AN EXISTENCE THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES¹

BY SHUI-NEE CHOW AND J. D. SCHUUR

Communicated by Fred Brauer, May 24, 1971

ABSTRACT. We consider nonlinear ordinary differential equations in Banach spaces. A local existence theorem for the Cauchy problem is given when the equation is continuous in the weak topology. The theorem can be extended to set-valued differential equations in Banach spaces.

Let B be a Banach space and let $F:(0, 1)\times B\to B$. If B is finite dimensional and F is continuous in a neighborhood of $(t_0, x_0) \in (0, 1) \times B$, then by the Peano existence theorem there exists a function $\phi(t)$ defined on a subinterval of (0, 1) such that

$$\phi'(t) = F(t, \phi(t))$$
 and $\phi(t_0) = x_0$.

Dieudonné [1] and Yorke [2] have shown, by means of examples, that continuity alone, of the function F, is not sufficient to prove a local existence theorem in the case where B is infinite dimensional. Other authors, for example [3] and [4], have extended the Peano theorem to infinite-dimensional spaces but with additional assumptions. We have found that by replacing strong continuity with weak continuity and assuming the range of F to be bounded we may obtain an existence theorem.

Let B be a separable reflexive Banach space with norm $\|\cdot\|$ and let B^* be its dual space. Let B_w denote the space B with the weak topology and let $\{f_i\}$ be a countable dense subset in B^* . By Δ we mean a subinterval of T=(0, 1).

DEFINITION 1. A function $F: T \times B \rightarrow B$ is said to satisfy condition (I) if, at each $(t_0, x_0) \in T \times B$,

$$F(t_0, x_0) = \bigcap_{N=1}^{\infty} \text{cl co } F_N(t_0, x_0)$$

where

AMS 1969 subject classifications. Primary 3495, 3404; Secondary 2630.

Key words and phrases. Ordinary differential equations, Banach spaces, weak topology, existence of solution, set-valued differential equation, Cesari upper semi-continuity.

¹ This work was partially supported by the National Science Foundation under contract NSF GU-2648 and the Office of Naval Research under contract N000-14-68-A-0109-005.

$$F_N(t_0, x_0) = \bigcup \left\{ F(t, x) : |t - t_0| < \frac{1}{N}, \right.$$

$$\left| f_i(x - x_0) | < \frac{1}{N}, i = 1, \dots, N \right\}$$

and cl co $F_N(t_0, x_0)$ denotes the closed convex hull of $F_N(t_0, x_0)$.

If B is finite dimensional, condition (I) is equivalent to saying that F is continuous. If $F: T \times B_w \to B_w$ is continuous, then F satisfies condition (I). If F takes on set values in B and B is finite dimensional, then condition (I) is equivalent to saying that F is upper semicontinuous in the sense of Cesari [5], [6]. Thus, condition (I) is a reasonable generalization of continuity and it will also apply to set-valued differential equations.

We consider the differential equation

(E)
$$\dot{x} = F(t, x)$$
, where $F: T \times B \rightarrow B$.

DEFINITION 2. A solution of (E) on Δ is a function $\phi(t)$ defined on Δ such that $\phi(t)$ is weakly continuous (i.e., for every $f \in B^*$, $f(\phi(t))$ is a continuous real-valued function), and for almost every $t \in \Delta$,

$$D\phi(t) = F(t, \phi(t))$$

where $D\phi(t)$ is the weak limit of $(\phi(t+h)-\phi(t))/h$ as $h\rightarrow 0$.

THEOREM 1. Let $F: T \times B \rightarrow B$ satisfy condition (I) and let $\phi: \Delta \rightarrow B$ be weakly continuous. Then $\phi(t)$ is a solution of (E) on Δ if and only if, for every $N \ge 1$, $t \in \Delta$, there exists $\eta > 0$ such that

$$0 < h < \eta \Rightarrow \frac{\phi(t+h) - \phi(t)}{h} \in \text{cl co } F_N(t, \phi(t)).$$

THEOREM 2. Let $F: T \times B \rightarrow B$ and let $(t_0, x_0) \in T \times B$. Assume that in a neighborhood of (t_0, x_0) , F satisfies condition (I) and is bounded in norm. Then there exists a solution $\phi(t)$ of (E) on some interval Δ such that $\phi(t_0) = x_0$. Further, $\phi(t)$ is absolutely continuous and $\phi'(t) = F(t), \phi(t)$ a.e. on D (where $\phi'(t)$ is the strong limit of $(\phi(t+h) - \phi(t))/h$ as $h \rightarrow 0$).

The method of polygonal approximations is used in this proof. The approximations converge weakly to a weakly continuous limit function. By Theorem 1, we are able to show that this function is a solution of (E) and that it is Lipschitz. Then by a result of Pettis [7] it follows that ϕ has a strong derivative a.e.

COROLLARY. Let $F: T \times B_w \to B_w$ and let $(t_0, x_0) \in T \times B_w$. Assume that in a neighborhood of (t_0, x_0) , F is continuous and bounded in norm. Then there exists a solution $\phi(t)$ of (E) defined on some interval Δ such that $\phi(t_0) = x_0$, $\phi(t)$ is absolutely continuous on Δ , and $\phi'(t) = F(t, \phi(t))$ a.e. on Δ .

We have also proved Theorem 2 in the case where F takes values in the closed convex subsets of B (i.e. for set-valued differential equations) and we have proved theorems on continuous dependence on initial conditions and closure of families of solutions.

REFERENCES

- 1. J. Dieudonné, Deux exemples singuliers d'équations différentielles, Acta Sci. Math. Szeged (Leopoldo Fejér Frederico Riesz LXX annus natis dedicatus, pars B) 12 (1950), 38-40. MR 11, 729.
- 2. J. A. Yorke, A continuous differential equation in Hilbert space without existence, Funkcial Ekvac. 13 (1970), 19-21.
- 3. M. A. Krasnoselskii and S. G. Krein, Nonlocal existence theorems and uniqueness theorems for systems of ordinary differential equations, Dokl. Akad. Nauk SSSR 102 (1955), 13-16. (Russian) MR 17, 151.
- 4. C. Corduneanu, Equazioni differenziali negli spazi di Banach, Teoremi di esistenze e di prolungabilità, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat. (8) 23 (1957), 226-230. MR 20 #3312.
- 5. L. Cesari, Existence theorems for optimal solutions in Pontryagin and Lagrange problems, SIAM. J. Control 3 (1966), 475-498.
- 6. A. Lasota and C. Olech, On Cesari's semicontinuity condition for set valued mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 711-716. MR 39 #6138.
- 7. B. J. Pettis, A note on regular Banach spaces, Bull. Amer. Math. Soc. 44 (1938), 420-428.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823