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ABSTRACT. We consider nonlinear ordinary differential equa­
tions in Banach spaces. A local existence theorem for the Cauchy 
problem is given when the equation is continuous in the weak 
topology. The theorem can be extended to set-valued differential 
equations in Banach spaces. 

Let B be a Banach space and let F: (0, 1)XB->B. If B is finite 
dimensional and Fis continuous in a neighborhood of (/0, #o)€i(0, 1) 
XB, then by the Peano existence theorem there exists a function <£(/) 
defined on a subinterval of (0, 1) such that 

4>'(t) = F(t, 0 (0 ) and 4>(t0) = x0. 

Dieudonné [ l ] and Yorke [2] have shown, by means of examples, 
that continuity alone, of the function F, is not sufficient to prove a 
local existence theorem in the case where B is infinite dimensional. 
Other authors, for example [3] and [4], have extended the Peano 
theorem to infinite-dimensional spaces but with additional assump­
tions. We have found that by replacing strong continuity with weak 
continuity and assuming the range of F to be bounded we may obtain 
an existence theorem. 

Let B be a separable reflexive Banach space with norm || •|| and let 
B* be its dual space. Let Bw denote the space B with the weak topol­
ogy and let {ƒ»•} be a countable dense subset in B*. By A we mean a 
subinterval of J T = ( 0 , 1). 

DEFINITION 1. A function F:TXB-+B is said to satisfy condition 
(I) if, at each (t0, x0)ETXB, 

00 

F (to, Xo) = PI cl co FN(t0, XQ) 

where 
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FN(to,x0) = U <F(t, x): \t 
1 

to\ < — 
1 N 

| ƒ»(*--*o)| <—>i=l,'--,N> 

and cl co FN(t0l x0) denotes the closed convex hull of FN(t0, x0). 
If B is finite dimensional, condition (I) is equivalent to saying that 

F is continuous. If F: TXBW—>BW is continuous, then F satisfies con­
dition (I). If F takes on set values in B and B is finite dimensional, 
then condition (I) is equivalent to saying that F is upper semicon-
tinuous in the sense of Cesari [5], [ó]. Thus, condition (I) is a reason­
able generalization of continuity and it will also apply to set-valued 
differential equations. 

We consider the differential equation 

(E) % = F(t> x), where F:TX B-+B. 

DEFINITION 2. A solution of (E) on A is a function <f>(t) defined on 
A such that <ƒ>(£) is weakly continuous (i.e., for every ƒ (E.B *,ƒ(</> (t)) is 
a continuous real-valued function), and for almost every 2£A, 

D<t>{t) = F(t, 0(0) 

where D<j>{t) is the weak limit of (4>(t+h)—<l)(t))/h as h—>Q. 

THEOREM 1. Let F:TXB-^B satisfy condition (I) and let 0:A-+B 
be weakly continuous. Then <ƒ> (/) is a solution of (E) on A if and only if, 
for every N^ 1, ££A, there exists rj>0 such that 

4>(t + h) - <K0 
0 < h < 7,=*- f — G cl co FN(t, 0(0). 

h 
THEOREM 2. Let F: TXB->B and let (t0, x0)GTXB. Assume that in 

a neighborhood of (t0, x0), F satisfies condition (I) and is bounded in 
norm. Then there exists a solution <t>(t) of (E) on some interval A such 
that c/)(to)=Xo. Further, <j)(t) is absolutely continuous and <j>f(t) — 
F(t), (j>{t)) a.e. on D {where <f>f(t) is the strong limit of (</>(/-f-fe) —<j>(t))/h 
as h->0). 

The method of polygonal approximations is used in this proof. The 
approximations converge weakly to a weakly continuous limit func­
tion. By Theorem 1, we are able to show that this function is a solu­
tion of (E) and that it is Lipschitz. Then by a result of Pettis [7] it 
follows that 0 has a strong derivative a.e. 
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COROLLARY. Let F:TXBW—>BW and let (t0, x0)ÇzTXBw. Assume 
that in a neighborhood of (/o, #o), F is continuous and bounded in norm. 
Then there exists a solution <t>(t) of (E) defined on some interval A such 
that <K̂ o) —#O, <t>{t) is absolutely continuous on A, and <j>f{t) — F(tt 0(0) 
a.e. on A. 

We have also proved Theorem 2 in the case where Stakes values in 
the closed convex subsets of B (i.e. for set-valued differential equa­
tions) and we have proved theorems on continuous dependence on 
initial conditions and closure of families of solutions. 
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