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The purpose of this short note is to announce generalizations of known 
invariant splitting theorems due to Taft [4], [5], [6], [7] and Mostow [1], 
which have been obtained by Hopf methods. The approach is an out­
growth of techniques developed by M. Sweedler in order to study algebraic 
groups from a Hopf point of view, and was motivated by several con­
versations with him. 

0. Let (K A, e) be a coalgebra over the field k which is equipped with the 
structure of a unitary associative algebra by means of coalgebra mor-
phisms m: V ®k V-+ Kand /i: k -• V. A = (K A, e, m, fi) is then a bialgebra 
and is a Hopf algebra if ideEndk(F) is invertible in the convolution 
structure [2, p. 71]. We will often confuse A with V. 

Recall that A* has a natural associative algebra structure relative to 

A* ®k A* c+ (A ®k A)*^> A*, k £ fc* •£ A*. 

An element le A* is called a (left) integral for A if a*X = <#*, 1A}À for all 
a* e A*. If M A M ®k A is a right A-comodule, then M carries a (rational) 
left A*-module structure via 

A* ®k M -> A* ®k M ®k A -• M ®k A* ®k A -> M ®k k £ M 

[2, pp. 33-36, 91-92] and one has the adjoint ,4*-module structure on 
E = Endk M given in [3, p. 332] which is characterized by the relation 

(a* - T)(m) = X (a* - m(1)) • T(m(0)) for a* G A*, Te E and m G M. 
(m) 

If A has an integral A which satisfies <A, 1̂ > = 1, then every rational 
,4*-module is completely reducible. Conversely, if A*A is a completely 
reducible rational ,4*-module (via the regular right A-comodule structure 
of A) then A has an integral satisfying the above condition. 

1. Let 91 be a nonassociative algebra over fe, 9? an ideal in 91 with 
5R5R = {0}, S a subalgebra of 91 with 5ft = <S © 9Î (as vector spaces). We 
have 
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THEOREM. Let A be a commutative Hopf algebra and \jj:9l-+9l®kA a 
comodule structure map which is multiplicative. Assume further that A*A 
is completely reducible and that 91 is a subcomodule. Then there is a sub-
algebra of 91 which is a subcomodule and a vector space complement to 91. 

2. Throughout this section 91 is a nonassociative algebra and a right 
comodule for a commutative Hopf algebra A where the comodule struc­
ture map xjj is multiplicative and A*A is completely reducible. Using the 
preceding result one easily obtains the following : 

THEOREM EA. If 91 is a finite-dimensional associative algebra which is 
separable modulo its radical % and 91 is an A-subcomodule, then there is a 
subalgebra of 91 which is a subcomodule and vector space complement to 9{. 

THEOREM EL. If 91 is a finite-dimensional Lie algebra over a field of 
characteristic 0, and 9Î = radical 91 is a subcomodule, then there is a 
subalgebra of 91 which is a subcomodule and vector space complement to 91. 

One has similar results for the case of alternative or Jordan algebras. 

3. In the notation of §2 we let ® be a subalgebra subcomodule comple­
ment to 91 and <Zl any separable subalgebra subcomodule of 9t. For 
93 c 91 we let ï K = {v e 93|a* • v = <a*, l^i?, for all a* e A*}. We have 

THEOREM UA. Under the hypothesis of EA there is an xe9lA such that 
conjugation by 1 + x induces a comodule morphism carrying ®x into ©. 

THEOREM UL. Under the hypothesis of EL, there is an xs (Nil 9l)A* 
(Nil 91, the nilradical of 91) such that exp(adx) induces a comodule morphism 
carrying (Z1to ®. 

One has results similar to those in [7] for the case of alternative or 
Jordan algebras. 
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