note we consider the extension of the spectral 
mapping theorem ([2], [3]) to certain noncommuting systems of elements, 
notably the 'quasi-commuting' systems of McCoy [5]. Full proofs and more 
detail are to appear elsewhere [4]. 

2. Relative joint spectra. Suppose a = (al9 a2,..., a„) is a system of 
elements in a complex Banach algebra A, with identity 1 : then the joint 
spectrum of a with respect to A is ([2]; [3, Definition 1.1]) the set (i(a) 
= <r*Aint(a) of those systems s = (sl9 s 2 , . . . , sn) of complex numbers for 
which the system a — s = (al — sl9 a2 — s2,..., an — s„) generates a 
proper left, or proper right, ideal in A. The 'one-way' spectral mapping 
theorem ([2] ; [3, Theorem 3.2]) is the inclusion 

(2.1) fa(a) s af (al 

valid for an arbitrary system a e An of elements and an arbitrary system 
ƒ = ( / i , / 2 , . . . ,fm)'.An -> Am of 'polynomials' in several variables on A. 
Equality 

(2.2) of (a) - Ma) 

is attained [3, Corollary 3.3] if the system of polynomials has a 'left 
inverse' g: Am -• An for which g(f(a)) = a, or alternatively if the system 
of elements is commutative ([2] ; [3, Theorem 4.3]). This second case is 
our 'spectral mapping theorem', of which we here consider the extension. 

DEFINITION 1. The joint spectrum ofbeAm relative to a e An in A is the 
set 

(2.3) <7a=a(b) — {t G a(b):3s e a(a\ (s, t) e a(a, b)}. 

The idea is to offer a measurement of the failure of equality in (2.1); 
for example there is equality 

(2.4) cm=zm{a) = a{a) 
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for arbitrary systems of elements and of polynomials, using (2.1). Equality 
in (2.1) for arbitrary systems of elements and 'left invertible' polynomials 
is derived [3, Corollary 3.3] from the equality 

(2.5) aa=af(a) = fa(a), 

valid without restriction. The spectral mapping theorem is derived from 
the result ([2] ; [3, Theorem 4.2]) that if b e Am is an arbitrary system of 
elements, and a e An a commuting system commuting with b, then 

(2.6) a{b) = aa=M 

To derive (2.2) for a commuting system of elements we substitute b = f (a) 
in (2.6) and combine with (2.5). 

3. Relatively invariant systems. The next idea is taken straight from the 
proof of (2.6): 

DEFINITION 2. The system be Am is invariant under the system ae An in 
A if there is inclusion, for each element aj9 

(
m \ m 

closure £ Abk \a} £ closure ]T Abk 
k = l / fc=l 

and 

( m \ m 

closure £ bkA ) ^ closure £ bkA ; 
k = l / k = l 

if b — te Am is invariant under ae An for every system teCm of scalars 
then be Am is completely invariant under a. 

For example if t e Cm is not in the joint spectrum a(b) then b — te Am 

is invariant under arbitrary systems a e An\ if a e An commutes with be Am 

then b is completely invariant under a. For a fixed system be Am the set 
of elements ce A which leave b invariant form a closed subalgebra: 

LEMMA 1. Ifb — teAm is invariant under aeAn then also b — t is 
invariant under f(a)eAp, for an arbitrary system of polynomials 
g: An+m -+ Ap there is also inclusion, for each U 

(3.3) gt(a,b) - gt(a, t)e closure £ A(bk - tk) n closure £ (bk - tk)A\. 

This result is built up for sums of products of polynomials gt(a9 b) = bk 

and gi(a9 b) = f (a). An immediate corollary has applications in the theory 
of 'operator matrices' : 

COROLLARY \.Ifb-teAmis invariant under aeAn and g:An+m -+ Ap 

is a system of polynomials then there is logical equivalence, for r e Cp, 
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(3.4) (t9 r) e <r(b9 g(a, 6)) <=> (t9 r) e a(b9 g(a, t)). 

Equality (2.6) holds for a commuting system a e An of elements leaving 
the system be Am invariant : 

THEOREM 1. If be Am is completely invariant under the commuting system 
a e An then there is equality a(b) = aa==a(b). 

The proof is the same as in the case ([2] ; [3, Theorem 4.2]) in which 
a e A" commutes with b e Am. Recalling the induction (on the length n of 
the system a e An\ it is clear that it is far from necessary, here, for the 
system ae An io be commutative. Sufficient, for example, would be that, 
for each j = 1,2,.. . , n — 1, 

(3.5) (ai9 a2,..., aj) is completely invariant under aj+1. 

Also it is always sufficient, for equality (2.6), that there exist some system 
ce Ap satisfying 

(3.6) a(b) = (7c=c(b) and a(b, c) = oa=a{b, c). 

We need the extension of Theorem 1 by the principle (3.6) to handle the 
'quasicommuting' systems of the next section. 

4. Quasicommuting systems. The idea of a 'quasicommuting' pair of 
matrices is due to McCoy [5]. To extend this to systems of Banach algebra 
elements we introduce a somewhat artificial 'commutator' for two 
systems of elements: 

DEFINITION 3. The commutator of ae An with respect to be Am is the 
system ofmn elements 

ba — ab = (b1a1 — a1bub1a2 — a2bu 
(4.1) 

. . . , btan - anbl9 b2ax - a1b2,..., bman - anbm). 

The system be Am is said to quasicommute with the system ae An if 

(4.2) ba - abe Amn commutes with (a, b) e An+m; 

if this is true with b = a then a is called a quasicommuting system. 
Observe that the relation (4.2) is symmetric in a and b. We make fre­

quent use of the Kleinecke-Sirokov theorem [1, Problem 184]: if ae An 

and b e Am, and if the commutator ba — ab commutes either with a e An 

or with beAm then there is inclusion 

(4.3) a(ba - ab) c {(0,0,. . . , 0)} £ Cm\ 

LEMMA 2. Suppose ae An and be Am: if the commutator ba — ab com­
mutes with the system a then 
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(4.4) (b, ba — ab) is completely invariant under a. 

If ba — ab commutes with (a, b) then for an arbitrary system f:Am-*Ap 

of polynomials 
(4.5) (f(b), ba — ab) is completely invariant under a. 

The first part of this follows at once, using (4.3). For the second we 
associate with each polynomial ft a system ƒ 't:A

m -> Am for which, when­
ever an element as quasicommutes with the system b e Am, 

m 

(4.6) f,(b)aj - ajft(b) = £ f{k(b){bkaj - a}bk). 
fc=l 

THEOREM 2. Suppose aeAn and be Am: if the commutator ba — ab is 
commutative and commutes with the system b then there is equality 

(4.7) a(b) - <r*-a*-b.-«*(&)-

If instead the system a is quasicommutative and commutes with ba — ab 
then there is equality 

(4.8) a(b, ba — ab) — cra=a(b, ba — ab). 

If a e An is quasicommutative and quasicommutes with b e Am, and if 
g:An+m -» Ap is a system of polynomials, then there is equality 

(4.9) (rg(a,b) = <xai=ag(a,b). 

The first part (4.7) follows straight from Theorem 1. For a single element 
a = ax the second part (4.8) uses Theorem 1, together with the easy part 
(4.4) of Lemma 2; then we proceed by induction on n, using the argument 
of (3.6). 

Towards (4.9) it is another application of Theorem 1 that there is 
equality <Tg(a, b) = <rbfl^abseba_dbg(a,b), since our assumptions make 
ba — ab commutative and commute with g(a, b). Also for a single element 
a = ax we apply the second part (4.5) of Lemma 2, with (6, a) in place of 
b, to see that (g(a, b\ ba — ab) is completely invariant under a, and 
again apply Theorem 1, to obtain a(g(a,b\ba - ab) = <7fl=a(g(<3,fr), 
ba — ab). Another induction on n, and then (3.6), establish (4.9). 

COROLLARY 2. If a e An is quasicommutative andf:An -> Am is a system 
of polynomials then there is equality af{a) = fa(a). 

For substitute g(a, b) = f (a) in (4.9) and use (2.5). 
The extension of (2.6) to quasicommutative systems is clear from (4.7) 

and (4.8), and uses only the first part (4.4) of Lemma 2. We are unable to 
simply substitute b = f (a) at this stage because the system f (a) does not 
always quasicommute with a quasicommuting system a e An. 



142 ROBIN HARTE 

0 

0 

0 

1 

0 

0 

o\ 
1 

0/ 

, v = 
/ l 

0 

\o 

0 

0 

0 

°\ 
0 

- 1 / 

and W = 
/ l 
0 

\o 

1 

0 

0 

0 

- 1 

- 1 

If A is the algebra of 'upper triangular' q x q matrices then it is ap­
parent [3, Example 2.3] that the conclusions of Theorem 2 and Corollary 
2 hold for arbitrary systems ae An and beAm:it follows that neither the 
conditions for (4.7) nor the conditions for (4.8) are necessary for (4.9). 
Equally neither condition is separately sufficient: 

EXAMPLE. In the algebra of all 3 x 3 complex matrices take 

U = 

then VU - UV=U but a(V) / tru = u(V). Also W = VU + UV + V 
but o(W) * av=v(W). 

We are unable to settle whether or not the conditions for (4.7) are suffi­
cient for equality (2.6); recall for example [6, §2-3] the derivation of 
(2.6) when a = al and ba — ab = b. 
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