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Let si be an algebra of operators on a Hubert space Jf, and let Lat si 
denote the lattice of all j^-invariant subspaces. Recall [4] that si is said 
to be reflexive if every operator which leaves invariant every element of 
Lat si is already in si. Thus, reflexive operator algebras are completely 
determined by their invariant subspace lattices, and one might hope to get 
useful information about the algebra si by studying the lattice Lat si. 
One question that arises here is, which specific lattices occur as the lattice 
Lat si of some algebra si! Such lattices are called reflexive (it is very easy 
to see that reflexive lattices have an equivalent definition which is dual to 
the definition of reflexive algebra). In this paper we announce some results 
of a study of reflexive lattices; full details will appear elsewhere. 

Before going further, we want to describe the type of concrete problems 
which led to these considerations. To specify a reflexive algebra si on a 
separable space ^f, it is equivalent to specify a sequence 9Jl1,S0î2,... of 
closed subspaces of tf {si is then defined as {T: T9Kf £ 9Wf, i ^ 1}). To 
get a fairly general class of examples, let n be a positive integer, and let 
X be the countable Cartesian product Xx x X2 x • • • of the sets X( 

= {1,2,..., n}. X comes equipped with a product Borel structure, and we 
define subsets EtJ £ AT, i ^ 1,1 ^ j' ^ n, to be the cylinders 

Etj= {xeX:xtSJ}, 

where xt denotes the zth coordinate of the sequence x. Now choose a 
finite measure fi on X, let Jf7 = L2(X, n)9 and define subspaces 9W0- of 
j f by ^j = L2(EU, fji). Then the operator algebra 

s/(X9 ii) = {Te X(JT): T50io S <% for all ij} 

is reflexive, and it always contains the multiplication algebra of L°°(X, /x). 
Of course, the properties of these algebras will depend strongly on the 
measure jx. We want to take up two types of special cases: 

Problem 1. Let n ^ 2, and define \x on X by fi = Yl? A*i> where each fit 

assigns uniform mass 1/n to each point of {1,2,..., n}. Let sin be the 
associated operator algebra. Can sim and sin be similar if m # n? 

Problem 2. Take n = 2, and choose a number p, 0 < p < 1. Let \i 
= YlT Vi, where each \i{ assigns mass p to {1} and mass 1 — p to {2}. Let 
^ p be the associated operator algebra. Can sip and siq be similar if 
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As we will see, these two problems illustrate different phenomena, and 
the answers to both are no. The solution involves two steps. First, one 
shows that the complete lattice if(X, pi) generated by the subspaces 9W0 

is always reflexive (this follows from a general result, Theorem 2 below). 
It follows that if (X, p) = Latj/(X, p\ so to show that s#(X, p) and 
s/(Y, v) are not similar, it suffices to show that their invariant subspace 
lattices are not isomorphic. This second part of the analysis derives from 
the results of §§2 and 3. 

1. Reflexive lattices. By a subspace lattice we mean a sublattice of the 
lattice of all selfadjoint projections of some Hubert space (it is more 
convenient here to speak of projections rather than subspaces), which 
contains 0 and 1, and is closed in the strong operator topology. It is easy 
to see that subspace lattices are complete as lattices, and every reflexive 
lattice is a subspace lattice [4]. Of course, there are simple examples of 
subspace lattices which are not reflexive. 

It is known that if a subspace lattice is linearly ordered ([6], [7]), or is 
isomorphic to an atomic Boolean algebra [5], then it is reflexive. In this 
section we discuss separably-acting commutative subspace lattices J5f 
(i.e. PQ = QP for all P, Q in if), subject to no other side conditions. We 
begin by describing a general construction. By a partially ordered Borel 
space we mean a partially ordered set (X, ;g) endowed with a sigma-field 
of subsets of X; (X, ^ ) is called standard if X is standard as a Borel space 
[1], and there exists a sequence fn of real-valued Borel functions on X such 
that x <j y iff fn(x) ^ fn(y) for every n ^ 1. As an example, one may take 
X to be the Cartesian product Xt x X2 x • • • where each Xt is the finite 
set {1,2,..., n} (for a fixed value of n). The Borel structure is of course the 
product structure, and the partial order is defined by x ^ y iff xf ^ yt for 
every i, where xt denotes the ith coordinate of the sequence x. A Borel set 
E is called decreasing if whenever xeE and y £j x, then y e E. The family 
of all decreasing Borel sets forms a sigma-lattice of subsets of X which is 
usually not closed under complementation. 

Finally, let /* be a finite measure on X. Then each decreasing Borel set 
E determines a projection PE in L(X, p\ and the family if(X, ^ , /i) of all 
such projections turns out to be a complete sublattice of the projection 
lattice in L°°(X, p). By causing the elements of if (X, ^ , p) to act in the usual 
way on the Hubert space L2(X, p) we obtain an example of a commutative 
subspace lattice. Significantly, this construction exhausts all of the 
(separable) possibilities: 

THEOREM 1. Every separably-acting commutative subspace lattice is 
isomorphic to the lattice 5£{X, ^ , p) of some standard partially ordered 

measure space. 
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We remark that there are a number of variants of Theorem 1, one of 
which concludes that the isomorphism is implemented by a unitary 
equivalence (one simply has to take appropriate account of higher multi­
plicities). Thus, the study of commutative subspace lattices is reduced to 
the study of the lattices JS?(X, ^ , fi). 

We now state the main result of this section. 
THEOREM 2. Every separably-acting commutative subspace lattice is 

reflexive. 

Theorem 2 depends on the following rather technical result which, as 
it turns out, seems to lie at the heart of many of the natural questions about 
reflexive lattices as well as reflexive operator algebras. 

THEOREM 3. Let X and Y be compact metric spaces, let fi and v be sigma-
finite Borel measures on X and Y respectively, and let K be a closed subset 
of X x Y. Assume that a(K) = 0 for every finite positive measure a on 
X x Y satisfying a1 « \i and a2 « v, where ax(E) = <r(E x Y) and 
G2(F) = a(X x F). Then there exist Borel sets M Ç X and N £ Y such 
that fi(M) = v(N) = 0andK^M x YuX x N. 

2. The structure of certain lattices. As we pointed out in the introduc­
tion, classification problems for reflexive operator algebras largely reduce 
to classification problems for their invariant subspace lattices. In this 
section we shall consider a general class of lattices which is tailored to these 
questions. Throughout, L will denote a distributive complete metric lattice 
[3]; that is, a distributive lattice L, having a 0 and a 1, and which admits 
a positive isotone valuation v:L-+ [0, +oo), with the property that L 
is a complete metric space relative to the distance function d(x, y) 
= v(x v y) — v(x A y). Thus, L is the lattice-theoretic counterpart of a 
(finite) measure algebra, the principal difference being that in the lattice 
case one may not be able to take complements. One should keep in mind 
the examples ££(X, ^,p) of the preceding section; here, the valuation v is 
defined on the projection PE, E £ X, by v(PE) = /*(£). 

If {L „} is any family of sublattices of L, V nLn will stand for the complete 
sublattice generated by \J„Ln. By a factorization for L we mean a sequence 
Ll9L29... offinite sublattices of L, each containing the 0 and 1 of L, such 
that 

(Ï) L = VnLn,Ln* {0,1}, 
(ii) (zero-one law) f)™= x (Ln v Ln+ x v • • • ) = {0,1}, 
(iii) (independence) for all a,b in Ln and all x,y in Vi+nLi9 a A X ^ b 
V y implies a ^ b or x ^ y. 
This will be expressed by the notation L = (X)ML„. A factorization 

L = (x)n Ln is called indecomposable if each Ln is indecomposable in the 
sense that, for each n, the only factorizations of Ln = A ® B are when 
A = Ln or B = L„. 
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As a special case, let L be the separable nonatomic measure algebra. 
Then it is easy to see that L admits a great variety of indecomposable 
factorizations which are in no way related to one another. Thus it may be 
surprising that, if L is at the opposite extreme from a Boolean algebra, 
then unique factorization does hold. The relevant definition is the follow­
ing: L is called primary if for any two of its elements x, y9 x v y = 1 implies 
x = 1 or y = 1. 

THEOREM 4 (Unique Factorization Theorem). Let L be a primary dis-
tributive complete metric lattice. Then for any two indecomposable factori­
zations L = (X)WLW = (X)WL ,̂ there is a permutation n of the positive 
integers such that L'n = Ln{n). 

To apply this result to Problem 1, let 5£n (for n fixed) be the complete 
lattice generated by the given projections of Problem 1. Then it follows 
easily from Theorem 4 that <£m and i f n are not isomorphic if m ^ n. 
Utilizing Theorem 2 it can be shown that JS?„ = Lat j / n , and thus we con­
clude that s/m and s/n are not similar if m i=- n. 

Note, however, that Theorem 4 does not distinguish between the lattices 
of Problem 2. The next section deals with that type of problem. 

3. Numerical invariants. We now want to introduce a numerical 
invariant which will distinguish between the lattices involved in Problem 
2. The reader may find the following discussion to be reminiscent of the 
Kolmogorov-Sinai invariant of ergodic theory [2]. 

Let L be an infinite complete distributive metric lattice, which is 
separable as a metric space. By a generator for L we mean a countable 
subset {xu x2,...} = G of L which generates L as a complete lattice (we 
shall also require that the labelling satisfy xm ^ xn if m ^ n). A state of L 
is defined as an isotone valuation ju (not necessarily related to the distin­
guished valuation giving rise to the metric on L), such that /i(0) = 0 and 
/i(l) = 1 ; \i is called normal if for every increasing sequence xn e L one has 
sup„/i(xw) = fi( V nxn), and dually for decreasing sequences. For a given 
generator G = {xl9 x 2 , . . . } and a given normal state \i we define 

a(G, JU) = lim inf ju(xn). 
n 

It is easy to see that a(G, fi) does not depend on the particular labelling 
of the elements of G. Thus, 

oc(L) = inf a(G,ju), 
G,n 

the inf taken over all generators G and all normal states JU, is a numerical 
isomorphism invariant of the lattice L, which takes values in the unit 
interval. We now describe a procedure for computing a(L) in quite a 
wide variety of cases. A prime in a distributive lattice L is an element p of 
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L such that x v y = p implies x = p or y = p. ̂ (L) will denote the set of 
all nonzero primes of L. Note that if L is the lattice of all positive integers 
(partially ordered by x ^ y iff x divides y)9 then the primes are the elements 
of the form pn where p is an ordinary prime and n ̂  1. If L is a ƒ mte 
distributive lattice then it is generated by 0>(L); indeed every nonzero 
element is a union of primes [3]. The main result of this section is the follow­
ing. 

THEOREM 5. Let L be an infinite distributive complete metric lattice 
which has a factorization L=fè)nLn into primary lattices Ln. Let 
P = \Jn= ! ^(Ln), and let \i be any normal state ofL. Then P is a generator, 
and moreover 

a(L) = a(P,/i). 

Theorem 5 allows one to compute a(JSfp) where JSfp, 0 < p < 1, is the 
complete lattice generated by the sequence of subspaces given in Problem 
2. It turns out that <x(jSfp) = p, so that S£p and 5£q are not isomorphic if 
p ̂  q.An argument similar to the one given in the preceding section now 
shows that the operator algebras s/p and sfq are not similar ifp^q. 

We also remark that the techniques of §1 can be applied to the dual 
problem of determining when an operator algebra is reflexive. This aspect 
too will be discussed elsewhere. 
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