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(A) All rings in this announcement are commutative and with 1. For 
any ring K we denote by W(K) the Witt ring of nondegenerate symmetric 
bilinear forms over K. 

DEFINITION 1. A signature o of K is a ring homomorphism from W(K) 
to Z. 

REMARK 1. If K is a field, the signatures correspond uniquely with the 
orderings of K [3], [9]. Thus Theorem 1 below generalizes the main results 
of Artin-Schreier's theory of ordered fields [1], 

We consider pairs (K, <j) with K a connected ring and a a signature of 
K. There is an obvious notion of a homomorphism (K, a) -• (L, T) between 
pairs. We say that a homomorphism <x:K -> L of rings is a (connected) 
covering, if a is the inductive limit of finite etale connected extensions of 
K, as studied in Galois theory. We say that a homomorphism a :(K, a) -» 
(L, T) is a covering, if K -» L is a covering. 

DEFINITION 2. A rea/ closure of a pair (K, cr) is a covering a:(K, tr) -• 
(jR, p) such that (R, p) does not admit any coverings except isomorphisms. 

By Zorn's lemma any pair (K, a) has at least one real closure. 

THEOREM 1. Assume a:(K, a) -> (R, p) is a real closure of a pair (K, a) 
with K semilocal Let Ks denote the universal covering ( = separable closure) 
ofK. 

(1) For any other real closure a' :(K, a) -> (R\ p') there exists an iso­
morphism P:(R, p) >̂ (R\ p') mth a' = jS o a. 

(2) There does not exist any automorphism of (R, p) leaving all elements 
of K fixed except the identity. 

(3) The Galois group ofKJR is a 2-group. 
Assume in addition that 2 is a unit in A. Then even the following state­

ments are true : 
(3a)Ks = R(^l). 

(4) If R'/K is any covering such that [KS:R'] = 2, then Ks = R^^f-l) 
and W(R') ^ Z. In particular R' has a unique signature. 

Thus ifK is semilocal with 2 a unit the signatures ofK correspond uniquely 
with the conjugacy classes of involutions in the Galois group ofK. 

REMARK 2. If K is a Dedekind domain at least statement (1) of Theorem 
1 remains true and [KS:R] S 2. 
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The proofs of part (2) and (3) of Theorem 1 are essentially contained in 
[7] (cf. [7a]). Also the proofs (of the other parts and of Remark 2 depend 
on this paper and on [5], [6]. The proof of (3a) and (4) proceeds by imitation 
of a classical proof of the fundamental theorem of algebra. The main 
point in the proof of (1) is to prove simultaneously the following trace 
formula : 

THEOREM 2. Let L be a finite covering of the semilocal ring K and let 
Tr* : W(L) -> W(K) denote the transfer map induced by the regular trace 
Tr = TrL/K [11]. Then, for any signature crofK and any z in W{L\ 

<x(Tr*(z)) = I > ( 4 
t|cr 

where T runs through all signatures of L lying over c, with the convention 
that the sum is zero if there are no such T. 

In [4], a proof of Theorem 1(1) and Theorem 2 over fields has been given 
which, with the knowledge of the other parts of Theorem 1, immediately 
generalizes to semilocal rings with 2 a unit, This proof also gives a good 
idea of the techniques needed for the general case. Of course, no state­
ments about zeros of real polynomials are used (e.g., Sturm's theorem). 
The connection between Burnside and Witt rings, studied in [2], gives, 
in the case that 2 is a unit, another approach to Theorem 1(1) [Dress, oral 
communication]. 

For any ring A, let 2~™A denote the localization with respect to the 
multiplicative system of powers of 2. Theorems 1 and 2 imply 

THEOREM 3. Assume that K -+ L is a finite covering of semilocal rings 
and K -» K' is a homomorphism into a semilocal ring K'. 

(i) 2_00VF(L) is finite etale over 2~™W(K) and is generated as module 
over 2~™W(K) by at most [L:K] elements. 

(ii) The kernel and cokernel of the natural map 

W{L)®W(K)W{K')-*W{L®KK') 
are 2-torsion groups. 

(B) For arbitrary valuation rings (at least) it is also possible to study by 
the same methods the behavior of certain signatures in "ramified cover­
ings". This leads to results about real places of fields. From now on JR 
denotes a fixed real closed field and K denotes a field of characteristic 
zero. 

DEFINITION 3. A signature a of K and a place 0 : K -* R u oo are 
compatible, if (j>{a) ^ 0 or </>(a) = oo for all a in K which are positive with 
respect to a (cf. Remark 1). 

One easily proves that for any i?-valued place </> of K there exists at 
least one signature of K which is compatible with 4>. 
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THEOREM 4. Assume that L is an algebraic field extension of K, that x is 
a signature of L and 4> is an R-valued place of K, compatible with the 
restriction z\K of % to K. Then there exists a unique R-valued place ij/ of 
L extending <j> and compatible with T. 

This theorem refines a result of Lang [8, Theorem 6] which says that 
any .R-valued place of K can be extended to an .R-valued place of at least 
one real closure of K. 

For any a in K* we denote as usual by (a) the element of W(K) repre­
sented by the one-dimensional symmetric bilinear form with matrix (a). 
It can be shown by well-known arguments (e.g., [10, Chapter V, proof of 
Lemma 1.2]) that any place </> :K -• R u oo yields a well-defined additive 
map (j)^ from W(K) to Z, whose value on an element (a) is obtained in the 
following way : Let p denote the unique signature of R. If there is some 
b in K such that cf)(ab2) ^ 0 and ^ oo then </>*(a) = p(<j){ab2)) with an 
arbitrary choice of such an element b. Otherwise (j)*(a) = 0. Clearly a 
signature a of K is compatible with c/> if and only if o(a) = o^(d) for all 
a in X with (j)J,a) 41 0-

As a counterpart of Theorem 4 we have 

THEOREM 5. Assume that L is an arbitrary field extension of K, that 
i// is an R-valued place of L and a is a signature of K compatible with \jj\K. 
There exists a signature % of L compatible with \\i and extending a (i.e., 
(K, a) -> (L, T) is a homomorphism) if and only if a{a) = i/^(a) for all a in 
K* with i/^(a) =̂= 0. 

THEOREM 6. Assume Lx is an algebraic field extension ofK and L2 is an 
arbitrary field extension ofK. Further assume that, on each Lh an R-valued 
place (j>t is given and (f>i\K — (t>2\K- Then the following are equivalent: 

(i) There exists afield composite F ofL1 and L2 over K and an R-valued 
place \// on F extending both 4>1 and (j)2. 

(ii) 0!*(a) = (j>2iLa) for ou a in ^ * such that both 0i*(a) and (fr^a) are 
not zero. 

THEOREM 7. Let L be a finite algebraic field extension of K and 4> an 
R-valued place ofK. Then, for any z in W(L), 

UTrl^z)) = X M*l 

where ij/ runs through all R-valued places of L extending 4>. 
Thus (j) has <Ak(Tr*/K(l)) R-valued extensions to L. 

Detailed proofs will appear elsewhere. I wish to thank A. Dress and 
A. Rosenberg for very helpful discussions. 
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