INVARIANT SPLITTINGS IN NONASSOCIATIVE ALGEBRAS: A HOPF APPROACH¹

BY H. P. ALLEN

Communicated by M. Gerstenhaber, August 10, 1971

The purpose of this short note is to announce generalizations of known invariant splitting theorems due to Taft [4], [5], [6], [7] and Mostow [1], which have been obtained by Hopf methods. The approach is an outgrowth of techniques developed by M. Sweedler in order to study algebraic groups from a Hopf point of view, and was motivated by several conversations with him.

0. Let (V, Δ, ε) be a coalgebra over the field k which is equipped with the structure of a unitary associative algebra by means of coalgebra morphisms $m: V \otimes_k V \to V$ and $\mu: k \to V$. $A = (V, \Delta, \varepsilon, m, \mu)$ is then a bialgebra and is a Hopf algebra if $id \in \operatorname{End}_k(V)$ is invertible in the convolution structure [2, p. 71]. We will often confuse A with V.

Recall that A^* has a natural associative algebra structure relative to

$$A^* \otimes_k A^* \hookrightarrow (A \otimes_k A)^* \stackrel{\Delta^*}{\to} A^*, \qquad k \cong k^* \stackrel{\varepsilon^*}{\to} A^*.$$

An element $\lambda \in A^*$ is called a (left) integral for A if $a^*\lambda = \langle a^*, 1_A \rangle \lambda$ for all $a^* \in A^*$. If $M \stackrel{\psi}{\to} M \otimes_k A$ is a right A-comodule, then M carries a (rational) left A^* -module structure via

$$A^* \otimes_k M \to A^* \otimes_k M \otimes_k A \to M \otimes_k A^* \otimes_k A \to M \otimes_k k \cong M$$

[2, pp. 33–36, 91–92] and one has the adjoint A^* -module structure on $E = \operatorname{End}_k M$ given in [3, p. 332] which is characterized by the relation

$$(a^* \to T)(m) = \sum_{(m)} (a^* \leftarrow m_{(1)}) \cdot T(m_{(0)})$$
 for $a^* \in A^*$, $T \in E$ and $m \in M$.

If A has an integral λ which satisfies $\langle \lambda, 1_A \rangle = 1$, then every rational A^* -module is completely reducible. Conversely, if $_{A^*}A$ is a completely reducible rational A^* -module (via the regular right A-comodule structure of A) then A has an integral satisfying the above condition.

1. Let $\mathfrak N$ be a nonassociative algebra over k, $\mathfrak R$ an ideal in $\mathfrak N$ with $\mathfrak R\mathfrak R=\{0\}$, $\mathfrak T$ a subalgebra of $\mathfrak N$ with $\mathfrak N=\mathfrak T \oplus \mathfrak R$ (as vector spaces). We have

AMS 1970 subject classifications. Primary 13D99, 17A99.

Key words and phrases. Hopf algebra, invariant radical splitting.

¹ This research was partially supported by NSF grants GP 11404 and RF 3224-A1.

THEOREM. Let A be a commutative Hopf algebra and $\psi: \mathfrak{N} \to \mathfrak{N} \otimes_k A$ a comodule structure map which is multiplicative. Assume further that ${}_{A^*}A$ is completely reducible and that \mathfrak{N} is a subcomodule. Then there is a subalgebra of \mathfrak{N} which is a subcomodule and a vector space complement to \mathfrak{N} .

2. Throughout this section $\mathfrak N$ is a nonassociative algebra and a right comodule for a commutative Hopf algebra A where the comodule structure map ψ is multiplicative and ${}_{A^*}A$ is completely reducible. Using the preceding result one easily obtains the following:

Theorem EA. If $\mathfrak N$ is a finite-dimensional associative algebra which is separable modulo its radical $\mathfrak R$, and $\mathfrak N$ is an A-subcomodule, then there is a subalgebra of $\mathfrak N$ which is a subcomodule and vector space complement to $\mathfrak R$.

THEOREM EL. If \mathfrak{N} is a finite-dimensional Lie algebra over a field of characteristic 0, and \mathfrak{R} = radical \mathfrak{N} is a subcomodule, then there is a subalgebra of \mathfrak{N} which is a subcomodule and vector space complement to \mathfrak{R} .

One has similar results for the case of alternative or Jordan algebras.

3. In the notation of §2 we let \mathfrak{S} be a subalgebra subcomodule complement to \mathfrak{R} and \mathfrak{S}_1 any separable subalgebra subcomodule of \mathfrak{R} . For $\mathfrak{B} \subseteq \mathfrak{R}$ we let $\mathfrak{B}^{A^*} = \{v \in \mathfrak{B} | a^* \cdot v = \langle a^*, 1_4 \rangle v$, for all $a^* \in A^* \}$. We have

THEOREM UA. Under the hypothesis of EA there is an $x \in \Re^{A^*}$ such that conjugation by 1 + x induces a comodule morphism carrying \mathfrak{S}_1 into \mathfrak{S} .

THEOREM UL. Under the hypothesis of EL, there is an $x \in (\text{Nil } \mathfrak{N})^{A^*}$ (Nil \mathfrak{N} , the nilradical of \mathfrak{N}) such that $\exp(adx)$ induces a comodule morphism carrying \mathfrak{S}_1 to \mathfrak{S} .

One has results similar to those in [7] for the case of alternative or Jordan algebras.

BIBLIOGRAPHY

- 1. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221. MR 19, 1181.
- 2. M. E. Sweedler, *Hopf algebras*, Math. Lecture Note series, Benjamin, New York, 1969. MR 40 #5705.
- 3. _____, Integrals for Hopf algebras, Ann. of Math. (2) 89 (1969), 323-335. MR 39
- **4.** E. J. Taft, *Invariant Wedderburn factors*, Illinois J. Math. 1 (1957), 565–573. MR **20** # 4586.
- 5. ——, Invariant Levi factors, Michigan Math. J. 9 (1962), 65–68. MR 24 # A1973.
- 6. ——, Uniqueness of invariant Wedderburn factors, Illinois J. Math. 6 (1962), 353-356. MR 25 #3958; 26, 1543.
- 7. ——, Invariant splitting in Jordan and alternative algebras, Pacific J. Math. 15 (1965), 1421–1427. MR 32 #7616.