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Introduction. Let M be a noncompact, orientable 3-manifold with a 
(possibly empty) boundary dM. Suppose g and h are homeomorphisms 
of M onto itself. When is g isotopic to hi This question was essentially 
answered in the compact case by Waldhausen in [3] ; roughly the answer 
given was—when g is homotopic to h. We will show that essentially the 
same answer can be given for a large and interesting class of noncompact 
manifolds; these manifolds include Whitehead-type contractible open sub­
sets of R3. Full proofs of the theorems stated below will be given elsewhere. 
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arguments. Thanks are also due David Stone for his generous help in 
several conversations. For my husband, Edward Brown, who suggested 
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Preliminaries. The ambient manifolds considered here are orientable, 
triangulable and 3-dimensional. By a surface in M, we mean a 2-dimen-
sional, triangulable manifold which is properly imbedded in M. (Every­
thing is considered from the piecewise linear point of view.) M is an 
irreducible manifold if every 2-sphere in M bounds a ball in M. For non-
compact manifolds this implies that M is aspherical. A surface F in M or 
dM different from a 2-sphere is incompressible in M if n^F) -• n^M) is a 
monomorphism. M is boundary-irreducible if each component of dM is an 
incompressible surface. Finally we need the notion of a hierarchy for a 
manifold. The triple (Fj9 U(Fj), Mj)J = 1,2,..., is a hierarchy for M = Mx 

if each F, is a compact incompressible orientable surface in Mj9 Mj+l 

= cl(M, — U(Fj)\ where U(Fj) is a regular neighborhood of Fj in Mj [4], 
and M — (J, Û(Fj) is a collection of balls. If M is compact we require the 
sequence F, to be finite. For M compact these surfaces have been con­
structed by Haken when M is irreducible and has an incompressible sur­
face. Waldhausen uses the hierarchy to prove the isotopy theorem in the 
compact case. 
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Noncompact manifolds admitting a hierarchy are called end-irreducible ; 
they have been introduced by E. M. Brown, for manifolds of any dimension 
using his notions of proper fundamental groups. It can be seen from [1] that 
the name end-irreducible is appropriate in that it generalizes the idea of 
boundary-irreducible to ends of a manifold. Moreover any irreducible 
manifold which is obtained from a compact 3-manifold by removing some 
incompressible boundary components is an end-irreducible manifold. 

Results for irreducible, end-irreducible manifolds; If the manifold M has 
vacuous boundary, our result asserts that any orientation-preserving 
homeomorphism of an irreducible and end-irreducible manifold which is 
homotopic to the identity homeomorphism is isotopic to the identity. Notice 
that since M is aspherical we are saying that any orientation-preserving 
homeomorphism which induces the "identity" map on n^M) is isotopic 
to the identity homeomorphism. More precisely we prove the following 
two isotopy theorems. 

THEOREM 1. Let M be an irreducible, end-irreducible manifold and 
H:(M x ƒ, dM x I) -> (M, dM) be a homotopy of an orientation-preserving 
homeomorphism h to the identity. Then h is isotopic to the identity, [If 
H\dM x I is already the constant homotopy, the isotopy of h to the identity 
may be chosen fixed on dM,] 

THEOREM 2. Let M be an irreducible, end-irreducible, and boundary-
irreducible manifold. Assume dM ^ 0, Suppose H:M x I -> M is a 
homotopy of an orientation-preserving homeomorphism h to the identity and 
suppose that H is a proper map when restricted to each component of dM x I. 
Then h is isotopic to the identity, 

(By a proper map we mean that the inverse image of compact sets are 
compact.) In the above theorems we only use the fact that h is orientation-
preserving for manifolds that 

(a) are bundles with fiber R over closed surfaces, (in Theorem 1), 
(b) are bundles with fiber I over open surfaces, (in Theorem 2) or 
(c) when some component of dM is a plane or an open annulus, (in 

Theorem 1). 
To see that in Theorem 2 it is necessary to assume H is a proper map 

when restricted to components of dM x I we look at the following 
example. Let M be a solid torus with two disjoint longitudinal curves 
removed from dM, Then dM consists of two open annuli. Let h be the 
homeomorphism of M which rotates the torus so that the boundary 
components are interchanged. Then h is homotopic to the identity but 
not isotopic to the identity. 

Other examples of end-irreducible manifolds will be given in the next 
section. 
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An outline of the proof of Theorem 1 for a manifold M with vacuous 
boundary. In [1], it is shown that M has an exhausting sequence {Cn} of 
submanifolds with the following properties : 

(1) Cn is a compact, connected manifold, 
(2) C„Œ Cn+l and [j„Cn = M, 
(3) components of dCn are incompressible. 

Now one can show that {Cn} may be chosen so that 
(4) H(Cnx I)<zâm+Ï. 
We show by an inductive procedure that if h\Cn is the identity and 

H\Cn x ƒ is the constant homotopy, then there is an isotopy of h fixed on 
Cn so that the new homeomorphism (which we will still call h) is the identity 
on Cn+i. Moreover we show that one can change the homotopy to be 
constant on Cn+1. Let Fl,...iFk be the components of dCn+l. We first 
show that since Fx and hiF^) are incompressible surfaces which are homo-
topic via H in C„+2, there is an isotopy of M fixed on Cn which carries h(Ft) 
onto Fv (We use here that if M is a product bundle, then h is assumed 
orientation-preserving.) Changing h by this isotopy—still call the homeo­
morphism h—we now have ^(FJ = Fv 

The fact that this isotopy can be chosen fixed on Cn rests heavily on the 
fact that H \ Cn x I is already constant. Thus we now try to change 
H\FX x / by a homotopy to the constant homotopy. First we attempt to 
homotope H\Fl x I rel Fx x dl to a map into Fx. We show the only dif­
ficulties arise when M is a bundle over a closed, nonorientable manifold. 
Here we again use the assumption that h is orientation-preserving. Next we 
show that unless Fx is a torus, H\Fl x / is homotopic rel Fx x dl to the 
constant homotopy. If Fx is a torus it may be necessary to change h\Fx by 
an isotopy before one can homotope H\FX x I to the desired state. We 
continue—by induction on the number of components in dCn+l—to 
change h by an isotopy fixed on Cn and to change H\dCn+1 x I by a 
homotopy so that in the end, h\dCn+1 is the identity and H\dCn+l x I is 
the constant homotopy. 

Since cl(CM+1 — Cn) is a manifold with boundary, it admits a hierarchy 
Gl9..., Gr (see [2]). Again we inductively isotope h and homotope H with­
out disturbing our previous changes so that the end result is that h is the 
identity on all the Gf. Hence h is the identity on Cn + 1 except for a collection 
of 3-cells. Using Alexander's Theorem, we conclude h is isotopic to the 
identity onC n + 1 ; using the fact that M is aspherical we have no obstruc­
tions to homotoping H to the constant homotopy. This concludes the 
argument. 

Results for irreducible, eventually end-irreducible manifolds. M is 
eventually end-irreducible if there is a compact subset C of M such that 
M — Cis end-irreducible, or equivalently that M eventually has a hierarchy, 
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i.e., M — C has a hierarchy. For the isotopy results for such manifolds the 
following example shows that it is necessary that we assume the homeo-
morphism h is proper homotopic to the identity. Let T0 be a solid torus 
linked in the solid torus Tx. (See Figure below.) 

Let h:R3 -• R3 be a homeomorphism of/?3 such that h(T0) = Tv Then 
W = [jh^To) is the contractible open subspace of JR3 described by 
Whitehead in [5]. By results in [6], one can show that W is an eventually 
end-irreducible manifold. The homeomorphism h maps W onto itself. 
Moreover since W is contractible h is homotopic to the identity. Again the 
results in [6] show that h is not proper homotopic to the identity and hence 
it certainly is not isotopic to the identity. 

THEOREM 3. Let M be an irreducible, eventually end-irreducible manifold 
and H:(M x I,dM x I) -• (M,dM) a proper homotopy of a homeomor­
phism h to the identity. Then h is isotopic to the identity. If H\dM x I is the 
constant homotopy, then the isotopy of h to the identity may be chosen fixed 
on dM. 
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