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This note announces generalizations of the product theorems for Wall 
invariants and Whitehead torsions due to Gersten [5], Siebenmann [7, 
Chapter VII], and Kwun and Szczarba [6], and applies these theorems to 
study torsion invariants of the total space of a flat bundle. The generalized 
product theorems are described in §§1 and 2. The applications are found 
in §3. 

These theorems were discovered in an attempt to understand more 
clearly the orientation phenomena discovered in [1] and [2] by concen­
trating attention on bundles in which "orientation" is a complete bundle 
invariant. The author would like to thank D. Sullivan whose use of the 
word "flat" in a private conversation stimulated this work. 

0. Basic algebraic definitions and notations. Let R be a commutative 
ring with unit. (Usually R = Z, the ring of integers, or Q the rational num­
bers.) For any group rc, tyR{n\ and Y^R(n) will denote the category of 
finitely generated projective modules over R(n)9 and the category with 
objects (P, ƒ) with P e tyR(ri) and f:P->P and R(n) isomorphism. A mor-
phism g :(Pl9 fx) -+ (P2, ƒ2) is an R(n) homomorphism g \PX -• P2 such that 
fig = gfi-

K0R(n) and KlR(n) will be usual algebraic X-theoretic groups (cf. [3, 
pp. 344-348]). [P] or [P, ƒ] will denote the class of P and (P, ƒ) in K0Rn 
and KxRn respectively. The quotient of K^n) by the subgroup ±n will 
be denoted Wh JR(7C) and will be called the K-Whitehead group of n. When 
R = Z this is the usual Whitehead group. If j:n -• n' is a homomorphism, 
; # will denote any of the induced maps on K0, Kuor Wh. 

Let A and B be groups and a :B -• Aut A be a homomorphism. Then 
A x a B will denote the semidirect product of A and B with respect to a. As 
setsA x a B = A x B. The multiplication on A x «Bis given by (a, b){a\b') 
= (aa(fc)(a'), bb'). The functions k:A -> A xa B, p:A x a B->B, and s:B 
-> A xaB given by k(a) = (a, 1), p(a,b) = b, and s(b) — (1,b) are homo-
morphisms. a extends to a homomorphism, also denoted by <x,a:B 
-AutR(A). 
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1. a- semilinear representations. Let A9 B, a be as above and M € tyR(A). 
A representation p:B-+AutRM is cc-semilinear (cf. [4]) if p(b)(Xm) 
= <x(b)(X)p(b)(m) for all beB,Xe R(A),msM. 

Let SR(R(B), R{A\ a) be the category with objects pairs (P,p) where 
PetyR(A) and p:B -+ AutRP is a-semilinear. A morphism jf:(Pi,Pi) 
-• (P2, p2) in 5R(P(B), R(A)<x) is an P(>4) map f:Pi -> P2 such that fp^b) 
= p2(b)/ f°r every b e B. The Grothendieck group of the category 
9l(R(B), R(A\ a) is called the group of a-semilinear representations of B 
over P(,4) and is denoted GR(B, A, a). When ^ 4 = 1 , GR(B, A, a) = GR(B) is 
the usual group of representations of B over R. 

THEOREM 1. There are pairings 

T0 : GR(B, A, a) ® K0P(B) -> K0R(A x . B), 

Tj : G*(B, A, a) ® KXR(B) - K ^ x « B). 

SKETCH OF THE PROOF. The proof uses some ideas of Swan developed in 
[3, pp. 563-566]; namely, for T0, define a functor 

S 0 : M(R(B\ R(A\ a) x <PP(B) - %R(A x , B) 

by setting Z0((P, p), Q) = P ®R Q and making P ®R Q into an JR(̂ 4 x . B) 
module by setting (a, b)p® q = ap(b)(p) ® bq. By Frobenius reciprocity 
[3, p. 563], if P is free over R(A) of rank m and Q is free over P(B) of 
rank n, then P<8)*0 *s free of rank mn over R(A xaB). A direct 
sum argument then shows that if P 6 tyR(A) and Q e tyR(B\ then 
P ® R 6 e ^PK(4 x a B). The proof is completed by noting that Z0 preserves 
short exact sequences in either variable. 

The pairing Tt is induced from the functor 

Xx : *(P(B), R(A)9 a) x £<p/?(B) - £<PPM x . B), 

given by ^( (P , p), (Q, ƒ)) = (P <8>* Ô* 1 ® ƒ), by using the categorical 
definition of Kx given in [3, p. 348]. 

When A = 1, the pairings T0 and Tt reduce to the standard module struc­
ture of GR(B) on K0R(B) and KXR(B) respectively (cf. [3, p. 565]). 

Let P be free over R(A) of finite rank and p:B -+ AutRP be a-semilinear. 
By picking a basis eu...9em for P and setting p(b)(ef) = Y,jPijej>we obtain 
for each b e B a nonsingular matrix, (/?^)e GL(m ; P(i4)), whose transpose 
is called the matrix of p(b) with respect to eu..., em. p is simple if for all 
feeB the class of (&(&;))* is zero in V/hR(A xaB), where k:R(A)-> 
R(A x a B). This is independent of the choice of basis. Let SR(B9 A, a) 
c GR(B, A, a) be the subgroup generated by the simple representations. 
Extending Theorem 1, we have 

LEMMA 2. Tx induces a pairing T{ : SR(B, A, a) ® Wh R(B) -> Wh R(/l x a B). 
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PROOF. For any be B, let fb:R(B) -> R(B) be the R(B) linear map that 
sends 1 to b. By giving the pairing Tt a matrix interpretation as in the proof 
of [1, Propositon 1.1], one verifies that if p:B -• AutRP is simple, then 
W , p] ® [R(B)9 fb]) = [P ®R R(B% 1 ® fb] = 0 in Wh R{A x. B). Since 
Wh R(B) = A^BVfsubgroup generated by ± [R(B% fb]) where b e B, the 
lemma follows. 

The pairings T0, Tu and T\ are natural in a sense we now make precise. 
Let C be a group and y:B -+ Aut C. A homomorphism a:A -> C is 

admissible if <7(a(b)(a)) = y(b)<x(a) for all a e 4, b e B. If <r :A -+ C is admis­
sible, then ax I: A xaB -• C x y Bisa homomorphism. An admissible 
homomorphism (7 : A -• C induces a homomorphism a^ : Gu(B, >4, a) 
^GR(B,C,y) by setting aJP,p] = [R(C) ®R(A)P,y ® p] where «(C) 
becomes a right R(A) module via a. 

THEOREM 3. Let a:A -+ C be admissible. Then 

(a x l^T, = 7ÎK x 1) /or i = 0,1 

and 

(d x 1),T/ = T / K x 1). 

COROLLARY 4. 77ie usua/ modw/e structure T: GR(B) ® KtR(B) -+ KiR(B) 
is a direct summand of Tt\GR(By A,a) ® KtR{B) -• K(R(A xaB),i = 0,1. 

PROOF. Apply Theorem 3 to the admissible homomorphisms a:A -• 1 
and T : 1 -• A where 1 is the trivial group. 

2. The generalized product theorems. Let C* be a finitely generated chain 
complex of projectives over R(A) and p:B -• AutR(C#) be an a-semilinear 
representation such that for each beB,p(b) is a chain map. Let pf:B 
-* AutK(Cf) denote the restriction of p to Cf. We set 

X(C„ p) = X ( - IJlQ, p j € G*(B, A, a) 

and call x(C*> P) ̂ e Euler characteristic of p. 
If D+ is a chain complex over R(B), the proof of Theorem 1 shows that 

the usual tensor product of chain complexes C* ®R D# is a chain complex 
over R(A x a B). 

THEOREM 5. Let C#, p, and D% be as above and suppose that D+ is dominated 
by a finitely generated chain complex of projectives over R(B). Then C* ®R D+ 
is dominated by a finitely generated chain complex of projectives over 
R(A x . B) and 

w(C*®RDJ = x(C„p)w(DJ 

where w denotes the Wall invariant and juxtaposition denotes the pairing T0. 
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THEOREM 6. Let C+ be a finitely generated, based chain complex over R(A) 
and let p:B -+ AutR(CJ be an a-semilinear representation such that for each 
i, Pi is simple. Let D+ be a finitely generated, based, acyclic chain complex 
over R(B). Then C* <g)R D+ is a finitely generated, based, acyclic chain 
complex over R(A x a B) and 

TK(C#® l lDJ|t) = x(Cî|{,p)Ti?(Dî|e) 

where xR denotes R-Whitehead torsion and juxtaposition denotes the pairing 
T\. 

These theorems are obtained by an induction argument similar to that 
of [6, p. 188]. 

Since p(b) is a chain map for each b e B, there are induced a-semilinear 
representations ft :£ -• AutR(Hi(CJ). If Ht(CJ e tyR(A) for all i, we set 
X(#*(C*), p) = £ ( - iy[H|(C^ ft] € GR(B, A, a). 

LEMMA 7. Let C+ be a finitely generated chain complex of projectives over 
R(A) such that Ht(CJe tyR(A) for all i and let p:B -> Aut^C*) be an 
OL-semilinear representation as above. Then #(C*>P) = X(#*(C*)>P)-

3. Flat bundles. Let £ = (E, p, B, F) be a PL fiber bundle (cf. [1]) and 
n = nt(B, b0). £ is flat if there is a triangulation K of F with vertex v, and a 
homomorphism œ:n -> Iso(X, t;), the simplicial isomorphism of X leaving 
i; fixed, such that Ç = (5 x n F, p', B, F) where B is the universal cover of 
B, p € re acts on S x F by j?(x, y) = (fix, œ(p)y), and p' :£ x n F -• B is the 
natural map. £ is called thenar bundle associated with œ:n -• Iso(K, t;). 

Let s :B -* E be the natural cross section s(b) = t;b where vb is the image 
oft; in p" f̂c) and let e0 = s(fe0). Then s* splits the homotopy exact sequence 
of £. Furthermore 

LEMMA 8. Define <x\nx{B,b0)-* Autrc^F, v) by a(/?) = œ{P)^\nx(F, v) 
-nti(F,v). Then i+ x s+:iti(F9v) xanx(B,b0) -+ rc^Ê, e0) is an isomor­
phism. 

In the remainder of this section we identify these two groups via this 
isomorphism. 

Let £ be the flat bundle associated with co :n -> Iso(X, t>). Let R be the 
triangulation of F, the universal cover of F, covering K and C*(ft ; R) be 
the cellular chains on ÊL with R coefficients viewed as a (based) Rni(F, v) 
module (when necessary). Since each ƒ 6 Iso(K, v) fixes v, ƒ is covered by a 
simplicial isomorphism Jt:(f£,v) -• (£,tf) where v is a fixed vertex of R 
over i?. The correspondence ƒ -* ƒ defines a homomorphism A:Iso(K, t;) 
-> Iso(£, v). Define p : nt(B, b0) -• A u t R ( C ^ ; R)) by 

pM-Aa*0,:CJ*;ig^C,(tf;J& 
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Relative to the a of Lemma 8, p is a-semilinear. 

THEOREM 9. Let £ = (F, p, B, F) be the flat bundle associated with 
co:ni(B9 b0) -> Iso(K, v) and suppose B is dominated by a finit e complex and 
F is compact. Then E is dominated by a finite complex and 

w(E) = x(C*(R;Z),p)W(B) 

where w denotes the (unreduced) Wall invariant. 

THEOREM 10. Let £ = (F, p, B, F) be the flat bundle associated with 
(o.iixiB, b0) -» Iso(K, v) and suppose that the subcomplex A is a deformation 
retract of B. Then EA = p" l(A) is a deformation retract of E and 

TR(E9EA) = X(C*(R;R),P)TR(B9A) 

where xR denotes Whitehead torsion over R. 

The idea of the proof of these theorems is to note that the universal 
cover Ë of E is F x 5, that (/?, y)en1(F9v) xa nx{B, b0) acts by (/?, y)(x, >') 
= (jSAco(y)x, yy\ and, therefore, that C*(Ë;R) « C*(F;R) ®R C*(B;R) as 
modules over n^E, e0) = 7r1(F, v) x a nx(B, b0). The proof is completed by 
applying Theorems 5 and 6, respectively. 

Suppose now that rc^F, v) is finite. Then R is a finite complex and the 
Qnx(F9v) module H+(R\Q) is finitely generated over Q. By Maschke's 
Theorem [3, p. 559], H+(R;Q) and Hf(^;Q) are finitely generated pro-
jectives over Qnx(F, v). Hence %{CJ(R ; g), p) = x(H*(R ; Q)9 p) by Lemma 
7. Since the representation p\nx(B,b0) -* AutQ(H+(& ; Q)) depends only 
on the structure ^ as a bundle with structure group Homeo(F, v) (i.e., p 
depends only on topological properties of ftie bundle <!;), we have the 

COROLLARY 11. Let £ = (F, p, B, F) and A a B be as in Theorem 10. If 
7i1(F, u) is finite, then the rational Whitehead torsion, TQ(F, EA)9 depends only 
on T(B, A) and the topological structure of the bundle £. 
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