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1. Introduction. The comparison principle has proved to be very useful 
in the study of various qualitative problems in ordinary differential 
equations. Comparison principles have been previously formulated in 
terms of initial value problems and, in this setting, their applications are 
numerous [6]. In this announcement, a comparison principle for terminal 
value problems is given. Related topics and applications are also discussed. 

A comparison principle for terminal value problems has been stated in 
[7] ; however, the proof given there for the weak inequality case needs some 
modification. In fact, the validity of a terminal comparison principle in the 
full generality of the statement in [7] remains an open question. 

2. Preliminary hypotheses and definitions. A solution of the initial value 
problem which consists of the differential equation 

(1) dr/dt = g{t, r) 

and the point (r0, r0) will be denoted by r(r, t0, r0). In (1), it is assumed that 
g G C[R+ x R, JR]. It will be tacitly assumed that given any r0 e R, there 
exists a t0 e R+ so that the solution r(t910, r0) of (1) exists on [r0, oo) and 
lim,_> œ r(t, r0, r0) exists. A solution of the terminal value problem consisting 
of equation (1) and a terminal value r^ will be denoted by r(t; r^). 

A solution rm{t\r^) is a (the) maximal solution of the terminal value 
problem {(1); rœ} on the interval I provided any other solution u(t; O o f 
the terminal value problem {(1);^} which is valid on I satisfies the 
inequality 

u(t;rj^ rjt;rj (tel). 

A similar definition may be given for the minimal solution of a terminal 
value problem. Either of the above types of solutions will be referred to as 
an extremal solution of the terminal value problem. 

For initial value problems, the hypothesis g G C[R+ X R, R] is sufficient 
to insure the existence of maximal and minimal solutions [6, p. 11]. 
However, even if the continuity of g in t is extended to the interval [0, oo], 
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then extremal solutions of terminal value problems need not exist. A topic 
which, as will be noted below, is closely related to the existence of extremal 
solutions of terminal value problems is that of asymptotic equilibrium. 
F. Brauer [1], [2] and A. Wintner [8], [9], [10] have studied the asymptotic 
equilibrium problem in some detail. 

Because the concept of extremal solutions is a local property of a 
differential equation, it is convenient to localize the definition of asymptotic 
equilibrium. Equation (1) is locally in asymptotic equilibrium about rœ 

provided there exists a positive number ô with the property that whenever 
r0 satisfies the inequality \r0 — r J < ô then the terminal value problem 
{(l);r0} has a solution. Hence, (1) is in asymptotic equilibrium if it is 
locally in asymptotic equilibrium about rœ for every r^ e R. 

3. Results on extremal solutions and asymptotic equilibrium. 
THEOREM 1. Let (1) have unique solutions to (finite) initial value problems. 

If (I) is locally in asymptotic equilibrium about r^ then the terminal value 
problem {(1); rœ] possesses both extremal solutions. 

An immediate consequence of the above theorem is the following: 

COROLLARY. Let (1) have unique solutions to initial value problems. If 
(1) is in asymptotic equilibrium, then all terminal value problems possess 
both extremal solutions. 

Examples may be constructed to show that if extremal solutions of a 
terminal value problem exist then the differential equation need not be 
locally in asymptotic equilibrium about a point. However, if it is known 
that all terminal value problems, when they exist, have both extremal 
solutions then the equation must be in asymptotic equilibrium. 

THEOREM 2. If all terminal value problems of (1) have both extremal 
solutions, then (1) is in asymptotic equilibrium. 

4. A terminal comparison principle. The terminal value problem 
{(1); r^} will be said to be suitable for perturbations in L1(R+) provided 
for any h e L1(R+) n C[K + , R] the differential equation 

dr/dt = g(t, r) + h(t) 

is locally in asymptotic equilibrium about rœ. Some situations in which a 
differential equation is suitable for perturbations in Ll(R+) include the 
following: 

(i) If (1) is in asymptotic equilibrium and g is nonnegative and non-
decreasing in r for each fixed t e R+, then any terminal value problem is 
suitable for perturbations in Ll(R+). This may be verified by using the 
Lemma in [4]. 
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(ii) If (1) is in asymptotic equilibrium and is uniformly convergent in 
variation, then any terminal value problem is suitable for perturbations in 
L1(R+). This result is contained in [3]. 

In the next result, D* denotes the upper right Dini derivate. 

THEOREM 3. Suppose that initial value problems of (I) have unique solutions. 
Suppose that the terminal value problem {(1); r^} is suitable for perturba­
tions in Li(R + ). Let rm(t; r j be the maximal solution of the terminal value 
problem {(1); r^} and suppose that rm(t; r^) exists on J0 — [t0, oo). If v(t) 
is a continuous function which satisfies the inequality 

D*v(t)^g(t,v(t)) (teJ0) 

and the terminal inequality 

then 

vW^rJtirJ (teJ0). 

5. Applications. Let ||*|| denote some norm of n-dimensional Euclidean 
space, Rn. Suppose that for x e Rn,1 e R + , 

(2) \\f(t,x)\\£g{t9\\x\\) 

where ƒ e C[R + x jR", Rn], g e C[R + x R, R+], and g(t, r) is nondecreasing 
in r for each fixed t e R+. It will also be assumed that 

(3) f f+1g(t9X)dt < oo 

for all À > 0 and some a > 0. It is known that all solutions of 

(4) dx/dt = ƒ (r, x) 

are convergent provided (3) holds (see [2], [4]). That is, given any solution 
x(t) of (4), there exists a vector xw such that the error function 

Px(t)^\\x(t)-xJ\eL%(R+). 

Here, LQ(R+) designates the subspace of L°°(K+) that consists of all 
functions x e L°°(R+) such that ess l im^^ x(t) = 0. 

The next result is an extension of one in [5]. The proof in [5] utilizes 
estimates of Brauer [2] ; here the terminal comparison principle is applied. 

THEOREM 4. Let the functions f and g satisfy (2) and (3). For each constant 
c, suppose that initial value problems of dr/dt = — g(t, r + c) have unique 
solutions. Then, for any solution x — x(t) of (4), fpx{t)e LQ(R+) n LP(R + ) 
for all p ^ 1. 



1972] A TERMINAL COMPARISON PRINCIPLE 233 

A weight function other than f may be used in (3) and an analogous 
result to Theorem 4 may be obtained. 

Among other applications which can be obtained from the terminal 
comparison principle are terminal analogues of the Perron Uniqueness 
Theorem and standard integral inequalities. 
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